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Abstract 

We concentrate on bi-shadowing property, it has important properties and applications in 

mathematics. In this paper some general properties of this concept are proved. Let       be a metric space 

                  be maps have bi-shadowing property. We show the maps        and     have 

bi-shadowing property.  
 

Let                    be maps on a metric space        have  bi-shadowing property. We 

show the maps     and     have bi-shadowing property. 
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1- Introduction 
 Attractors of the discrete dynamical system on an infinite-time interval have been used to 

investigate the properties of the system. To do so, an arithmetic simulation of the attractors is needed, 

particularly for complicated system such as chaotic systems. Consequently, pseudo-orbits (approximated 

orbits) are now present, and the resultant behavior reflects the behavior of the approximated system only. 

Therefore, the question about the existence of a true orbit near a pseudo-orbit is obviously raised and 

strongly considered. It appears that the best way to carry out these ideas is by the concept of the property of 

(direct) shadowing. The concept of shadowing, in fact, plays a significant role in understanding the 

asymptotic behavior of dynamical systems; this goes back to 1960s, the work of [4]. 

 

The inverse idea is also important, that is, every true orbit of the system can be approximated by a 

pseudo orbit with specific properties. In practice, these pseudo orbits are taken from a pre-assigned class of 

orbits generated by continuous maps. This concept is called inverse shadowing, which was introduced by 

[8] and by [9] using δ method. A combination of the concepts shadowing and inverse shadowing is called 

bi-shadowing, which was introduced by [6], see also [5]. Bi-shadowing was considered in two cases, first 

case finite-dimensional systems in [6] and second case infinite dimensional systems in [3]. Bi-shadowing 

was also considered for set-valued dynamical systems in a metric space with an application to iterated 

function systems, see [1]. [7] studied the hyperbolic homeomorphisms on compact manifolds and presented 
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both inverse shadowing and bi-shadowing properties with respect to a class of δ methods which are 

represented by continuous maps from the manifold into the space of bi-infinite sequences in the manifold 

with the product topology in [2] proved the concept of bi-shadowing with respect to continuous comparison 

maps for these systems under various conditions. Al-Badarneh also illustrated the finding by using 

examples of subclasses that incorporate: Kannan mappings, Chatterjea mappings and Reich mappings. 

 

 In this paper, some preliminaries needed are given, also we state and prove some general 

properties and theorems about bi-shadowing property. 

 

2- Preliminaries: 
Let               be a map defined on a metric space       and consider the dynamical 

system on   generated by the iterations of  , that is         and                                 . 

We shall identify the map   with the corresponding dynamical system. A sequence  {  }   
     is called 

a (true) orbit of   if                                 ,              .  A sequence   {  }   
      is called a  -

pseudo-orbit of   if                                  and for     . 

 

Definition 2.1. [2] 

 

A continuous map       is called bi–shadowing with respect to a comparison class of maps 

     consisting of continuous maps on   and with positive parameters   and   if for any given  -pseudo-

orbit {  }   
  of   with       and any        satisfying:                           

there exists a true orbit  {  }   
  of   such that: 

          (         (         )) , for all    . 

 
 

3- Main Theorems: 
In this section, we state and prove the main results about maps that have bi-shadowing property in 

a metric space       and       . 
 

 

Theorem 3.1.  

If         are maps on Y have the bi-shadowing property, then     has the  bi-shadowing 

property. 

Proof: 

Suppose that   has bi-shadowing then for any given   -pseudo-orbit {  }   
  of    with      

   and any        satisfying : 

           (         )     

there exists a true orbit {  }   
  of   such that : 

           (          (         )), for all     . 

since   has bi-shadowing then for any given    -pseudo-orbit {  }   
  of    with            and any 

       satisfying : 

           (         )       

there exists a true orbit {  }   
  of   such that : 

             (           (         )), for all     . 

Now, for some       , let           when         {      },     {      }, 

       {
      

   
         

 
 
          

 
}   , for any given  -pseudo-orbit {  }   

  of     , and any 

           satisfying : 

         (           )     

       ( (    )  (    ))       

   
   

 (         )             
         

 
            

then there exists a true orbit {  }   
  of   such that : 
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           (          (         ))            for all     . 

In the same way, we can get:  

   
   

 (         )             
          

 
               

there exists a true orbit {  }   
  of   such that : 

            (           (         ))            for all     . 

Hence there exists a true orbit {  
 }   

  { (     )}   

 
 of   such that: 

 

 
       

                     

   (          (         ))     (           (         ))  

     (          (         ))      (           (         ))  

     (          
   

 (         )     
   

 (         )) 

     (            
   

 ( (    )  (    ))) 

       (
      

  
    

   
 ( (    )  (    ))) 

                
          (

      

  
    

   
 ( (    )  (    ))) 

  (         ( (    )  (    )))     for all    . 

Hence,     has the bi-shadowing property.   

 

 

Corollary 3.2: 

Let       be a map. If   has the bi-shadowing property, then    has the  bi-shadowing 

property for every    .   

Proof:  

We can prove this result by Induction Law of Theorem 3.1.    

            Let        and         be metric space,       and       be maps ,the 

 (             )                      .  

We defined the map            (         )                              

To prove that         is a metric space . 

Let                                 .  

1. Since  (             )                       also            and             . So that 

 (             )   . 

2.  (             )   , if and only if                     ,  

if and only if            and            ,  

if and only if      and       thus              . 

3. Since         (            )                                                                                                                                                                      

                     

  (             ) 

Hence  (             )   (             ). 

4.   (             )                      

                                              

 [                      ]  [                      ] 



Journal of University of Babylon, Pure and Applied Sciences,Vol.(26), No.(5): 2018 

229 

 

  (               )   (                 ) 

Hence  (             )   (               )   (                 ) 

From        and    thus           is a metric space. 

 

Theorem 3.3: 

Let        and         be metric spaces,       and       be maps. if   and   has the bi-

shadowing property then     has the bi-shadowing property. 

Proof:  

  Let        and         be metric spaces,       and       be maps, then we choose the 

metric   on     as following:  

For                        ,                            . 
Suppose that   has bi-shadowing then for any given   -pseudo-orbit {  }   

  of    with         and 

any        satisfying:              (         )      

there exists a true orbit {  }   
  of   such that 

            (           (         ))         for all     . 

Since   has bi-shadowing then for any given    -pseudo-orbit {  }   
  of    with            and any 

       satisfying:                (         )       

there exists a true orbit {  }   
  of   such that 

              (             (         ))      for all     . 

Now, let      {      },      {      },             , for any given  -pseudo-orbit 
{  }   

  {       }   
  of      and any          satisfying: 

               (                 )     

             (                 )       

since                    

   
   

  (         )     
   

   (         )      

Hence         (         )            

Then there exists a true orbit {  }   
  of   such that 

            (           (         ))      for all     . 

And also                                     
Then there exists a true orbit {  }   

  of   such that 

              (             (         ))      for all     . 

Hence there exists a true orbit {   }   
  {       }   

  of   such that 

      
 
    (               )                       

   (      
   

  (         ))     (       
   

   (         )) 

  (      
   

  (         ))   (       
   

   (         )) 

  (          
   

  (         )     
   

   (         )) 

  (     
         

 (                 )) 

Hence     has the bi-shadowing property.   

 

 

Now, we state and prove the main results about maps have bi-shadowing property in a metric 

space       . 
 

Theorem 3.4:  
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Let                    be maps. if   and   has the bi-shadowing property then     has 

the bi-shadowing property . 

Proof: Suppose that   has bi-shadowing then for any given   -pseudo-orbit {  }   
  of    with 

        and any         satisfying : 

           (         )      

there exists a true orbit {  }   
  of   such that 

           (           (         )),      for all     . 

And   has bi-shadowing then for any given    -pseudo-orbit {  }   
  of    with            and any 

        satisfying: 

            (         )       

there exists a true orbit {  }   
  of   such that 

            (            (         )),      for all     . 

Now, for some       , let          when         {      },     {      }, 

       {
      

   
         

 
 
          

 
}   , for any given  -pseudo-orbit    {  }   

  {       }   
  

of     , let         when                                                          (         )              

satisfying:       

          (             )     

        ((         ) (         ))       

        (         )          (         )          

         
    

 (         )         

   
    

 (         )            
         

 
            

there exists a true orbit {  }   
  of   such that 

           (           (         )),      for all     

And also:      

   
    

 (         )         

   
    

 (         )            
          

 
               

there exists a true orbit {  }   
  of   such that 

            (            (         )),      for all     

Hence there exists a true orbit {  
 }   

  {     }   
  of   such that 

       
    (               )                    

   (      
    

 (         ))     (       
    

 (         )) 

     (      
    

 (         ))      (       
    

 (         )) 

     (          
    

 (         )     
    

 (         )) 

     (                 (     (         )))  

       (
      

  
    

    
 (     (         ))) 

               
         (

      

  
    

    
 (     (         ))) 

  (     
    

 (     (         ))) 

Hence     has the bi-shadowing property.   

 

Theorem 3.5:  
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Let                    be maps. if   and   has the bi-shadowing property then     has the 

bi-shadowing property . 

Proof: Suppose that   has bi-shadowing then for any given   -pseudo-orbit {  }   
  of    with 

        and any         satisfying : 

           (         )      

there exists a true orbit {  }   
  of   such that 

           (           (         )),      for all     . 

And   has bi-shadowing then for any given    -pseudo-orbit {  }   
  of   with           and any 

        satisfying : 

            (         )       

there exists a true orbit {  }   
  of   such that 

            (            (         )),      for all     . 

Now, for some       , let           when         {      },     {      }, 

       {
      

   
         

 
 
          

 
}   , for any given  -pseudo-orbit     {  }   

  {       }   
  

of     , let         when      (         ) for all      satisfying:      

          (             )     

        ((         ) (         ))       

        (         )          (         )          

         
    

 (         )         

   
    

 (         )            
         

 
            

there exists a true orbit {  }   
  of   such that 

           (           (         )),      for all     

And also:             (         )         

   
    

 (         )            
          

 
               

there exists a true orbit {  }   
  of   such that 

            (            (         )),      for all     

Hence there exists a true orbit {  
 }   

  {     }   
  of   such that 

 

 
        

   
 

 
 (               )                    

   (      
    

 (         ))     (       
    

 (         )) 

     (      
    

 (         ))      (       
    

 (         )) 

     (          
    

 (         )     
    

 (         )) 

     (                 (     (         )))  

       (
      

  
    

    
 (     (         ))) 

               
           (

      

 
    

    
 (     (         ))) 

  (     
    

 (     (         ))) 

Hence     has the bi-shadowing property.   
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