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ABSTRACT

In this paper we shall prove that if a non-constant meromorphic function f and
. I e
its derivative f' share the value a(= 0,00) CM (IM) and if N[r,?) =S(r, f)

a(z-c)

— 1 — 1
Nl r,—= |+N|r,— |[=S(r,f)), then either f=f' or f(2)=
( ( f] ( f’j r.f)) (2) 1+ Ae™’

(f(z)=1i—azz), where A(#0) and C are constants. These results give
— Ae

improvement and extension of the following result of Gundersen: if a non-constant
meromorphic function f and its derivative f’ share two distinct values

0,a(# ©)CM, then f = '

Introduction and Results

In this paper, the term meromorphic will always
mean meromorphic in the complex plane. We use the

In [3] G. G. Gundersen proved the following
theorem:
Theorem A. Let f be a non-constant meromorphic

function. If f and f’ share two distinct values

standard notations and results of the Nevanlinna theory

(see [1] or [2], for example).
quantity satisfying
S(r, f)=0(T(r, f)) as r —> ooexcept possibly for
aset E of r of finite linear measure .We say that two
non-constant meromorphic functions f and g share

S(r, f) denotes any

a value a IM (ignoring multiplicities), if f and g
have the same a-points. If f and g have the same
a-points with the same multiplicities, we say that f
and g share the value

0,a(# «) CM, then f =f".

In this paper we are give two improvement and
extension of Theorem A and prove the following
theorems:

Theorem 1. Let f be a non-constant meromorphic

function. If f and f' share the value a( 0,00) CM,

In particular,

and if N(r,%) =S(r, ), theneither f=f' or

a(z-c)

a CM (counting f(z)=—— (1.1)

1+ Ae™?

multiplicities). Let k be a positive integer, we denote

by

1
Nk)(r,f—] the counting function of a -points of
—-a

f with multiplicity <k and by N(M(r’fiJ the
—-a

counting function of a-points of f with multiplicity

>k.

* Corresponding author at: Diyala University - College of
Science , Irag.E-mail address: ameralkhaladi@yahoo.com

where A(# 0) and C are constants.
Theorem 2. Let f be a non-constant meromorphic
function. If f and f' share the value a( 0,) IM,

and if N(r,£J+N(r,i]:S(r, f),
f f’

then either f =f' or

2a
f(z2) =——,
(2) 1— Ae™?

where A is a nonzero constant.

(1.2)
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Remark Theorem 1 and Theorem 2 are give
improvement and extension of Theorem A, because
the condition ¢ f and f' share 0 CM > in Theorem A

is exactly the condition

et

2. Proof of Theorem 1
Suppose a=1 (the general case follows by

considering if instead of f)and f = f’. Since
a

f and
f —1 are simple zeros. By the second fundamental

f’ share 1 CM, we know that the zeros of

theorem and N(r,%] = S(r, f), we have

1 —
T(r,f)< N[r,f—_1j+ N(r, f)-
No(r,%j+8(r, f), (2.1) where in

1 .
No(r,?j only zeros of f' which are not zeros of

f are to be considered.

We set
in f —f— . (2.2)
fLf'-1 f-1
From the fundamental estimate of logarithmic
derivative it follows that
m(r,F)=S(r, ). (2.3)

If f hasapoleoforder p>1atz, ,by(22) Fis

holomorphic at z_ . From

this and the hypotheses of Theorem 1 we see that
N(r,F)=S(r,f). (2.4)

If F=0, then from (2.2), we find that
f'—1=c(f —1), with c(# 0) constant. From which

and N(r,%): S(r, f) we arrive at f = f’ which

is a contradiction. Therefore F = 0 and so we deduce
from (2.2), (2.3) and (2.4) that

m(r, f)=S(r, f). (2.5)
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Again from (2.2), if z, is a pole of f of order
p > 2,then z_ is possible a zero of F of order p—1.
Consequently , from (2.3) and (2.4),

N (T, f) < ZN(r,éj <2T(r,F)+O@) =S(r, )

: (2.6)
Set
H - f'(f -1 _
f'(f'-1)

Then from the fundamental estimate of logarithmic
derivative and (2.5) it follows that

m(r,H) =S(r, f). (2.8)

If f has apole of order p at z_, by (2.7) z_ is a

2.7)

pole of the numerator of (2.7) with order 2(p +1) and

a pole of the denominator of (2.7) with order
2(p+1). This shows that the poles of f , being not

the poles of H . Also, because of f and f' share 1
CM, H is holomorphic at the zero of f'—1. Thus,
the poles of H can occur at only the zero of f', and
so that

N(r,H)sN(r,%).

Let z_be a simple pole of f. By (2.7) a short
calculation with Laurent series shows that
H(z,)=2.1f H=2 then f'—1=c(f —1)?, with
c( 0) constant. Since f and f' share 1 CM, we have

(2.9)

a contradiction. Thus we conclude H # 2, and so

N, (r, ) < N(r, Hl_zj

<T(r,H)+0()

sﬁ[r,%j+8(r, f)

Sﬁo(r,%j+3(r, f),

by (2.8) and (2.9). Combining this with (2.5) and (2.6)
yields

T(r, f)< N{r,%}rsa, f). (2.10)

Hence, we obtain from (2.5), (2.6), (2.1), and (2.10)
that
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1
m(r,f—_lj_S(r, f). (2.11)
Set
fr—f
L= Ty (2.12)

By using (2.11) and the hypotheses of Theorem 1 we
may conclude that

T(r,L)=S(r, f). (2.13)

Equation (2.12) may also be written in the form

fro1=L(f —L)(f +%} (2.14)

and also written

!

(f+1] 1+(1j
L) AL (£ -1) 215

f+1 f+1
L L

Since f and f’ share 1 CM, we may obtain from
(2.14) and (2.13)

N r,i

f+—
L

=S(r, f). (2.16)

!

If 1+ (%j # 0, then from (2.15), (2.13) and (2.5) we

get m r, =S(r, f) from which, (2.16) and

f+=
L

(2.13) we conclude T(r,f)=S(r,f). This is

!

impossible. Therefore 1+(%) =0, and so L=

1 . .
——, with ¢ constant. Thus equation (2.14) may
c-zZ

now be put in the form a|=2e’ =—e’. By
dz| f(2)

integration and N(r,%} =S(r,f) weget(1.1).m
3. Proof of Theorem 2

Suppose a=1and f = f’. From (2.2),if z, isa

pole of f of multiplicity p >1, then
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F(2)=0((z~z,)"").

If z, is a simple zero of f'—1, then from (2.2) we

(3.1)

find that F will be holomorphic at z,. From this,
(2.2), (3.1) and hypotheses of Theorem 2 it can be seen
that the poles of F can only occur at the multiple
zeros of f'—1. Thatis

1
f'-1)

If F =0, then similarly as in the proof of Theorem
1, we arrive at a contradiction. Next we assume that
F = 0. Thus, we get from (3.1), (3.2) and (2.3)

Ne(r, f) < N(r,éj <T(r,F)-

N(r,F) Sﬁ(zﬁr, (3.2)

m(r,éj +0(@@) < N(r,F)+m(r,F)—

m[r,éj+ S(r,f)+0() <

N(z(r, f }_J— m[r,é}r S(r, f).

(3.3)

It follows from (2.2) that
m(r, f)Sm[r,éj+S(r, f). (3.4)

Combining (3.3) with (3.4) we obtain

1
+
=

N(z(l’, fY+m(r, f) < N({r,

S(r, f). (3.5)
By (2.7), we have
m(r,H) <m(r, f)+S(r, ). (3.6)

From (2.7), we know that if z_ is a pole of f of
multiplicity p >1, then

b+l

H(z,)= (3.7)

Let z, be a zero of f'—1 of multiplicity g >1. Since
f and f' share 1 IM, we must have z, is a simple
zero of f —1. By a simple calculation on the local
expansion we see that

H(Zl)ZQ-

From (3.7), (3.8) and N(r,%):

(3.8)
S(r, f) we

conclude that
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N(r,H)=S(r, ). (3.9)
It can be obtained from (3.7), (3.8), (3.9) and (3.6)
that, if H = 2,

— 1
N, (r,f)+Nay|r, -
1)( ) 2)( f'—lj

N, r,L <N|r, !
fr-1 H-2

jST(r,H)+O(1)

<N(r,H)+

m(r,H)+O®@) <m(r, f)+S(r, ).

Combining this with (3.5) yields
N(r, f)SN(s(r, f,_J+S(r, f).

Hence, we get from this, the second fundamental
theorem for f' and N(r,%} = S(r, f) that
1
+
1j

T(r, f)< N(r,%}rﬁ(r, -

1
+
=

N(r, f)+S(r, f) gﬁ(r,

Neglr, +S(r, f). 3.10
Therefore
1 — 1
Ne| T, 1 SN(Z(F, ,_:J—F
— 1
N ,——— |+ S(r, f
o\ " (r,f)
This implies that
— 1
Nelr,—— [=S(r, f 3.11
el (r,f) (3.11)

It is easy to see that H 1. Thus we deduce from
(3.10), (3.11), (3.8), (3.9), (3.6) and (3.5) that
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T(r, )< Nl{r,f,il}su, f) <

N(r, !
H-1
S(r, f)=S(r, f),

which implies the contradictionT(r, f) =S(r, f).

j+8(r, f)<T(r,H)+

Therefore, we have H = 2, and integration yields

f'—1=c(f -1)?, (3.12)

where C is a nonzero constant. We rewrite this in the

fom f'= c(f -1+ A)(f —1-A), where A’ =

— 1 Since N(r,%) = S(r, f) by the assumption, it
c

follows from the second fundamental theorem for f
that if A= +1,

T(r, f)< N(r,i}rﬁ(r,;}r
f f-1+A

N 1
N(r,mJ-FS(r, f) = S(r, f),

which is a contradiction. Therefore, we have A==+1
f’ f'

——=-2.
f-2 f

By integration once we conclude (1.2). =

and so ¢ =-1.Then (3.12) reads
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) ik 2e IM 5l CM dogiia Saaly dad dan PR S8 ) ga g yrall Jlga

O i jale
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IS EX]
(IM) CM (00,0 ) @ fsgite 53a)s o fmn Ll 7 Lgtitie 3 B0 e ol jpagpua A3 F il 131 0ty Cigms (3 andl N3 8

2a a(z-c)

o N L) il Lo el e L) ose £ s
T he® (f(2)= Sf=f uuu‘(N(r,fj (+N(r,f,J—S(r,f)(N(r,f]_S(r,f) 1S 130,

Je) )= 1t Ae?

5AaE e dlijseg e Al f il I3 :Gundersen () saslel) A0 Aagll apus s sk b ol bl L gt ¢ (0#)A

f = f'.‘_',lé‘ (OO;&)CM ajo O“,s'j"i utmgﬁ’haatgi f/ s
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