

IJCCCE Vol.13, No.1, 2013

55

A New Approach for Hiding Data within Executable
Computer Program Files Using an Improvement

Cover Region
Dr. AbeerTariq1 EkhlasFalih1 Eman Shaker1

1Computer Science Department, University of Technology, Baghdad

email: abeer282003@yahoo.com ekhlas_uot1975@yahoo.com
eman_uot1974@yahoo.com.edu.iq

Received: 27/1/2013

Accepted: 22/7/2013

Abstract – The process of hiding is considered to be one of the important security
branches which are used to ensure the safe transfer of vital data and its protection
against theft or editing. Recently, the need for developed hiding methods have greatly
increased as the programming technologies that are capable of detecting hidden data,
which are hidden using conventional methods, have undergone a great leap in progress.
This paper aims to introduce a novel method of hiding a text inside an executable (.exe)
file. This is considered one of the recent, more developed types. The suggested system
has been tested on two types of executable files. The first type was written using
(C++.exe) whereas the second was written using (VB.exe). The text was hidden using
the suggest method (Cover Region and Parity bits) through which the executable file
will be segmented into (regions) afterwards, each group of values will be tested
alongside the value of the secret message that needs to be hidden. The suggested
approach was applied on several texts and the result was that hiding via the executable
files of the (VB) types is faster and it occupies less size than the (C++) type..

Keywords –C++ execution file,VB execution file and Cover Region and Parity Bits.

IJCCCE Vol.13, No.1, 2013

Dr. Abeer Tariq et. al.

A New Approach for Hiding Data within
Executable Computer Program Files Using an
Improvement Cover Region

56

1. Introduction
Internet communication has become

an integral part of the infrastructure of
today’s world. The information
communicated comes in numerous forms
and is used in many applications. In a
large number of these applications, it is
desired that the communication be done in
secret. Such secret communication ranges
from the obvious cases of bank transfers,
corporate communications, and credit card
purchases, on down to a large percentage
of everyday email. With email, many
people wrongly assume that their
communication is safe because it is just a
small piece of an enormous amount of
data being sent worldwide. After all, the
Internet is not a secure medium, and there
are programs “out there” which just sit
and watch messages go by for interesting
information [1].
1. Steganography and encryption are

both used to ensure data
confidentiality. The main difference
between them is that with encryption
anybody can see that both parties are
communicating in secret.
Steganography hides the existence of
a secret message and in the best case
nobody can see that both parties are
communicating in secret. This makes
steganography suitable for some
tasks, such as copyright marking, for
which encryption isn't. Adding
encrypted copyright information to a
file could be easy to remove but
embedding it within the contents of
the file itself can prevent it from
being easily identified and removed
[2].

2. There is one group of files that vary
enormously in size and are usually
rather difficult to examine in detail
because they are comprised of
compiled computer codes which are
executable, or exe, files. These files
tend to contain lots of what might be
described as "junk data" of their own

as well as internal programmer notes
and identifiers, redundant sections of
code and infuriatingly in some senses
coding "bloat." All of this adds up to
large and essentially random file sizes
for exe files. As such, it might be
possible to embed and hide large
amounts of data in encoded form in
an exe file without disrupting the
file's ability to be executed, or run, as
a program but crucially without
anyone discovering that the exe file
has a dual function [3].

2. Theoretical Background

 Steganography can be split into two
types: Fragile and Robust. The following
section describes the definition of these
two different types of steganography.

2.1 Pure steganography: -A
steganographic system which does not
require prior exchange of some secret
information (like a stego key) is pure
steganography. The embedding process
can be described as a mapping

E: CxMS
whereC is the set of possible covers and
M is the set of possible messages.

The extracting process consist of a
mapping

D: SM
extracting the secret message out of a
cover .
2.2 Secret key steganography: -In secret
key steganography, the sender chooses
cover C and embeds the secret message
into C using secret key K. If the key in the
embedding process is known to the
receiver, he can reverse the process and
extract the secret message. The mapping
of the process if K is the set of secret
keys.

Ek: C×M×KS

IJCCCE Vol.13, No.1, 2013

Dr. Abeer Tariq et. al.

A New Approach for Hiding Data within Executable
Computer Program Files Using an Improvement Cover
Region

57

And
Dk: S×KM
with the property that
Dk(Ek(c,m,k),k)=m for all mM,cC
and kK is called a secret key
steganography system

2.3 Public key steganography:-
Public key steganography system
require the use of two keys, one is
private and the other one is
public.The public key is stored in
a public database whereas the
public key is used in the
embedding process. The private
key is used to reconstruct the
secret message [4].

3. Media Used for Hiding
There are different media for hiding data:-
3.1 Data hiding in images

In a computer, images are represented
as arrays of values. These values represent
the i3.ntensities of the three colors R(ed)
G(reen) and B(lue), where a value for
each of the three colors describes a pixel.

Through varying the intensity of the
RGB values, a finite set of colors
spanning the full visible spectrum can be
created. In an 8-bit gif image, there can be

28 = 256 colors and in a 24-bit bitmap,
there can be 224 = 16777216 colors.

Information can be hidden in many
different ways in images. Straight
message insertion can be done, which will
simply encode every bit of information in
the image. More complex encoding can be
done to embed the message only in noisy
areas of the image that will attract less
attention. The message may also be
scattered randomly throughout the cover
image [4].

3.2 Hiding in Audio
General principles of data hiding

technology, as well as terminology
adopted at the First International
Workshop on Information Hiding,
Cambridge, U.K. are illustrated in Figure
(3.1).

A data message is hidden within a
cover signal (object) in the block called
embeddor using a stego key, which is a
secret set of parameters of a known hiding
algorithm. The output of the embedded is
called stego signal (object). After
transmission, recording, and other signal
processing which may contaminate and
bend the stego signal, the embedded
message is retrieved using the appropriate
stego key in the block called extractor [5].

Figure (1) Block diagram of data hiding and retrieval.

IJCCCE Vol.13, No.1, 2013

Dr. Abeer Tariq et. al.

A New Approach for Hiding Data within
Executable Computer Program Files Using an
Improvement Cover Region

58

A number of different cover objects

(signals) can be used to carry hidden
messages. Data hiding in audio signals
exploits the imperfection of the human
auditory system known as audio masking.
In thepresence of a loud signal (masker),
another weaker signal may be inaudible,
depending on spectral and temporal
characteristics of both masked signal and
masker [5].Masking models is extensively
studied for perceptual compression of
audio signals. In the case of perceptual
compression the quantization noise is
hidden below the masking threshold,
while in a data hiding application the
embedded signal is hidden there. Data
hiding in audio signals is especially
challenging, because the human auditory
system operates over a wide dynamic
range. The human auditory system
perceives over a range of power greater
than one billion to one and a range of
frequencies greater than one thousand to
one.

 Sensitivity to additive random noise
is also acute. The perturbations in a sound
file can be detected as low as one part in
ten million (80 dB below ambient
level).However, there are some “holes”
available. While the human auditory
system has a large dynamic range, it has a
fairly small differential range. As a result,
loud sounds tend to mask out quiet
sounds.

 Additionally, the human auditory
system is unable to perceive absolute
phase, only relative phase. Finally, there
are some environmental distortions so
common as to be ignored by the listener in
most cases [6]. Now we will discuss many
of these methods of audio data hiding
technology.

4. Basic Media (Cover) and
Techniques Used In Proposal

The execution file used as a cover,

and Cover Region and Parity Bits
technique used as technique in our
proposal:

4.1 Executable File
An executable file is a file that is used

to perform various functions or operations
on a computer. Unlike a data file, an
executable file cannot be read because it
has been compiled. On an IBM
compatible computer, common executable
files are .BAT, .COM, .EXE, and .BIN.
Depending on the operating system and its
setup, there can also be several other
executable files [7].

To execute a file in MS-DOS and
numerous other command line operating
systems, type the name of the executable
file and press enter. For example, the file
myfile.exe is executed by typing myfile at
the prompt.

Other command line operating
systems such as Linux or Unix may
require the user to type a period and a
forward slash in front of the file name, for
example, ./myfile would execute the
executable file named myfile.

To execute a file in Microsoft
Windows double-click the file.To execute
a file in other GUI operating systems, a
single or double-click will execute the file
[7].

4.2 EXE file formats
There are several main executable file

formats [9]:
4.2.1 DOS
16-bit DOS MZ executable: Being the

original DOS executable file format, these
can be identified by the letters "MZ" at the
beginning of the file in ASCII.

IJCCCE Vol.13, No.1, 2013

Dr. Abeer Tariq et. al.

A New Approach for Hiding Data within Executable
Computer Program Files Using an Improvement Cover
Region

59

16-bit New Executable: Introduced
with Multitasking MS-DOS 4.0, these can
be identified by the "NE" in ASCII. They
never became popular or useful for DOS
and cannot be run by any other version of
DOS, but can usually be run by 16/32-bit
Windows and OS/2 versions.

4.2.2 OS/2
32-bit Linear Executable: Introduced

with OS/2 2.0, these can be identified by
the "LX" in ASCII. These can only be run
by OS/2 2.0 and higher. They are also
used by some DOS extenders [8].

Mixed 16/32-bit Linear Executable:
Introduced with OS/2 2.0, these can be
identified by the "LE" in ASCII. This
format is not used for OS/2 applications
anymore, but instead for VxD drivers
under Windows 3.x, Windows 9x, and by
some DOS extender [8].

4.2.3 Windows
32-bit Portable Executable:

Introduced with Windows NT, these are
the most complex and can be identified by
the "PE" in ASCII (although not at the
beginning; these files also begin with
"MZ"). These can be run by all versions of
Windows and DOS (DOS runs the MZ
section; Windows runs the NE or PE
section). Using HX DOS Extender, DOS
can load the NE and PE sections. They are
also used in BeOS R3, although the
format used by BeOS somewhat violates
the PE specification as it doesn't specify a
correct subsystem. These can also be used
on React OS[8].

64-bit Portable Executable (PE32+):
Introduced by 64-bit versions of
Windows, this is a PE file with wider
fields. In most cases, you can write a code
that simply works as both a 32 and 64-bit
PE file [8].

5. Proposed method to hide data in
exe file

The proposed method used to hide data in

exe file format is bits as illustrated
bellow:

 5.1. Cover Region and Parity Bits
A cover-region is any non-empty subset of
the cover c = {c1, …, cl(c)}.The idea is to
generate a pseudorandom sequence of
disjoint cover regions, using a stego-key
as the seed, and store only one bit of the
secret message in a whole cover-region
rather than in a single element. The secret
bit to be hidden inside a cover-region is
embedded as the parity-bit p (I) for the
cover-region I chosen.

During the embedding step, l(m) disjoint
cover-regions Ii (1 ≤ i≤ l(m)) are selected,
each encoding one secret bit mi in the
parity bit p(Ii).
If the parity bit of the cover-region Ii does
not match with the secret bit mi to encode,
one LSB of a randomly chosen cover-
element in Ii is flipped. This will result in
p(Ii) = mi .During the extraction process at
the receiver, the parity bits of all the
selected cover-regions (generated
according to the pseudo randomsequence)
are calculated and lined up to reconstruct
the message .

Example

Suppose the LSB of the execution
block Ci is as follows (suppose the block
size is 9 bits)

C1

1 0 0 1 1 1 0 1 0

… (1)

IJCCCE Vol.13, No.1, 2013

Dr. Abeer Tariq et. al.

A New Approach for Hiding Data within Executable
Computer Program Files Using an Improvement Cover
Region

60

To embed 011=s1 s2 s3

S1= 2mod)1(
9

1

i

CLSB ….2

5 Mod 2 = 1 = s1

S1 does not match equation 2.Select the
middle location (5) in C1 the LSB of c1 is
1,and so complement it to 0 and it
becomes

S2= 2mod)2(
9

1

i

CLSB ….3

6 Mod 2 = 0 = s2

S2 does not match equation3. Select the
middle location (5) in C2 the LSB of c2
is1,and so complement it to 0 and it
becomes

S3= 2mod)3(
9

1

i

CLSB … 4

Since s3 matches equation 4, the values of
C3 are not affected

Algorithm (1) Embedding Process

C2

0 0 1 0 1 1 1 1 1

C3

1 1 1 0 0 0 1 1 0

C1

1 0 0 1 0 1 0 1 0

C2

0 0 1 0 1 1 1 1 1

Input: - Execution cover file (E), binary secret
message S.
Output :- Stego execution file
Step1:-
1) Convert the execution cover file (E) into
binary data and put the result in (BE).
t
 2) Partition binary data (BE) into blocks,
each of size 9 bits contains the LSB of (BE) and
put the result in (C).

 3) Calculate the number of blocks and put
the result in (N).

 4) Set M to the length of secret message.

Step2:- if M > N then return error message”
cover is small to hide the message”, stop.

Step 3:- 1) set i to 1,set j to 1
 2) while (i<=N) and (j<=M) do
 Begin

 If Sj= 2mod
9






ik

iK
kC then

 keep Ck unchanged

 Else
 Select location 5 in Ck ,flipped it.

 End if
i=i+9
 j=j+1

 End while.

Step4:- End.

IJCCCE Vol.13, No.1, 2013

Dr. Abeer Tariq et. al.

A New Approach for Hiding Data within Executable
Computer Program Files Using an Improvement Cover
Region

61

6. Experimental Results

In this section, to explain the
implementation of the proposed system,
we will focus on displaying the basic
differences of .exe files for both files C++
and VB.
Example 1:Suppose the cover is
C++execution file as shown in figure(2):

Figure(2):C++ cover file

Figure(3): size of C++ cover file

The form that displays the size of a C++
file, which had been displayed in figure

(2) before the hiding operation, is
displayed in figure (3) with all its cases.

Figure(4): load secret message

Figure(5):C++ stegonagraphy file after hiding the

message

IJCCCE Vol.13, No.1, 2013

Dr. Abeer Tariq et. al.

A New Approach for Hiding Data within Executable
Computer Program Files Using an Improvement Cover
Region

62

 Figure (6): Size of Steganography file

Figure(7): Secret Message after extraction

Example 2: Suppose the cover isVB
execution file as shown in figure(8)

Figure(8): VB cover file

Figure (9): form shows hiding and extraction in
VB execution file

The following table illustrates the
comparison between C++.exe and VB.exe

Table 2 describes the comparison between C++

and Visual Basic Execution file

 Visual Basic C++

Performance very good Good
Size of .exe Excellent Excellent
Complexity complex More

complex
Security High security Highest

security
Speed of
Extraction

High speed Low speed

Capacity of data Low capacity High
capacity

IJCCCE Vol.13, No.1, 2013

Dr. Abeer Tariq et. al.

A New Approach for Hiding Data within Executable
Computer Program Files Using an Improvement Cover
Region

63

7. Conclusion
This research reached the following
points:
1. The performance in VB is much more

efficient than its C++ counterpart.
2. The size of the execution file, in both

languages, after adding the secret
message isn't greatly changed which
prevents hackers from noticing any
suspicious behavior in the file.

3. C++ is more complex than its
counterpart in regards to the hiding
procedure.

4. The C++ enjoys the highest level of
security due to its complex nature.

5. Due to the complex nature of C++ in
terms of security; the speed of
extraction is thus lowered, taking a
larger amount of time than the VB.

6. Capacity of data is higher in C++ than
in VB.

8. Recommendations

The proposed system can suggest the
following re commendations

1) It can apply the proposed system
to another type of execution file
format such as windows files.

2) It can encrypt the text before
embedding with another type of
hiding technique.

3) It can mix more than one
technique for hiding.

References
1] J. Johnston and K. Brandenburg,

"Wideband Coding Perceptual
Consideration for Speech and Music".
Advances in Speech Signal
Processing, S. Furoi and M. Sondhi,
Eds. New York: Marcel Dekker,
2000.

[2] S. Katzenbeisser, And F. Peticolas
,"Information Hiding Techniques For
Steganography And Digital
Watermarking", Artech House, USA,
2000.

 [3] R. Meyer and Bryan, "Implementation
And Evaluation Of The Least
Significant Bit (LSB) Replacement
Steganographic Technique" ,
Pittsburgh, Pa 15260 USA,
Department Of Computer Science,
University Of Pittsburgh, April 2003.

[4] S. Kumar Bandyopadhyay, Debnath
Bhattacharyya, Poulami Das,
Debashis Ganguly and Swarnendu
Mukherjee, "A tutorial review on
Steganography", International
Conference on Contemporary
Computing(IC3-2008), Noida, India,
August 7-9, pp. 105-114, 2008.

[5] Rade Petrovi, Kanaan Jemili, Joseph
M. Winograd, Ilija Stojanovi, Eric
Metois, "Data Hiding Within Audio
Signals" June 15, MIT Media Lab,
Series: Electronics and Energetics
vol. 12, No.2, pp103-122, 2002.

