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Investigation of Optimum Helix Angle of a 

Wire Rope Subjected to Harmonic 

Dynamic Loading 

Abstract- The current work includes the dynamic structural analysis of 

wire rope with different helix angle. The main objectives are; estimating 

the stress and deflection for each helix angle, comparing the results to get 

the best helix angle suitable for practical applications. This paper falls 

into two parts: The first part includes modal analysis for the models of 

wire rope using finite element method with certain boundary conditions 

that are suitable to obtain the first five frequencies for each helix angle 

and the second part focuses on harmonic analysis of wire rope to estimate 

stress and deflection and compares maximum results that coincide with the 

first natural frequency of each model. In the analysis the results of each 

helix angle were compared to other helix angle results, the structure of 

82° helix angle have the smallest stresses and deflection. That means when 

the helix angle increases the flexibility decrease and rigidity increase. 
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1. Introduction 

During the past some years, many developments 

have been carried out in the steadying the 

responses of metal cables that formed as spiral 

strands and wire ropes. Strand can be defined as a 

set of wires fabricated in helical form in 

sequential layers over a straight central main 

wire. Typically wire rope element consists of six 

coils twisted over a central core. It is maybe 

consisting of twisted fiber or a smaller 

independent wire rope. The main difference 

between strand and wire rope is that the wires in a 

rope follow more complex doubly helical paths in 

strands that are fabricated into helices, while the 

individual wire rope in a spiral strand follows a 

simple twisted shape. Approximating methods 

were used for the dynamic analysis of the wire 

rope strand such as the finite element method, 

boundary element method in addition to the 

experimental techniques such as experimental 

modal analysis. The purposes of the dynamic 

analysis of strand are investigation its behavior 

under the action of dynamic excitations. Jiang et 

al. in [1] have been used finite element analysis 

of simple straight strand. Kastratović et al [2] 

have used advanced 3D modeling techniques and 

finite element method for wire rope strand 

analysis. İmrak and Erdönmez. N.F [3] have been 

studied using finite element analysis a realistic 

three dimensional structural model of a simple 

wire strand. Casey et al [4] have been 

investigated an introductory study into the ability 

to apply techniques of signal analysis to wire rope 

strand configurations. Etsujiro Imanishi et al. [5] 

have been studied the dynamic simulation of wire 

rope with contact. Wei-Xin Ren et al. [6] have 

been carried out a validated study by using finite 

element method with respect to environmental 

vibration test results to be served as the base for a 

more accurate dynamic responses investigation. 

Guohua CAO et al. [7] have been studied a 

numerical modelling and dynamic properties of 

hoisting rope used in roller wind system. In this 

paper, a comparative study is to be presented to 

investigate the optimal helix angle such that the 

strand withstands the effect of harmonic 

excitation. Finite element method is using to 

carry out this study such that two solutions 

including modal and frequency analysis are to be 

intended to reach to the objectives. 

 

2. Strand Finite Element Models  

The finite element method was used for the 

modeling of the wire rope strand under the action 

of dynamic excitations. The geometry of the wire 

rope strand is shown in Figure 1. The cross-

section of a wire rope consists of one simple, 

straight, seven-wire strand.  Such a cross-section 

is often used as a rope core in a more complex 

rope and as such is sometimes called an 

independent wire rope core or IWCR. It is 

consisting of multiple wires that hold the most 

value of the applied axial load. The mesh has 

been created using solid brick element 
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(SOLID186) in Ansys version 11 for 3D 

modelling of models of different helix angles. 

The software used in this study allows linear 

contacts; bonded contact is considered for 

simulation of contact. The core strand radius of 

centre wire was R1 = 1.97 mm, and outer wire R2 

= 1.865 mm with different helix angle (74˚, 76˚, 

78˚, 80˚, 82˚). The entire length of the wire rope 

model was (18 mm). Boundary conditions were 

assigned such that one end is constrained in all 

translations and rotations degrees of freedom 

while another end is free for translations and 

rotations. The elasticity modulus of the steel was 

taken as E = 2 E11 Pa, Poisson’s ratio ν = 0.3 and 

damping ratio = 0.02 [2]. 

3. Modal analysis  

The modal analysis was used for the estimation of 

the dynamic properties of the strand for each 

helix angle. The dynamic properties of the strand 

are included the natural frequencies and the 

normal (mode) shapes. Both of the natural 

frequencies and mode shapes are influenced by 

the stiffness and mass properties of the strand. 

Then the estimated natural frequencies are 

mathematically modeled with the effect of the 

helix angles. The governing differential equations 

of motion for the free vibration problem with the 

undamped case were assumed [9] is: 

 0}]{[}]{[ 


uKuM      (1)                                                                                                                                                                                                     

Assuming harmonic motion that 

is: Nntu nnn ,...2,1;sin}{}{        (2)                                                                                  

Where:  

N is the D.O.F. of the model. 

n} is the normal mode vector for the n
th

 mode. 

n is the angular natural frequency of mode n. 

Differentiating Equation (2) twice with respect to 

time yields: 

{ } = - {n}sin                                        (3)                                                                                                                                                                                                                                                                          

Then, substituting Equations (2), (3) into 

Equation (1) then multiplying by {n}
T
  yields, 

after canceling the term  

(sin it )  0}{ }{ ])[]([ 2  T

nnn MK       (4)                                                                                                                                                                       

Frequency equation (4) is of the form of the 

algebraic Eigen value problem (K=M). 

Nontrivial solutions have occurred if coefficient 

matrix determinant is equal to zero. Thus: 

 0][][ 2  MK n                                       (5)                                                                                                                                                                                      

The Characteristic equation will be obtained 

when extracting of the determinant to regression 

of n order. Characteristic values or Eigenvalues 

will be obtained for n roots of this regression 

(n
2
). The natural frequency (fn) is then obtained 

from: 

fn= n / 2                                                         (6)                                                                                                                                                     

The characteristic vectors or the Eigenvectors 

{n} will be obtained by Substitution of 

Eigenvalues (one at each time) into equation (6) 

within arbitrary constants. A number of solution 

algorithms have been developed for the solution 

of the Eigenvalue problem. 

 

4. Harmonic Analysis 

The Harmonic analysis was used for the analysis 

of the dynamic stresses and strains under action 

of periodic loading [9]. In harmonic analysis the 

time responses of each of deformations, stresses 

and strains are modelled in both frequency and 

time domains. The applied forces are formulated 

in frequency form to be assigned in the solution 

analysis in Ansis11. Forces can be in the form of 

applied loads and/or enforced motions 

(displacement, velocity or acceleration). The 

loading is defined in the solution as having an 

amplitude at a specific frequency. The steady- 

state oscillatory responses are occurring at the 

same frequency as the loading. The system is 

assumed subjected to a sine-wave periodically 

load p(t) of amplitude termed by p and excitation 

circular frequency  , then the equation of 

motion is written as: 

[M] (t) + [c] (t)+[K ] u(t) ={p} sin        (7)                                                                      

Which is can be rewritten for N-uncoupled 

equations as: 

(t) + [2ζnωn] (t) + [ωn²] Y(t)= sin     (8)                                 

n: 1,2,…….N                

Then the induced deformations (displacements) 

can be obtained by the dot product of the normal 

mode vector ( ) and the modal amplitude (Yn) 

as; 

un = φn Yn                                                          (9)                                                                                                                       

Mn = 
 
m , Pn= 

 
p                                      (10)                                                                                                                                      

To continue with the solution of these uncoupled 

equations of motion, the Eigenvalue is solved 

first as: 

[  – ωn²m] = 0                                                                     (11)                                                                                                                                                                      

 The normal modes (n= 1; 2; . . .), natural 

frequencies ωn and modal damping ratios ζn are 

affecting the time response as: 

Yn(t) = n( )  Pn( ) exp t  d                                                          

(12)                                                            

In this equation, the complex load function 

Pn( ) is the Fourier transform of the modal 

loading Pn(t)  it is given by: 



Engineering and Technology Journal                                                              Vol. 37, Part A. No. 1, 2019 
 

8 

 

Pn( ) =  exp(- t)  dt                                                      

                                                              (13)   

Also in Eq. (6), the magnification function, 

Hn( ), can be written as: 

( ) =  

 
                

         
                                                                     (14)                

Where  ≥ 0                                  

 In these functions, =   and Dn  = n 

 ( ) are Fourier transform pairs 

for the general principal loading leads to the 

principal response Yn(t) for t ≥ 0. Also the initial 

conditions that termed by Yn(0) and (0) in this 

equation are estimated from the values of u(0) 

and (0) as; 

(0) =                              ,  

(0) =    

The forced vibration response is given by [11]: 

Yn(t)= 

 exp 

(- )                                                                            

(15) 

 

5. Result and Discussion 

The structural natural frequencies were solved in 

the modal analysis for each helix angle. The 

solution take into account the variation of the 

structural stiffness for different helix angle, while 

maintain the mass of each model as a 

constant.The first five modes were considered for 

each helix angle. Table 1 shows the results of 

natural frequencies for the first five modes for 

each helix angle. It’s obvious that the first natural 

frequency of the helix angle (80˚) was the largest 

value compared with other angles.  
Table 1: Simple strand natural frequency 

Natural 

Frequenc

ies in Hz 

first seco

nd 

 

thir

d 

fourt

h 

fifth 

Helix 

angle 74  

131

5.7 

136

0.8 

1365

.9 

1805.

5 

1828.

5 

Helix 

angle 76 ˚ 

132

1.4 

137

1.6 

1374

.5 

1816.

1 

1838.

6 

Helix 

angle 78 ˚ 

132

6.3 

138

0.2 

1385

.3 

1824.

8 

1858.

6 

Helix 

angle 80˚ 

133

2.5 

139

1.8 

1393

.1 

1852.

4 

1867.

9 

Helix 

angle 82˚ 

132

7.3 

138

2.7 

1395

.8 

1864.

6 

1881.

6 

 

The structure with all helix angles were examined 

under action of harmonic load using harmonic 

analysis. The excitation load included a frequency 

domain within a range from zero to the third 

natural frequency. 

Figures 2 and 3 show deflection of core and wire 

obtained from harmonic solution. We can see that 

the deflection of core is less than the deflection of 

wire, the maximum deflection was coinciding with 

the first natural frequency, a small deflection 

occurs at (82˚) helix angle.  

Von mises stress was estimated at three locations 

along the model (upper, middle and lower) Figures 

4-9 show the stresses in upper, middle, and lower 

locations of the core wire and helical wire 

respectively for all helix angles. The stress in 

upper location (fixed end) is the smallest while the 

stresses in middle location are larger than upper 

location and smaller than lower location, the 

stresses in core wire are less than stresses in the 

helical wire, for both core wire and helical wire, 

the helix angle (82˚) have the lowest stresses. One 

can see that the highest stress indicated at the first 

natural frequency. Figures (10-15) show shear 

stress at three locations (upper, middle, lower) 

along the model for each helix angle the largest 

shear stress was indicated at the middle location. 

The maximum strain coincides with the first 

natural frequency; Tables 2 and 3 show the 

average strain for core wire and helical wire that 

indicated with the first natural frequency. 
 

Table 2: Harmonic strain of core wire 

Helix 

angle 

74 ˚ 76˚ 78˚ 80˚ 82˚ 

Strain

-mm 

1 

×10-3 

9 

×10-4 

5.3 

×10-4 

4.3 

×10-4 

4 

×10-4 

 

Table 3: Harmonic strain of helical wire 

Helix 

angle 

74˚ 76˚ 78˚ 80˚ 82˚ 

Strain

-mm 

1.51 

×10-

3 

9.9 

×10-

4 

7.4 

×10-

4 

5.7 

×10-

4 

5 

×10-

4 

Note 
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The following symbols in figures denoted to helix 

angles 

A =74 helix angle 

B =76 helix angle 

C = 78 helix angle 

D = 80 helix angle 

E = 82 helix angle 

 

 

 
Figure 1: Harmonic deflection of core wire 

 

 

 

Figure 2: Harmonic deflection of helical wire 

 

 

Figure 3: Harmonic von mises stress of core at 

upper location 

 

 
Figure 4:  Harmonic von mises stress of core at 

middle location 

 

 
Figure 5:  Harmonic von mises stress of core at 

lower location 

 

 
Figure 6:  Harmonic von mises stress of helical wire 

at upper location 

 

 
Figure 7: Harmonic von mises stress of helical wire 

at middle location 
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Figure 8:  Harmonic von mises stress of helical wire 

at lower location 

 

 
Figure 9:  Harmonic Shear stress of core at upper 

location 

 

 
Figure 10: Harmonic Shear stress of core wire at 

mid location 

 

 
Figure 11: Harmonic Shear stress of core wire at 

lower location 

 

 
Figure 12: Harmonic Shear stress of helical wire at 

upper location 

 

 
Figure 13: Harmonic Shear stress of helical wire at 

mid location 

 

 
Figure 14: Harmonic Shear stress of helical wire at 

lower location 

 

6. Conclusions  

The structures of wire rope are analyzed by 

harmonic analysis, the location of peak value 

coincides with the first natural frequency and due 

to the fact that the frequency variation is 

depending on the helix angle so that the peak 

values differ. It is observed that the dynamical 

behaviour when the excitation frequency is near 

to or coincide on the first natural frequency is 

more dangerous than other frequencies, and then 

it must be avoided to ensure a safety state of 

structure. The structures of (82˚) helix angle are 

more withstanding periodic excitations since their 

response is smaller than the other helix angles. 
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