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Abstract

In this work, the efficiency of double Geuss quadraiure methnd, used to intewrate over a
rectangolar clement in 3D BEM, has been investigated. The efficiency of o guadratre or
integration scheme is investigated by estimating the eritical ratio for which the absolute
relative error of the numerical integration |s less than 1x10%. As small as the critical ratio is,
the quadrature i3 more efficient. Also, special transformetion techniques have been infroduced
and used t0 increase the accuracy and efliciency of double Gauss quadrature cspecially for
near singular eases, where the source point i very close to the element under consideration.
Thres types of kernels were considered, weak, strong and hyper singular kernels which ¢ai be
encountered in the integral equation of 3D elasiodynamica BEM problems.
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1. Introduction partial dilferential equations. It requires

The Boundary Element Method (BEM} or
the Boundary Integral Eguation (BIE)
method is a powerful technique for solving

discretization only on the boundary of the
domain  and, ‘hence, reducing the
dimensionaiity by one [1, 2]. One of Lthe
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biggest challenges in the BEM is the
evalustion of integrals over tha discretized
wawnary, expecially in 3D pioblems where
the integral must bz performed over an
arca. In {act, the accuracy and efficiency of
he BEM technicue depande mainly on the
cvaluation ef these integrals, in particutar,
the evaluation of near singular integrals
which ncour when the field point is very
cinse 10 the area of integration,

lLachal and Waison [3] proposed an
adaptive element suisdivision techmique
using an crror estimator for the numerical
integration. Later, Fiedler [4] propased a
regularizaiion  proccdure, 10 be  nsed
logether with the varighle trensformation
approach i further weaken the hesr-strong
singular integrals. A different approsch
using  quadratic  and  cubic  vanable
trensformalions in order to weaken the near
singularity  before applying  Gauss
Quadrature was introduced by Telles [5).

Spreial weight function formulae for the
3D kemel iy were developed by Cristescu
and Lobignac [6] for triangular and square
Manar elements. Aliabadi e wf [7. 8]
introduced the subiraction of singularity
method, which is based an series expansion
of the fundamental solotion, shape funetion
aud the Jacobian in 3D BEM problems. The
reader who is interested in further details is
referred to Ref.  [9]. On the other hand,
anclytical integration ¢an be found vty
efficient in his task, since it iy not only
useful for near singular cases but alse when
the source point lics on the element itself.
[owever, it i3 limited only to the planay
elements or polyhedral domains as can be
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seen in [10]. Hayami {11] applied e
variable transformation method to cvaluste
mear  singular  integrals  over curved
boundarics. His work was cxtension to
previous works executed by him and other
ca-workers {12]-{15]. [t includes asing of
system  coordinates  transformation, from
Cariesian o polar coordinates, in order o
weaken the sngularity, then by usging
vatiable transformation for bh the radius
and =mnple, the further
weakened by multiplication by the deriva-
tive, or in other terms Jacobian, of the new
uansformarion.

I this worls, the variables transformation
methed, called TF, is applied for bath the
two variables of integration in reclangular-
shaped  elements. The  singularty s
efficiently weakened by the Jacobian of
mransformation resuiting in enhanced accu-
racy and ability to process pear sinpular
cases. The technique can easily be extended
ta trangular clements. Tn section 2, the
problem of near singular integrals will be
described for 3D BEM in elastodyamics.
Gauss quadrature over an arca apd varizble
transfommation echnique will be presented
M seetion 3. The proposcd inleg ration
scheme will be demoustrated in section 4,
while investigation for differen! orders of
singularitics will be given in sesticn 3.
Finally, section 6 will be devoted to disicuss
the results and record some conclusions,

singnlarity  is

2. Problem Statement

Reference will be made 1o clastodynam ies
BEM problems for being the problems with
the highest oider of singularity. The
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fundamzntal sclution of the displacement
jalso called Grens Funection) for 3D
clastodynamics problems is given by [18];

Where ¥ ia the souree (field) point, ¥ is any
point in the space, tis the time, r=x-¥.r -
Il x=y !, I is the identity matrix, ¢y, cp are
the specds of pressure and shoar waves
respactively, H i the Heaviside (unit step)
function and & is the Dirac delia function,
By examiving the above equation, three
orders of singuiarities have 1o be dealt with,
weak 1/r, strong, 1/r* and hypersingular 1y’
when integrating over space. [ntegralion
over time has no effect on the singularity
order of the kernel. When (he source paint
is far wway coough from the element under
cansideration, double Crauss quadrature can
be found wvery efficiert and accurate.
However, when the source poinl is very
close to the integration clement, or in other
words, the nearcst distance botween the
source point and the clement is very small
as compared to the largest dimension in the
element, error will arisc unless a special
treatmznt is adopted especially ior higher
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order singularities. This is due to the fact
that, when » becomes very small (when
trying to integrate over the points close
the source point), the resulting kemel will
be unstable and, hence, must be represented
Ly o higher degroe polynomial. Therefore, a
hipher order (auss quadrature must be used
to implement the intzgration which lcads to
long computarional ime.

Invoducing a dimensioniess ratio R, this
represents the matio of minimum distanee

betweer the sowrce point and the eloment

{cf) to the Jarpest dimension (7);
g=2 @
o

The cfficicncy of wny integration scheme
can be investigated by examining itz ahility
to maintain the crror within & specified limit
as R becomes very small. The vahe of ®
for which the relative error of numerical
integration is just about to exceed the
tolerance 1s called ciical ratio for hai
integration scheme. The toleramnce is
selected as 1x10° in this work which is
quite sufficient for most applicaiions,

3. Gauss Quadrature over a
Rectangle

Gauss quadrature can be combined o
integrale over an area in 3D BEM [Z, 17],
for a rtectangular element it takes the
following form:

[ 7 cusnds dg,=
Ny &}
Z Zf(ﬂnl!?fnir H"nl. wn!

rlzl mizl
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Wherc ¢y, & arc the curve-linear coordi-
nates, My, Nz are the orders of inner and
outer quadrature respectively, i, wy are the
ahacissas and weights for the peried [0, 1},
Althougn  this  imegraton scheme s
efficient end accurate whon the source point
is far enough from the element, it becomes
erroncous for necrly sinpular cases unless
special treatment is adopted. In this work, a
special variable transformation are tested
and applied w0 enhance the ahility of double
{auss quadraturc o numcrical intcgration
even when the ratin R is very small, The
used transform, called Th , where B is
degree of the transform, takes the following
form;

THx)=(x +R) @)

Which represenes the reciprocal of f-ornder
root. Applying this transform for both
curve-linear variables £y and {5 yields,

& =T =1, <Ry
=& =‘J=;;;_ﬁ -R
d‘gk =‘§t_|:}'md§k
70+ J: Ef (.0 dd de, =
.l:“ Lf{&h‘f:l)dgh] Eféi =

] —é)i](b"nd] 2

x1=1 ni-1
[/ G+ - a6 +td -d)m,) ]
! nl W a2 (5-]
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where f (6,631 =1 (&7 ~R £ —R)
: ;‘I—[Lm: g‘!-wﬁ]
G=¢=TH0y, b=d=T"()

It is worthy 1o mention here that the
Jacobian of the tansformetion &,
vield very small value near singular poinis
and, hence, will efficiently weakea the
singularicy. This technique will be used n
combination with the follewing scheme to
enhance the ability of Gauss quadralure 1o
integrate over near singular elements.

4. The Proposed
Scheme

Tuvrder e study the eifewt of g small ratio
® and to demonstrate the idea of the
proposed  scheme, a reclangular  planar

Integration

slement 1c coneidered az shown in Figure -
(1) for the sake of simplicity. However, the
procedure can also be exiended to the
curvad elements. Let £ be the source point
and £ the peint on the element nearest to &
Hence, the minimum distance is simply
d=|F —&]. It is clear that when the vector
of minimum distance d is parallel to the
pommal from point £, or in other words the
point & lies inside the element, the singw-
barity will be higher for the same value of &
This is due o the fact that there will be
more singular values for the integrand
arcund & with worst case when & lies
exactly on the cemter of the element. For
thet reason, we wil! consider the worst case
for ¢ in this study. When & 15 very small
compared to the size of the element,
element subdivision must be parformed at
the point &, as shown in Figurs (1), when it
it far enough lrom any edge of the element.
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This subdivision is usaful from rwe aspects.
Firstly, 1t introduces smaller elements and,
henee, higher ratio X which will result in
better accuracy, and sccondly, it permits the
application of the proposed schame which
depeonds v il Lot that e yearest polul g
15 very close or lies exactly on the corner of

the clement.
:(i
d
z
X k.
& PN —
¥ = L

Figure {1) Kectanple Subdivision

When £ is vory close to anv edge of the
clemment, then there iz no need to subhdivids
the adjacent edge. For example, when the
distance between & and the edge x = x; s
less than 54, then there is me need to
subdivide the edge y = 3y, where {x, , 31) is
the comer nearest to & . In order to apply
the proposed scheme for the task of
numetical  intepration,  the
procedure is indreduced,

{}) Find the ncarcst point & and the
migimun Jislancs d, this can be done
by applying Newton-Raphson method.

(2) TF pr(&,) - x | < 5d for any ¢dge, then no

need o subdivide in the r-direction, ses
Figure (2}, bul a new mipimum
distancc - mmnst be considered in
determination of A, defined as
&, =d -05[x(&)—x;| o compensats

following,

for 1oss of accuracy due 1o presence of

more singular points sround &, the
same thing con be said about y-axis.

{3} In casc of only one subdivision in one
direction is done, constder ¢ for the
two resulting sub-elements. 1n case of
uo sub-division is performed, consider
d,=d,—03[¢)-p| for the main
clement. In czse of full sub-division,
censider & for all the resulting sub-
elements.

{4} Now calculaic the ratic R for each
(suhJelement  hy  dividing  the
(comrccted) minimum distance by the
largest dimensicn in that {sub-}element.
Then apply the appropiiate transfor-
mation and Gauss gquadrature scheme
which can be known from the
following discussion.

I -5l e

1AL — 7

i

Figure (2) Subdivision in y-direchion

Note thet, all the coleulations in steps 1.4
can be executed in terms of curve-lingar
coonlinates, but o must be normalized by
the largest dimension in the elerment. This is
useful when dealing with curved elements,
These steps will take very litle execuion
time (Izas than 1%%) in comparison to the
upeoming processing,
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5. Investigation of the Proposed
Sc¢heme

In order to investigate the cfficicncy of T¥
transform as well ue direct integrafion, a
standard rectangle 4(x ,3) e R, 0<x,» <
1} was considered with a source point of
coardinates (0, 0, &), ie., & lies exactly on
the comer of the element located at the
origin. The following procedure is uscd o
caloulate the critical ratio R, for direct and
transformerd  integralion  verlables with
different deprecs of transformation, B, for
three Lypes of singularity. Both the exact
{apaiviical) and the numerical solutions are
expressed in ferms of the ratie R for
diffcrent types of kemels, then the absolute
orror fanction £, given in eq.(6) below is
plovied against R, The critical value of B is
the point a1 which £, is just less then 1X10°,
Flgure (3) shows two cascs of the plot & —
A comesponding to  two  different
quadratures. The oscillation of £ i3
reasoned to the fact that Gauss {Juadrature
is & polynomial of the inicgralion variables
ard, hence, exbibile 2 kind of lobe
generation. If the main lobe is less than
1%10%, the critical volue can be safely
congidered befors it as shown in Figurc
{3a). In Figure (3b), the main lobe is higher
than 1310 so £, must he taken beyond it.

rﬂmu } 6
o (1) \ ©
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The investigation results as well as the
suggested integration scheme will be given
for sach type of singularity in what follows.

(a) Weak Singutarity 1/

It has been found that when R > 1 then
direct intcgration 13 more accurats due to
the fact that the Jacobian of trapsformation
will play undesired rele. Also, when 1.0 < R
< (.75, no significant improvement n
accuracy is indicated for the same
gquadrature order, thersfore dircet method is
preferable in thal range. But when # is less
than .75, transformation method is found
to be more efficient. It is clear from Table-1
which records the values of eritical ratio for
different quadratures that when 073 > R =
6.08 the low degree transformation is more
efficient thzn highet degres one. Huwever,
when R is less than 0.08, the transform T is
found to be more efficient than T°. By
inspecting Table-1, the following formula
can be concludad apout the optimum value
of B

f=21 Fni{ln ':e'} (7

But & higher order quadrature is needed,
crder at least (1.5 % 1.58) or 2.25(A=p), in
order to achieve the required accuracy,
atherwize it wAll be degraded. It is clear that
a quadraiuge less then 5%5 is not capable of
handling transformation scheme and high
error will ariges 1f it is used. lucrsasing P
beyond § has an effect of reducing the
critical Tatio, but & higher order quadraturc
is neoded. This is obvious when comparing
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T¢ and T’ columns. Since P is 6 for the

farmer, o quadrature of order at least ~81 is

neesded to ashieve better accuracy which is
satiafied for all the guadraiures higher than

%8, but for other quadratures, the accuracy

is afected. The proposed procedure w

apply numerical integration is wgiven as

folicws:

1. After eveluating R from the previous
section, for cach sub-element | if R = 0.3
then using direct imtegration  is
preferabilc.

2 IF 85 > # = (.08, using T is preferable
with the sppropriate quadrane.

3, IF R<0.08 then use T tromsform with
guadrature of order at least 8x8.

The drawback in tansforiation method 35

the evaluation of transformed wariablos in

the form of power functions which
consumes 8 lot of CPU resources. To
minitize this problem, epeated muitipli-
cation of the variable by itself can he used
insiead of power function. For that rcason,

[ must be kepl integer as compromising

between speed and accuracy. Thanks to real

time multiplicadon n math-coprocessors,
repetitive multiplication wili cousurne very
litks time in  most  pProgramming

EOVIIOMMENES.

(h) Strong Singularity 1/7

The critical retios for this type of
gingmularity are listed in'Table-2. In this case,
using T2 was found to be, in general, mote
accurate than teansforms of higher degrze
when R = 005 However, if R < 005,
higher degres transtorm has advantage over
T . but a quadranrs of order at least

P e
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(Zp2F) or HAxP) s needed lo achievc

the required accuracy. Thiz is clear in

Tahle-2 which lists the criical ratdos for

different integration schemes for the sirony

singularity, Note that T° has lower accuxacy

thae TY when the order of quadrature iz les:

than 12x1Z. The proposed procedure to

apply numeticsl integration for stroag

singularity 15

1. If (R > 0.3} then using direct integzation

iz preferable

2, 1£ (0.5 > R > D.05), using T* is preforable
with the appropnate quadrature

3. 10 K = 0.05) then use T or T but &
guadratare of order 10x10 is needed for
the former and 12x12 for the latter
scheme.

(¢) Hyper Singulanty 1/

Here, T° wansform is, generally, more
accurate than other fransforms when R >
0.01 25 can be shown in Table-3. When R <
0.01, T* i found to be the most accurate
transform  with abrupt improvement in
accuracy over 1%, but a quadrature of order
at laast (3Rx3P) or F(P=p) iz needed 10
achicve the required accuresy (in this case
16%16 or higher order is requirsd). Nate
that " is better than T® when the oxder of
cuadrature iz less than 18x15 which
confirms the previeus conclusion. The
proposed procedurs: o apply numerical
iregration is:

1. If {R > 0.€) then uging direct integration

is preferable
2. IF{D.6 > & > .01}, using T is preferable
with the appropriaw quadcature
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3. 1f (R < 0.01) then usc any one of the
transforms according to the value of X
but & guadrature of order at loast 16+16
is needed,

It can be shown that using ligh-order

quedrature will signifieantly improve the

results and reduces eritical ratio. This is duc

o the fact that n-order Gauss quadrature

can exselly integraie a polynomial of ordst

upto [2r-17 [18].

&. Conclusions

So far, 8 powetfn! integration scheme has
been iptreduced. This scheme involves the
combination of two techniques, element
subdivision and transformation of integra-
tion variables. The first tachnique reduces
the critical ratio R and permits the appli-
cation of the appropriate quadeaturz by
comparing the evaluated ratio £ with the
critical ratios given in section 5. While the
second technique weskens the singularity
duc to multiplication by the transformation
Jacobian. Tables 1, 2 and 3 can be used to
sclect the appropriate quadrature for various
values of R. For large values of the ratio B,
direct intcgration is ynore efficient, but
when R i very small, transformation of
variabics is found to be superior over direct

Dasiali Journal for Engineering Sciences /2009
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integration. A reducticn in the critical ratic
down W 1/500 has besn oblajned for the
quadratze of crder 18x1% in hypersingular
case. In fact, the efficloncy is abruptly
improved with the increase of guadrature
arder even Tor kemnels of high order
singulerity. For intermediate values of K,
lower degres transformalicns are found to
be morc efficient than higher degree ones,
but tor very small values of £, one must vse
higher degree wransformations due to their
improved efficiency.

The main disadvantage of the trans-
formation metnod, resalting from the
caloulsion of power functions, can be
avoided by using repetitive multiplication
instead of power functions. For that neason
3 13 always chosen as intzger value, This is
imporznt 1o save CPU wiility.

The propcsed scheme can easily be
extended 10 inteprale over triangular-shaped
clernents calling thet the inner peried of
integration can be cxpressed as u function
of the cuter abscissa [17]. Also, the
proposad scheme can be used with super-
hyper singulasitics such as 1/ and 1, ot
higher order Ganss quadraiures are needed
in vnler Lo achieve the dosired nocwraey.
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Table-1 Critical ratios for weak singu]arit}'

Quadrature Critical Ratio B,

order Dirsct | 1 T T T T
acs 170 | 240 | 240 7 220 | 200 | 208
434 1.25 1.20 1.15 0.7% 0.83 0.87
5115 Q70 | 041 | 049 | 034 | 053 | 055
6l.l6 (.45 011 018 022 9.24 Q.26
o7 .33 0075 | 0080 | 0088 | 0007 | 011
378 025 [ 0046 | 0041 | 0.035 [ 0.033 | 0.035
1008 021 | 0046 | 0019 | 0017 | GOIS | 0012

10010 0.15 | 0022 | 0015 | 0.001 | 0.0085 | C.008C

12e12 .10 0011 | 0.6070 | 0.004) { 0.0030 1 00027
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Table-2 Critical ratios fer strong gingularity

Quadrature Critical Ratio R
order Direct | T T T T’ 1°
303 2.00 3.20 31.28 3,240 3.10 3.00
474 1.50 1.55 1.45 1.05 1.10 1.15
5005 R8s 01.56 0,70 0.74 0.76 (.78
arl6 0.53 .21 0.29 0.34 0.36 .37
TO07 (.45 016 iy 24 (25 (.24 0.19
gr18 0.33 {).0%10) 0,10 313 | 0.145 | 0.145
a9 0.27 0.050 | 0.030 | 0048 | 0.085 | 0.07T4
1078 .27 0038 | 0080 | 0.030 | 6.070 | 0.075
100110 0,22 pOo32 0025 0016 | 0.014 | 0.0l6
120012 0,16 0.016 | €.0090 | 0.0685 | D.OOBS | 0.0070
16716 0.092 | 0.0050 | 0.0022 | C.001¢ | .00 14 | 0.0012
Tablz-3 Critical ratios for hyper singularity
Ouadrature Critical Ratio B,
order Direct T r T T T5 T*
3 2,30 395 375 3.55 21,40 3.30
474 1.70 1.80 1.85 1.35 1.35 1.38
525 1.040 00 085 (.85 .85 (L85
6Li6 0.73 (.55 0.59 (.58 .48 {1.49
707 (.60 0.26 0,33 niv (.38 0,39
EOH 0.43 0.1% 0.17 0.20 0.22 24
10008 0375 G.13 015 318 0.20 0,22
10010 0.27 a0an | 0065 0.080 0.055 0.0635
1212 020 | o0y | 00090 | €018 0.026 0030
16716 o.11 | 0.0020 | ¢.0012 | 00008 | 0.0006 | 0.0008 |
180118 0,086 § 00015 | 0.00045 | 0.00026 | 0.00020 ] 0.00015
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