
www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 7, Issue 3, December 2024

ISSN:2222-758X
e-ISSN: 2789-7362

EFFICIENT IOT MALWARE DETECTION TECHNIQUE USING
RECURRENT NEURAL NETWORK

Marwa A. Abd Al Abbas 1, Ban M. Khammas 2

1,2 Department of Networks Engineering, College of Information Engineering, Al-Nahrain University,
Jadriya,Baghdad, Iraq

Lamarmarwa94@gmail.com1, bankhammas@coie-nahrain.edu.iq2

Corresponding Author: Ban M. Khammas
Received:14/05/2023; Revised:04/07/2023; Accepted:15/08/2023

DOI:10.31987/ijict.7.3.249

Abstract- Because of the Internet of Things (IoT) growing impact on many different uses and their expanding
computational and analytical capacities, they are a potential threat victim for malware intended to hack particular
IoT gadgets. Therefore, in this paper, a successful Recurrent Neural Network (RNN) is proposed for malware
detection. Multiple trials with varied hyper parameter values in this research are trained. When employing RNN
for malware categorization, thorough trials demonstrated that embedding size is more important than the input
size. RNN performance with two different feature vectors was assessed using hyper parameters to validate RNN
as an efficient solution for malware detection. Natural Language Processing (NLP) and feature selection are the
two feature vectors. A paired t-test was also employed in this paper to see if the findings were meaningful to one
another. Compared to the chi2 feature selection, RNN with NLP attained the maximum AUC value and a reasonable
variance. Based on the actual results. The proposed effective malware detection approach proves 99% detection
accuracy with NLP techniques and 89% with feature selection techniques, hitherto results with the RNN classifier.

keywords: Malware detection , Recurrent Neural Network (RNN), Deep learning, Opcode, Feature selection,

Feature reduction.

I. INTRODUCTION

In today’s world, IoT smart devices permeate every aspect of our society, including companies, medicine, housing,

automobiles, games, mentoring networks, entertainment, and more. This interaction, however, causes significant worries

because a large amount of network traffic and a wide range of traffic classes flow over IoT networks, such as those

produced by manufacturing machines, self-driving cars, care sensors, home automation, and other critical devices [1].

From an attacker’s perspective, IoT devices are appealing targets for malware attacks because, unlike PCs, they are always

online, have no antivirus installed, and flawed user account passcodes give hackers simple access to powerful shells (such

as BusyBox). Malware is computer software intended to harm the Operating System (OS). Based on its intended use and

behaviour, malware is classified as adware, spyware, virus, worm, trojan, rootkit, backdoor, ransomware, and Command

and Control (CC) bot. As researchers create novel methods, the malware creators enhance their capacity to elude discovery.

Based on these developments, IoT devices represent a significant new area of security study. It is critical to know which

strategies are appropriate for protecting IoT [2].

Machine Learning (ML) and Deep Learning (DL) are powerful data discovery methods for learning regarding ’normal’ and

’abnormal’ actions in how IoT devices and their parts communicate. IoT systems must advance from just to be efficient and

safe to enable safe interaction with security-based intelligence supported by DL/ML approaches among devices [3]. DL is

the bedrock of modern artificial intelligence, it is frequently employed in computer vision, speech recognition, robotics,

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 29

www.ijict.edu.iq
https://orcid.org/0009-0004-0832-3098
https://orcid.org/0000-0003-3117-7493
https://doi.org/10.31987/ijict.7.3.249
http://creativecommons.org/licenses/by/4.0

www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 7, Issue 3, December 2024

ISSN:2222-758X
e-ISSN: 2789-7362

and a variety of additional fields [4]. DL is a bigger subject of ML in which supervised, unsupervised, and semi-supervised

learning are performed using a bigger deep neural network [5]. It offers the advantage of identifying an unstructured data

model, and most individuals are familiar with the media contained in such data, such as photos, sound, video, and text.

DL has produced very promising results for a wide range of natural language processing problems. Specifically, topic

classification, attitude analysis, question answering, and language translation [6].

Many algorithms in the field of Natural Language Processing (NLP) have evolved; Recurrent Neural Networks (RNN) are

examples of DL (for sequence modelling). RNNs are a type of return network because they aim to take advantage of serial

or sequence data. As an outcome, provided an order (or series) of inputs, RNN can accurately identify objects. For this

case, preceding calculations decide what will occur [7]. Because RNN is flexible and powerful, using it is a feasible option

in malware hunting. During the training step, RNN effectively considers and learns the opcode series with varying length

sequences [8].

In this work, two methods are proposed for malware classification based on RNN. The first method involves RNN with

feature selection (chi2), while the second involves RNN by applying Natural Language Processing techniques. The remaining

parts of the work are as follows: Section II includes the subsequent malware detection, and Section III discusses the

suggested approach. Section IV discusses the experiment’s findings, and Section V brings the paper to a conclusion.

II. RELATED WORK

Deep learning-based malware detection has been shown to be particularly effective in malware detection. Many re-

searchers’ works in the field of malware detection will be presented in this section.

An N-gram technique was used Bojan Kolosnjaji et al.,2017 [9], as well as a combination of convolutional neural network

(CNN) and RNN to carry out hierarchical feature extraction, to select ideal Opcodes for malware detection. The success

rate for detection was 89%, with a median precision of 85.6% and recall of 89.4%, stated to the researchers.

Matilda Rhode et al ., 2018 [10], the authors investigated the possibility of predicting whether an executable is malicious

or benign based on a short snapshot of behavioral data. They propose a method that uses an ensemble of recurrent neural

networks and evaluate their approach on a dataset containing 1,126 malicious and 1,126 benign executables. The findings

of their experiments suggest that their strategy achieves 94% accuracy during the first 5 seconds of operation.

Zhongru Ren et al., 2020 [11], the authors proposed two end-to-end methods for malware detection without manual feature

engineering. They used a sampling method to preprocess the dex files in Android APKs and trained two DL models,

namely DexCNN and DexCRNN, on the preprocessed sequences. The evaluation was conducted on a dataset consisting

of 8000 benign APKs and 8000 malicious APKs, and the results showed that DexCNN achieved a detection accuracy of

93.4%, while DexCRNN achieved a detection accuracy of 95.8%.

Ruitao Feng et al., 2020 [12], the authors examined the efficacy of a sequence-based learning strategy combined with

performance optimization techniques employing RNN models for spotting malicious apps on the device end. To do this, they

provide a feature selection approach that uses a repeating components removal method to filter out unnecessary elements,

shortening the length of the feature sequence for chosen sequence-based features. An appropriate number sequence for

input into a neural network is created out of the condensed feature sequence. The evaluation’s findings demonstrate that

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 30

www.ijict.edu.iq
http://creativecommons.org/licenses/by/4.0

www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 7, Issue 3, December 2024

ISSN:2222-758X
e-ISSN: 2789-7362

their method achieves a high level of accuracy (97.85%).

Sanket Shukla et al., 2019 [13], used RNNs to extract and process localized features for sequence classification in malware

detection. This approach achieved an average accuracy of 90% for detecting stealthy malware and 94% for detecting

traditional malware applications.

Hamed HaddadPajouh et al., 2018 [14], they analyzed the Opcode sequences using RNNs to find IoT malware. With a

dataset containing 281 harmful ARM-based IoT samples and 270 ARM-based IoT benign samples, their approach obtained

a high accuracy rate of 98.18 percent.

Hamid Darabian., 2018 [15], used a sequential pattern mining technique to identify the most prevalent Opcode sequences

used by malicious IoT applications. Maximum Frequent Patterns (MFP) of Opcode sequences can be used to distinguish

between malicious and benign IoT programs. After that, the classification feature is assessed for RNN and Convolution

Neuron Network (SVM). In particular, the accuracy reached up to 99% in detecting unknown IoT malware.

According to Radhakrishnan et al., 2021 [16], DL techniques identify IoT malware well. In particular, their proposed

approach makes used RNN to investigate the execution procedure codes of IoT frameworks. They employed an IoT

malware sample dataset of 271 benign and 282 dangerous apps to test their methods. The 4 trained techniques were then

evaluated on the 104 untrained samples. The proposed model’s second setup has a greater accuracy of 99.08%.

III. METHODOLOGY

This study proposes a malware detection approach based on static analysis and an RNN model. Natural Language

Processing (NLP) techniques such as word embedding, padding, and masking are employed for effective malware detection.

The feature selection technique is used in another scenario. The proposed strategy is then tested with various parameters

on RNN networks, such as embedding size and input size. The flow diagram of the proposed technique is shown in Fig.

1. It begins with a dataset of executable files, both malicious and benign, which is divided into training and testing sets.

Preprocessing involves three steps: feature extraction, labelling, and tokenization. Two cases are then applied: either NLP

or feature selection. Next, the model is generated, and the dataset is classified.

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 31

www.ijict.edu.iq
http://creativecommons.org/licenses/by/4.0

www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 7, Issue 3, December 2024

ISSN:2222-758X
e-ISSN: 2789-7362

Figure 1: Flowchart of the proposed system.

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 32

www.ijict.edu.iq
http://creativecommons.org/licenses/by/4.0

www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 7, Issue 3, December 2024

ISSN:2222-758X
e-ISSN: 2789-7362

The main steps of the proposed systems can be identified as follows:

1) The Dataset: The dataset used in this study consists of 3971 executable files, comprising 3247 malware files from

distinct families and 724 benign files. To ensure efficient processing, each file is limited to a maximum size of 1MB,

and any files larger than this are excluded from the dataset.

2) Splitting the dataset: To ensure the reliability of our prediction model, we randomly split the dataset into two parts

using an 80:20 ratio. Specifically, 80% (3176) of the executable files were used for training the DL algorithm to

develop the prediction model. The remaining 20% (795) of the files were reserved for testing the effectiveness of the

model.

3) Preprocessing: There are three implicit phases in this step:

• Feature extraction: in this step use Bag of Words (BoW) and filtering techniques in this phase as follows. (BoW)

entails removing unwanted characters such as "#$%& " deleting English stop words and changing each word to

lower case such as "an", "the", and "is". Filtering technique is a quick and efficient method for extracting text

features on a large scale. In this work, high word frequency filtering is used to remove words with a high frequency.

• Label encoding: It is the process of converting the categorical labels in the two types of data(benign and malicious)

into numerical values so that the model can use them in this project.

• Tokenization It refers to the method of breaking down a text files into smaller parts known as tokens. Following

the tokenization step, this work proposes the employment of two models. The first model is RNN classifier with

feature selection. The second model is RNN classifier with NLP technique. The details of each model are presented,

respectively, in the following subsection III-A and subsection III-B.

A. RNN classifier with feature selection

In this model, we will utilize an RNN classifier based on chi-square feature selection, which will select features depending

on the relevance of each word retrieved during the vectorization process. In the case of feature selection, converting text

to numerical vectors is useful. As a type of vectorization, we will employ Term Frequency-Inverse Document Frequency

(TF-IDF). TF-IDF is a well-known vectorization method it emphasizes the significance for each word in the document into

account. TF-IDF is used just in model one. It computes a numerical value for each word in a document, which represents

its importance in the document relative to other words. It calculates two important measures: Term Frequency (TF) and

Inverse Document Frequency (IDF). The TF component counts the number of occurrences of an item in the document

(malware and benign file), whereas the IDF component determines the frequency a word is throughout all documents in the

corpus. By multiplying these two measures, TF-IDF vectorizer gives higher weightage to words that are more important

in the document and less common across all the documents in the corpus. The TF-IDF vectorizer generates a matrix that

is sparse with each row representing a document and each column representing a distinct word in the corpus. The value

in each cell of the matrix represents the TF-IDF score for the related word in the relevant document.

Eqs. (1),(2), and (3) represents how to compute the TF and IDF formulas as follows [17]:

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 33

www.ijict.edu.iq
http://creativecommons.org/licenses/by/4.0

www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 7, Issue 3, December 2024

ISSN:2222-758X
e-ISSN: 2789-7362

TFi,j =
ni,j∑
nk,j

(1)

Here, ni,j is the count of occurrences of the word ti in file dj , and nk,j is the total of all occurrences in file dj .

IDFt,D = log
|D|
|nt|

(2)

Here, |D| is the total number of documents in the corpus, and |nt| is the number of documents containing the phrase ti.

If the word is not found in the corpus, the dividend is 0 (in general, use 1 + |nt|).

Wi,j =
TFi,j × log |D|

|nt|
(3)

Here, Wi,j is the weight of the word ti. It has been demonstrated that a high word frequency in one file and a low word

frequency across the entire file set can result in a high-weight TF-IDF.

After compute the TF-IDF of each feature the chi-square feature selection is used to choose the most important features.

The chi-square method involves selecting the most significant features of a file and feeding these features into a DL system

for classification. For filtering the TF-IDF features, a function called SelectKBest was employed in our work. This function

accepts two arguments, the selected score function (chi2), and k, the number of features with the best chi2 that will be

checked [18]. By utilizing this strategy, the advantage lies in the fact that it requires only a small set of features (k) to

be analyzed, instead of scrutinizing all the available features, leading to faster and more efficient processing. The selected

features select from above method (chi2) feature selection are fed to the RNN model to classify the dataset files. The

RNN architecture used is comprised of 7 layers. We have trained different architectures, and the highest performance was

achieved with the architecture shown in Table I.

TABLE I
RNN network architecture based on chi-square features selection

Layer type Output shape Param
Input layer (None, 100) 0
Embedding (None, 100, 128) 17408
LSTM (None, 100, 256) 394240
LSTM (None, 100, 128) 197120
LSTM (None, 100, 64) 49408
LSTM (None, 100, 32) 12416
Dropout (None, 100, 16) 3136
Dense (None, 100, 1) 17

Total params: 673,745
Trainable params: 673,745
Non-trainable params: 0

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 34

www.ijict.edu.iq
http://creativecommons.org/licenses/by/4.0

www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 7, Issue 3, December 2024

ISSN:2222-758X
e-ISSN: 2789-7362

B. RNN classifier with NLP technique

The second proposed model employs RNN classifiers based on natural language processing techniques. This work uses

word embedding and (padding& masking) techniques of NLP. These steps in the current work include feature extraction,

label encoding, tokenization mentioned above, and word embedding and padding/masking. These techniques are used to

optimize the model’s performance in handling and processing the textual data present in the dataset. Using these NLP

techniques improves the model’s ability to understand the text’s context and meaning, thus leading to better predictions

and accuracy. In the second approach, we used two NLP techniques: word embedding and padding/masking. The details

of these two methods are described as follows.

1) Word embedding: In this study, we will use the Embedding layer method as a type of word embedding. Each word

in the dataset files is converted generating a dense vector that captures word semantic associations, allowing the neural

network to better understand the meaning of the text. This word embedding layer can improve classification model accuracy

by allowing the neural network to learn more meaningful representations of the words [19].

2) Padding and masking: Because the Opcode files’ size varies and DL models often require fixed-size inputs, these

inputs must be transformed. Padding can be used to join together short sequences of variable durations. However, long

ones are typically unified by truncating some sequence. The maximum sequence value in this paper is 23000 words; this

value was determined based on a boxplot; the boxplot approach, as shown in Fig. 2, was used to summarize and compare

data sets visually. Boxplots, also known as box and whisker plots, are excellent charts for displaying the distribution of

data points across a specific parameter. These graphs show variations inside parameters determined, such as outliers, the

median, the mean, and where a vast amount of data points fall inside the "box". In this work, the box is drawn according

to the number and size of the words, and it became clear that 75% of the files contain 23,000 words (this value is adopted,

in this work, in padding and masking techniques.

Figure 2: Illustration of the boxplot.

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 35

www.ijict.edu.iq
http://creativecommons.org/licenses/by/4.0

www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 7, Issue 3, December 2024

ISSN:2222-758X
e-ISSN: 2789-7362

After splitting and pre-processing, the dataset was subjected to word embedding with padding and masking. Subsequently,

the processed dataset was fed to the RNN. Applied RNN with an embedding layer and achieved the best accuracy using

the architecture outlined in Table II.

TABLE II
The RNN with NLP model architecture

Layer type Output shape Param
Embedding (None,5000, 75) 75075
Simple RNN (None, 5000, 150) 33900
Simple RNN (None, 150) 45150
Dense (None, 100, 1) 151

Total params: 154,276
Trainable params: 154,276
Non-trainable params: 0

IV. EXPERIMENTAL RESULTS

The proposed approach distinguishes between harmful and benign software. Several experiments were conducted to

compare the effectiveness of RNN with NLP techniques and RNN with the Chi-squared feature selection method in terms

of various DL performance evaluation metrics, such as Classification Accuracy (ACC), False Positive Rate (FPR), Precision,

True Negative Rate (TNR), Recall, False Negative Rate (FNR), F-measure, and True Positive Rate (TPR). These metrics

were calculated for each RNN classifier [19-22]. True Positive (TP) describes the number of malware instances correctly

identified as malware, True Negative (TN) refers to the number of benign files properly categorized as typical, and False

Positive (FP) relates to the number of normal files incorrectly classified as malware. False Negative (FN) refers to the

number of malware wrongly classified as normal [23, 24]. Below are the equations used to compute each of the evaluation

metrics:

TPR =
TP

TP + FN
(4)

FPR =
FP

FP + TN
(5)

TNR =
TN

TN + FP
(6)

FNR =
FN

FN + TP
(7)

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 36

www.ijict.edu.iq
http://creativecommons.org/licenses/by/4.0

www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 7, Issue 3, December 2024

ISSN:2222-758X
e-ISSN: 2789-7362

Recall =
TP

TP + FP
(8)

F1-Score =
2× TP

2× (TP + FP + FN)
(9)

Precision =
TP

TP + FP
(10)

Accuracy =
TP + TN

TP + FP + FP + FN
(11)

The RNN used different input and embedding sizes, as shown in Table III, and the highest results were achieved with an

embedding size of 150. While input size does not significantly affect performance, it can be handled with padding and

masking techniques, ensuring compatibility within the model. However, the embedding process directly impacts how the

model represents and understands the input features. Changes in embedding can affect the model’s performance by altering

correlations between features.

TABLE III
The impact of input and embedding size on the proposed model performance

Method Input size Embedding size Accuracy (%)

RNN with NLP

5000 25 96.3
10000 25 96.01
15000 25 96.02
23000 25 96.0
5000 50 98.0
5000 75 98.9
5000 100 99.0
5000 150 99.3

RNN with CHI2 feature selection

5000 25 86.5
10000 25 86.01
15000 25 85.6
23000 25 85.0
5000 50 87.0
5000 75 87.9
5000 100 88.6
5000 150 89.4

Table IV displays the performance of both RNN models, one with Chi-square and the other with NLP, with respect to various

performance metrics. Overall, the second approach with NLP showed higher performance across all metrics compared to

the first approach with Chi-square.

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 37

www.ijict.edu.iq
http://creativecommons.org/licenses/by/4.0

www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 7, Issue 3, December 2024

ISSN:2222-758X
e-ISSN: 2789-7362

TABLE IV
The outcomes of classification accuracy and DL performance tests

Method TP TN FP FN ACC (%) Precision (%) Recall (%) F-measure (%)
RNN with CHI2 feature

selection
79 632 30 54 89.4 72 59 65

RNN with NLP 161 622 1 11 99.3 99 93 96

The two RNN classifiers showed a significant improvement in classification accuracy. The accuracy increased from 89.4

to 99.3 when using feature selection and NLP techniques, respectively, as demonstrated in Fig. 3.

Figure 3: The accuracy of categorization was assessed.

TPR, FPR, Recall, TNR, FNR, and other metrics have also improved in value using NLP techniques, as shown in Table

III. Fig. 4 depicts the improvement in TPR, FPR, TNR, and FNR results with NLP.

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 38

www.ijict.edu.iq
http://creativecommons.org/licenses/by/4.0

www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 7, Issue 3, December 2024

ISSN:2222-758X
e-ISSN: 2789-7362

Figure 4: TPR, FPR, TNR, and FNR experimental results.

Fig. 5, Fig. 6, and Fig. 7 show the experimental outcomes of various DL evaluation metrics as recall, precision, f-measure

with NLP, and feature selection.

Figure 5: Precision results from NLP and feature selection.

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 39

www.ijict.edu.iq
http://creativecommons.org/licenses/by/4.0

www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 7, Issue 3, December 2024

ISSN:2222-758X
e-ISSN: 2789-7362

Figure 6: Recall results using NLP and feature selection.

Figure 7: F-measure results using NLP and feature selection.

This work outperforms the previous study by [25] which used NLP (One Hot Encoding) based on static analysis with

Opcode features and RNN. While Hamed HaddadPajouh [14] and G. Radhakrishnan [16] , these two works didn’t base

their work on the NLP, while in our work, we used the NLP as a basis for our work. This paper is based on static analysis

and Opcode but with different techniques of NLP that have been shown to perform better [25]. As shown in Table V, the

previous work achieved an accuracy of 97.8%, 98.1% and 99.08%, while this proposed system employed RNN with word

embedding and achieved an accuracy of 99.3%.

V. DISCUSSION AND CONCLUSION

In conclusion, this work proposes two DL models for malware classification - an RNN model based on chi-square feature

selection and an RNN based on NLP. The former relies on selecting the most relevant features and training the model based

on those selected features. At the same time, the latter employs modern techniques such as word embedding and achieves

high performance in all performance metrics evaluated. For instance, the difference in the accuracies of the two approaches

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 40

www.ijict.edu.iq
http://creativecommons.org/licenses/by/4.0

www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 7, Issue 3, December 2024

ISSN:2222-758X
e-ISSN: 2789-7362

TABLE V
Comparison of methods

Methods Method
of

Analysis

Feature
Type

Used Methods Feature
Extraction

Hyperparameters
Tested

Accuracy
(%)

Proposed Static Opcode Word embedding Filtering Input size (n), Step
size (k), and

Recurrent Neuron
(r)

99.3

Sudan Jha
[25]

Static Opcode One-hot encoding BoW &
Filtering

Input size (n),
Embedding size (k),

and Recurrent
Neuron (r)

97.8

Hamed Had-
dadPajouh

[14]

Static Opcode Used Information
Gain (IG) feature

selection

98.1

G. Radhakr-
ishnan [16]

Static Opcode Used Information
Gain (IG) feature

selection

Filtering 99.08

is that when not using chi-square, the system learned from all features, enabling a better understanding of the file structures

and the relationships between features (words). On the other hand, when applying feature selection like chi-square, the

models were limited to a subset of high-ranked features, resulting in a less comprehensive understanding of the file contents.

Compared to the current study, classification DL based on NLP proved to have higher and better performance. These findings

suggest that NLP-based DL approaches are a promising avenue for improving malware classification accuracy.

Funding

None

ACKNOWLEDGEMENT

The author would like to thank the reviewers for their valuable contribution in the publication of this paper.

CONFLICTS OF INTEREST

The author declares no conflict of interest

REFERENCES

[1] R. Pecori, A. Tayebi, A. Vannucci, and L. Veltri, "IoT Attack Detection with Deep Learning Analysis," in 2020 International Joint Conference on
Neural Networks (IJCNN), Glasgow, United Kingdom: IEEE, Jul. 2020, pp. 1–8. doi: 10.1109/IJCNN48605.2020.9207171.

[2] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow, "IoTPOT: Analysing the Rise of IoT Compromises"2015.
[3] N. A. Khalil and B. M. Khammas, "AN EFFECTIVE AND EFFICIENT FEATURES VECTORS FOR RANSOMWARE DETECTION VIA

MACHINE LEARNING TECHNIQUE," Iraqi J. Inf. Commun. Technol., vol. 5, no. 3, pp. 23–33, Dec. 2022, doi: 10.31987/ijict.5.3.205.
[4] Y. Yue, S. Li, P. Legg, and F. Li, "Deep Learning-Based Security Behaviour Analysis in IoT Environments: A Survey," Secur. Commun. Netw., vol.

2021, pp. 1–13, Jan. 2021, doi: 10.1155/2021/8873195.
[5] B. I. Farhan and A. D. Jasim, "IMPROVING DETECTION FOR INTRUSION USING DEEP LSTM WITH HYBRID FEATURE SELECTION

METHOD," Iraqi J. Inf. Commun. Technol., vol. 6, no. 1, pp. 40–50, Apr. 2023, doi: 10.31987/ijict.6.1.213.
[6] J. Chen, C. Wang, Z. Zhao, K. Chen, R. Du, and G.-J. Ahn, "Uncovering the Face of Android Ransomware: Characterization and Real-Time

Detection," IEEE Trans. Inf. Forensics Secur., vol. 13, no. 5, pp. 1286–1300, May 2018, doi: 10.1109/TIFS.2017.2787905.
[7] T. Iqbal and S. Qureshi, "The survey: Text generation models in deep learning," J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 6, pp. 2515–2528,

Jun. 2022, doi: 10.1016/j.jksuci.2020.04.001.
[8] A. Yazdinejad, H. HaddadPajouh, A. Dehghantanha, R. M. Parizi, G. Srivastava, and M. Y. Chen, "Cryptocurrency malware hunting: A deep Recurrent

Neural Network approach," Appl. Soft Comput., vol. 96, p. 106630, Nov. 2020, doi: 10.1016/j.asoc.2020.106630.

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 41

www.ijict.edu.iq
http://creativecommons.org/licenses/by/4.0

www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 7, Issue 3, December 2024

ISSN:2222-758X
e-ISSN: 2789-7362

[9] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, "Deep Learning for Classification of Malware System Call Sequences," in AI 2016: Advances
in Artificial Intelligence, B. H. Kang and Q. Bai, Eds., in Lecture Notes in Computer Science, vol. 9992. Cham: Springer International Publishing,
2016, pp. 137–149. doi: 10.1007/978–3–319–50127–7_11.

[10] M. Rhode, P. Burnap, and K. Jones, "Early-stage malware prediction using recurrent neural networks," Comput. Secur., vol. 77, pp. 578–594, Aug.
2018, doi: 10.1016/j.cose.2018.05.010.

[11] R. Feng, J. Q. Lim, S. Chen, S.-W. Lin, and Y. Liu, "SeqMobile: An Efficient Sequence-Based Malware Detection System Using RNN on Mobile
Devices," in 2020 25th International Conference on Engineering of Complex Computer Systems (ICECCS), Singapore: IEEE, Oct. 2020, pp. 63–72.
doi: 10.1109/ICECCS51672.2020.00015.

[12] Z. Ren, H. Wu, Q. Ning, I. Hussain, and B. Chen, "End-to-end malware detection for android IoT devices using deep learning," Ad Hoc Netw.,
vol. 101, p. 102098, Apr. 2020, doi: 10.1016/j.adhoc.2020.102098.

[13] S. Shukla, G. Kolhe, S. M. Pd, and S. Rafatirad, "RNN-Based Classifier to Detect Stealthy Malware using Localized Features and Complex Symbolic
Sequence," in 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA: IEEE, Dec. 2019,
pp. 406–409. doi: 10.1109/ICMLA.2019.00076.

[14] H. HaddadPajouh, A. Dehghantanha, R. Khayami, and K.-K. R. Choo, "A deep Recurrent Neural Network based approach for Internet of Things
malware threat hunting," Future Gener. Comput. Syst., vol. 85, pp. 88–96, Aug. 2018, doi: 10.1016/j.future.2018.03.007.

[15] H. Darabian, A. Dehghantanha, S. Hashemi, S. Homayoun, and K. R. Choo, "An opcodeâbased technique for polymorphic Internet of Things
malware detection," Concurr. Comput. Pract. Exp., vol. 32, no. 6, Mar. 2020, doi: 10.1002/cpe.5173.

[16] G. Radhakrishnan, K. Srinivasan, S. Maheswaran, K. Mohanasundaram, D. Palanikkumar, and A. Vidyarthi, "WITHDRAWN: A deep-
RNN and meta-heuristic feature selection approach for IoT malware detection," Mater. Today Proc., p. S2214785321002960, Feb. 2021, doi:
10.1016/j.matpr.2021.01.207.

[17] C. Liu, Y. Sheng, Z. Wei, and Y. Q. Yang, "Research of Text Classification Based on Improved TF-IDF Algorithm," in 2018 IEEE International
Conference of Intelligent Robotic and Control Engineering (IRCE), Lanzhou: IEEE, Aug. 2018, pp. 218–222. doi: 10.1109/IRCE.2018.8492945.

[18] E. Dias Canedo and B. Cordeiro Mendes, "Software Requirements Classification Using Machine Learning Algorithms," Entropy, vol. 22, no. 9, p.
1057, Sep. 2020, doi: 10.3390/e22091057.

[19] M. A. Ferrag, O. Friha, L. Maglaras, H. Janicke, and L. Shu, "Federated Deep Learning for Cyber Security in the Internet of Things: Concepts,
Applications, and Experimental Analysis," IEEE Access, vol. 9, pp. 138509–138542, 2021, doi: 10.1109/ACCESS.2021.3118642.

[20] Y. K. Saheed and M. O. Arowolo, "Efficient Cyber Attack Detection on the Internet of Medical Things-Smart Environment Based on Deep Recurrent
Neural Network and Machine Learning Algorithms," IEEE Access, vol. 9, pp. 161546–161554, 2021, doi: 10.1109/ACCESS.2021.3128837.

[21] B. A. N.G. and S. S., "Deep Radial Intelligence with Cumulative Incarnation approach for detecting Denial of Service attacks," Neurocomputing,
vol. 340, pp. 294–308, May 2019, doi: 10.1016/j.neucom.2019.02.047.

[22] R. V. Mendonca et al., "Intrusion Detection System Based on Fast Hierarchical Deep Convolutional Neural Network," IEEE Access, vol. 9, pp.
61024–61034, 2021, doi: 10.1109/ACCESS.2021.3074664.

[23] B. M. Khammas, "The Performance of IoT Malware Detection Technique Using Feature Selection and Feature Reduction in Fog Layer," IOP Conf.
Ser. Mater. Sci. Eng., vol. 928, no. 2, p. 022047, Nov. 2020, doi: 10.1088/1757-899X/928/2/022047.

[24] B. M. Khammas, I. Ismail, and M. N. Marsono, "Pre-filters in-transit malware packets detection in the network," TELKOMNIKA Telecommun.
Comput. Electron. Control, vol. 17, no. 4, p. 1706, Aug. 2019, doi: 10.12928/telkomnika.v17i4.12065.

[25] S. Jha, D. Prashar, H. V. Long, and D. Taniar, "Recurrent neural network for detecting malware," Comput. Secur., vol. 99, p. 102037, Dec. 2020,
doi: 10.1016/j.cose.2020.102037.

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 42

www.ijict.edu.iq
http://creativecommons.org/licenses/by/4.0

	Introduction
	RELATED WORK
	METHODOLOGY
	RNN classifier with feature selection
	RNN classifier with NLP technique
	Word embedding
	Padding and masking

	EXPERIMENTAL RESULTS
	DISCUSSION AND CONCLUSION
	References

