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ABSTRACT

Digital data stored in computers or transmitted over computer networks are
constantly subject to error due to the physical medium in which they are stored or
transmitted. Error-correction codes are means of introducing redundancy in the data
so that even if part of it is corrupted or completely lost, the original data can be
recovered. Error correcting codes are used in modern technology to protect
information from errors. Burst error correcting codes are needed in virtually
uncountable applications. Such codes will be called complete burst error correcting
codes. There are quite a few constructions for complete burst error correcting codes.
This paper presents an error correcting code based on the concept and the theory of
the Latin Squares, where it employ the characteristics of the orthogonal Latin Squares
to correct the errors. That is not complete burst error correcting codes, since it can
correct most burst pattern of length i < n, but not all of them. However, if the number
of uncorrectable patterns is sufficiently small, this code can be used in practice as a

burst error correcting code.

Introduction

Information is passes every day in our society. It
is essential that interference in the communication of this
information hinders the information from being received
as little as possible. Error-correcting codes provide us with
this ability. Error-correcting codes allow us to receive a
piece of information, identify any errors, locate them, and
correct them.

Cyclic codes are an especially useful kind of
error-correcting code, and BCH codes and QR codes are
especially useful kinds of cyclic codes. Error-correcting
code theory has also been used in areas outside of
information communication. Error correcting code theory
is an important subject to study. A digital message is a

sequence of 0’s and 1’s which encodes a given message.
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More data will be added to a given binary
message that will help to detect if an error has been made
in the transmission of the message; adding such data is
called an error-detecting code. More data may also be
added to the original message so that errors made in
transmission may be detected, and also to figure out
what the original message was from the possibly corrupt
message that was received.

Development of algorithmically efficient error
correcting codes has attracted attention of engineers,
computer scientists and applied mathematicians for past
five decades. If a message needs to be received quickly
and without error, merely knowing where the errors
occurred may not be enough; the second condition is not

satisfied as the message will be incomplete.
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Error Correcting Code

When a message is transmitted, it has the potential
to get scrambled by noise. This is certainly true of voice
messages, and is also true of the digital messages that are
sent to and from computers. Now even sound and video
are being transmitted in this manner. A digital message is
a sequence of 0’s and 1’s which encodes a given message.
More data will be added to a given binary message that
will help to detect if an error has been made in the
transmission of the message; adding such data is called an
error-detecting code. More data may also be added to the
original message so that errors made in transmission may
be detected, and also to figure out what the original
message was from the possibly corrupt message that was
received. This type of code is an error-correcting code.
The encoder transforms an n-letter word x into an m-letter
word y with m > n. The decoder must be able to recover x
correctly when up to r letters of y are corrupted in any
way.

Several schemes exist to achieve error detection,
and are generally quite simple. All error detection codes
(which include all error-detection-and-correction codes)
transmit more bits than were in the original data. Most
codes are "systematic" — the transmitter sends the
original data bits, followed by check bits — extra bits
(usually referred to as redundancy in the literature) which

accompany data bits for the purpose of error detection.

Repetition Code

When sending information over a noisy channel,
on the highest level of abstraction we distinguish only the
cases whether a symbol is transmitted correctly or not.
Then the difference between the input sequence and the

output sequence is measured by the Hamming distance.

Journal of University of Anbar for Pure Science (JUAPS)

82

Open Access

Definition 1 (Hamming distance /weight ) [4]:

The Hamming distance between two sequences
Xx=((x1...xn)andy = (yl...yn)is the number of
positions where x and y differ, i.e.,
dHamming(x,y) = [{i: 1 <i<n|xi#Yyi}|

If the alphabet contains a special symbol 0, we
can also define the Hamming weight of a sequence
which equals the number of nonzero positions.

In order to be able to correct errors, we use only
a subset of all possible sequences. In particular, we may

take a subset of all possible sequences of length n.

Definition 2 (block code) [4]:

A block code B of length n is a subset of all
possible sequences of length n over an alphabet A, i.e., B
< An. The rate of the code is:

_ log|B| _ log|B|
~log|A"|  nlog|A

i.e., the average number of symbols encoded by

a codeword.

The simplest code that can be used to detect or
correct errors is the repetition code. A repetition code
with rate 1/2 transmits every symbol twice. At the
receiver, the two symbols are compared, and if they
differ, an error is detected. Using this code over a
channel with error probability p, the probability of an
undetected error is p2. Sending more than two copies of
each symbol, we can decrease the probability of an
undetected error even more. But at the same time, the
rate of the code decreases since the number of
codewords remains fixed while the length of the code
increases. A repetition code can not only be used to
detect errors, but also to correct errors. For this, we send

three copies of each symbol, i.e., we have a repetition
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code with rate 1/3. At the receiver, the three symbols are
compared. If at most one symbol is wrong, the two error-
free symbols agree and we assume that the corresponding
symbol is correct. Again, increasing the number of copies
sent increases the number of errors that can be corrected.
For the general situation, we consider the distance

between two words of the block code B.

Definition 3 (minimum distance) [4]:

The minimum distance of a block code B is the
minimum number of positions in which two distinct
codewords differ, i.e.

dmin(B) =min{dHamming(x, y):X, y €B | X #y}.

The error-correcting ability of a code is related to
its minimum distance.

Theorem 1: Let B be a block code with minimum
Hamming distance d. Then one can either detect any error
that acts on no more than d positions or correct any error
that acts on no more than | (d — 1)/2] positions.

Proof: From the definition of the minimum
distance of the code B it follows that at least d positions
have to be changed in order to transform one codeword
into another. Hence any error acting on less than d — 1
positions can be detected. If strictly less than d/2 positions
are changed, there will be a unique codeword which is
closest in the Hamming distance. Hence up to |(d — 1)/2]
errors can be corrected [4].

Definition 4: An (m, n, d)-error-correction code is
a subset C < Zgm of size gn such that d(x, y) > d for
every pair of distinct elements x, y € C. The parameter d
is called the minimum distance of the code, and elements
of C are called codewords [13].

Variations on this theme exist. Given a stream of
data that is to be sent, the data is broken up into blocks of
bits, each block is sent some

and in sending,
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predetermined number of times. For example, if we want
to send "1011", we may repeat this block three times
each.

Suppose we send "1011 1011 1011", and this is
received as "1010 1011 1011". As one group is not the
same as the other two, we can determine that an error has
occurred. This scheme is not very efficient, and can be
susceptible to problems if the error occurs in exactly the
same place for each group (e.g. "1010 1010 1010" in the
example above will be detected as correct in this
scheme). The scheme however is extremely simple, and

is in fact used in some transmissions of numbers stations.

Hamming Code

In telecommunication, a Hamming code is a
linear error-correcting code named after its inventor,
Richard Hamming [5]. Hamming codes can detect and
correct single-bit errors. In other words, the Hamming
distance between the transmitted and received code-
words must be zero or one for reliable communication.
Alternatively, it can detect (but not correct) up to two
simultaneous bit errors.

In contrast, the simple parity code cannot correct
errors, nor can it be used to detect more than one error
(such as where two bits are transposed).

In mathematical terms, Hamming codes are a
class of binary linear codes. For each integer m > 1 there
is a code with parameters: [2m — 1, 2m — m — 1, 3]. The
parity-check matrix of a Hamming code is constructed
by listing all columns of length m that are pair-wise
independent.

We now give a simple example of an error-
correction code: a Hamming or repetition code. In this

example, redundancy is introduced directly into a
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message by repeating each bit (or number in Zq) three
times.

For example, consider messages which are 3-bit
strings, so n = 3. Each bit in the string is repeated three

times, so the resulting message length ism = 9.

Message Codeword
000 000000000
001 000000111
010 000111000
011 000111111
100 111000000
101 111000111
110 111111000
111 111111111

Note that the minimum distance between the
messages may be 1, but the minimum distance of the
repetition code is 3. This means that any 1-bit error in the
codewords may be corrected. Indeed, if we look at the
three blocks of three bits each in a received message, we
can recover the original bit by taking the most common bit
among the three. If no error has occurred, the three bits
would be 000 or 111, and if a single bit flip has occurred,
the bits would be 100, 010, or 001 in case a zero was
encoded, and 011, 101, or 110 if a one was encoded. In
either case, the most common bit gives us the correct
answer [13].

Error Correcting Codes only succeed if the errors
made in the individual bit positions are relatively
uncorrelated, so that the number of simultaneous errors in
many bit positions is small. If there are many
simultaneous errors, the error-correcting code will not be

able to correct them (Peterson & Weldon, 1972).

Sequenceable Group and Communication:
Anon — trivial finite group G of order n is said to

be sequenceable if its elements can be arranged in a

sequence
(b1, b2......... , bn) in such a way that the partial products
(al, a2, ....... , an) where ai=blb2 ......... bi are distinct.
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The sequence (bl, b2, ...... , bn) is called a
sequencing for G.
If (bl, b2,

b1= e where e is the identity of G.

...... , bn) is a sequencing for G then

A Latin square of order n is an n x n array
defined on a set X with n elements such that every
element of X appears once in each row and once in each
column.

A Latin is said to be based on a group G if the
Latin square can be bordered with the elements of G to
form the clayey table of G.

An n x n Latin is said to be row complete if
every pair {x, y} of distinct elements of X occurs exactly
once in each order in adjacent vertical cells. If a Latin
square is both row complete and column complete then it
is said to be complete [15].

Theorem 2: Let G be a sequenceable group and
(b1, b2,
directed product (al, a2,

, bn) be a sequencing with a associated
....... , an). then L=(Lij) where

Lij=ai-1la forl< i, j <n.isacomplete Latin
square.

Proof: Suppose Lij = Lik for some 1< i,j <n.
thenai-laj=ai-1 akgiving aj=ak..

Therefore j = k and L has no repeated entries in
any row. Similarly, L has no repeated entries in any
column therefore L is a Latin square. To show that:

L is row complete we need ai -1aj=X and ai
-1aj+1 = Y to have a unique solution for i and j given
any ordered pair (x, y) of distinct elements of G [15].

Inverting both sides of the first equation and post
— multiplying by the second gives ai -1aj = x -1y.

That is bj+1 = x-1 y, uniquely determining j.

Now ai -1aj = x uniquely determines i and L is

row complete. By same way we can show that L is also
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column complete. Therefore L is a complete Latin square.

Classifying Sequenceable Group

In this section we introduced completely
classified sequenceable groups.
Abelian groups

Tthe following theorem exactly which abelian
groups are sequenceable. A finite abelian group G is
sequenceable if and only if G is a binary group. The
binary group is defined to be a group with a single

element of order 2.

3-1-2 Dihedral groups

Let n > 3 we describe the dihedral group D2n, as
the set of ordered pairs ( x, €) with x € Zn and € € Z2

Defined by (%, 0) (y, 8) = (x+y, 3).

1) (y,8) =(x-y, 1+ 3).

In 1976 Anderson [1] showed that D2p is a
sequenceable if p is a prime with a primitive root r such
that 3r = -1 ( mod p). also in 1976 Friedlander [14]
showed that D2p is sequenceable if p is prime and p =1
(mod 4) and where p is a prime such that

p =7 (mod 8) and p has a primitive root r such
that 2r = -1 (mod p) and by [10] the dihedral groups D2n
of order 2n. are sequenceable for all n. where n = 3 ( D6 is
not sequenceable ) and n = 4k and the dihedral groups
D2n are sequenceable when n = 4k, except when n = 4.

Therefore, the following groups are known to be
sequenceable.

Some groups of order pq where p and g are odd
prime, direct product, of some of the groups of the
previous type if both p and g are congruent to 3 modulo 4,

at least one of the non — abelian groups of order pm, for p
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an odd prime and m > 3, non — abelian groups of order n,
where 10 <n <32. and A5, S5.

Orthogonality:

Definition 5: Tow Latin squares A = ( aij) and B
= (bij) are orthogonal if the set

{(aij, bij): 1 <1, j <n} contains all possible paris.

Example:- The following tow Latin squares are

orthogonal
1 2 3 4 1 4 3 2
2 1 4 3 3 2 1 4
3 4 1 2 2 3 4 1
4 3 2 1 4 1 2 3

Theorem 3: If Al, A2,

orthogonal Latin squares of order n then

...., Am are mutually

m<n-1

Proof: Let Ak= ( aij(k))nxn. By ( if A and B are
orthogonal Latin squares. Then the standard form of A
and B is A* and B* respectively, are orthogonal) [18].

We may assume that all Al,...., Am are in
standard form, otherwise we standardizes them, without
affecting orthogonally. i.e. ajk(k)=1.
Consider the set S= { (i, j, k): aij (k)= 1}.

Clearly the number of elements of S is equal to
the total number of 1's in Al, ....., Am, so that

Consider a triple (i, j, k) € S, each of the squares
has 1 in the position (1, 1).

Hence, if i =j =1 then k can be arbitrary. Also,
no other entry in the position (1, j) or

(1i,1) can be 1 so that we can not have

i=1#jori#1=j finally, ifi # 1 and j # 1, then
because of orthogonally, there may exit at most one k
such that (i, j, k) € S.

We conclude that

[S|I<Sm+(n1)2. ....ooeennin. ()
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Combining (1) and (2) we obtain m <n -1. 1 2 3 4 0
. L 3 4 0 1 2
Latin squares from finite fields: 0 ) 3 A
In this section we introduce a method of
A,= 23 4 0 1
constructing orthogonal Latin squares from finite fields. 40 L ) 3
Theorem 4: If n = pt. where p is a prime and t > 1, 1 2 3 4 0
then there exist n-1 mutually orthogonal Latin squares of
order n [19]. 4 0 1 2 3
. 2 3 4 0 1
Example:- Let us use the finite field Z5 to construct
4 mutually orthogonal Latin squares of order 5. Ay= 01 2 3 4
First, we Letfi=1,f, =2, f3=3,fs = 4, fs = 0. 3 4 ! 2
- - - - - 1 2 3 4 0
The first Latin squares Al = (aij(1))5x5 is given by
aij(1)=fi +fj. 0 1 2 3 4
i 4 0 1 2 3
123 45
123 45 A,= 34 0 1 2
P n 2 3 4 0 1
1 1 2 34 01
1 2 3 4 0
2 2 340 12
3 3 4 01 2 3
4 a4 012 3 4 Definition 5: Let A = (aij)m x m and B = (bj})n xn two Latin
5 0 123 40 square. Their direct product
Similarly, the second Latin square A; = (a;®) is given by C = A x B isan mn x mn array, in dexed by the elements
aj® = 2f; + f; of {1, ...... ,m} x {1,........ ,n} and entries Cqj), ik = (Qik,
by) [19].
j 123 45 Example:- consider the following tow Latin square
_ 1 2 3 4 1 2 2 3 1
i i 2fi 2 1 , 3 1 2
1 1 2 340 12 1 ’ 3
2 2 4 012 3 4
3 3 1 2 34 01 o ) S
4 4 3 401 2 3 Their direct product, according to definition, is
5 0 0 123 40 (1,1),(1,2),(1,3),(2.1),(2,2),(2,3)
(1,1) (1,2),(1,3),(1,1),(2.2),(2,3),(2,1)
Repeating similar calculation for A® and A4 we obtain (12) (1,3),(1,1),(1,2),(2.3),(2.1),(2.2)
the squares: 1.3 (1.1),(1,2),(1.3),(2.1),(2.2).,(2.3)
2 3 4 0 1 (2.1) (2.2),(2,3),(2,1),(1,2),(1,3),(1.1)
3 4 0 1 2 22) (2:3),(2.1),(2,2),(1,3),(1,2),(1,2)
Al = 40 1 2 3 (2’3) (2’1)7(212)1(213)1(171)1(112)1(113)
After renumbering this becomes
0 1 2 3 4

86
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2 3 1 5 6 4
3 1 2 6 4 5
1 2 3 4 5 6
5 6 4 2 3 1
6 4 5 3 1 2
4 5 6 1 2 3

Theorem 5: If A and B are orthogonal Latin squares
of order m, and if C and D are orthogonal Latin squares of
order n. then A x C and B x D are orthogonal Latin square
[19].

Corollary : If n = 2 (mod 4) then there exists a pair
of orthogonal Latin squares of order n.

Proof: Let p2a2.... Pkak be
decomposition of n into a product of primes, with pl <

n plal the
...< pk, since n # 2 (mod 4) it follows that plal > 2, and
so piai >2 foe every i, by theorem (4), foreachi (1<i<
K) there exist a pair Ai, Bi of orthogonal Latin squares of
order pial, but then the Latin squares A = Al x ...x Ak
and B = B1 x ...x Bk are orthogonal by theorem (5) and
have order n [19].

The Proposed Latin Square Error Correcting Code
(LSECC)

This section obtain who we can exploit the
characteristics of the orthogonal Latin Squares mentioned
to design a new technique of the Error Correcting Code
we call it: Latin Square Error Correcting Code (LSECC).
The proposed new technique is an Error Correcting code
method that is used to save the information from the lost
may be occur in the transmission media. The new
technique is uses the characteristics of the Orthogonal
Latin Squares and employ it to correct most of the
simultaneous errors in bits caused by noise.

Definition 6: A code is said to be t-error correcting if
in the

when no more than t-error has occurred

transmissions of codeword.
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We note that if we have n x n Latin Square (ai j),
we can build n2 codewords, by using ordered triples (i, j,
aij).

These triples are of Hamming distances of at least
2 a part because of constructions Latin square.

Example:- Let the Latin Square of group Z3, the
codewords are:

The Latin Square:

o N B
= O DN

The code words:
0,0,0),(0,1,1), (0, 2,2),
(1,0,1),(1,1,2),(1,2,0),
(2,0,2),(2,1,0), (2, 2,1),
A single error detecting code formed from Z3 and its
corresponding code words.
Theorem 6: Any pair of orthogonal Latin Square of order

n yields a 1-error correcting code with n2 code words.

Proof: Let the n2 code words of length 4 over the
alphabet {0, 1, ...., n-1} the code words are merely the
4-tuples code words of the form (i, j, aij, bi j) 0 <, j <
.n-1.

Such that [ai j] = A and [bi j] = B forming two Latin
Squares.

Suppose that w = (i, j, ai j, bi jjand w™ = (i’, j, ai
j*, bij ) are two such words.

Ifi =i andj =] clearly the two words are the
same, if ai j=ai" j" and bi j=bi" j* they must be the same
words A and B are orthogonal. If i =i and ai j=ai" j
then the words are same, since, A is Latin Square [14].
The other cases are all similar.

Thus any two codewords of distances 3 which will

be corrected one error.
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Now, from this theorem we can use sets of
orthogonal Latin Squares to construct codes.

If we have q x q Latin Squares L1, L2, ...., Ln, we
construct codewords by taking a coordinate pair and
adjoining the corresponding element from each Latin
Squares
(i,j,L1,L2, ...., Ln).

These g2 codewords have hamming distance of at
least 2t + 1 from each other.

We can show that any pair of orthogonal Latin
Squares of order n yields a 1-error correcting code with n2
code words of length 4 over the alphabet {0, 1, ...., n-1}.
Thus any two code words at distance 2 or less are the
same and have a code of distance 3 which will correct one

error.

Example:- Let the following cayley table of Z4 and one of
its orthogonal mates is:

01 2 3 0 3 21

1 0 3 2 2 1 0 3
A: B:

2 3 01 1 2 30

3210 3 01 2

(0,0,0,0),(0,1,1,3),(0,2,2,2),(0,3,3, 1),
(1,0,1,2),(1,1,0,1),(1,2,3,0), (1, 3,2,3),
(2,0,2,1),(2,1,3,2),(2,2,0,3),(2,3,1,0),
(3,0,3,3),(3,1,2,0),(3,2,1,1),(33,0,2)

The codewords generated from the above Orthogonal
Latin Squares are.

When the sender want to transmit the following bits:
101101100001 1101

The sender do the following for each four bits:

Takes the four bits to make it pair of two bits numbers (i,
)-

Takes the codeword correspond to i and j from possible
(i, j, ai J, bi j).

Send the codeword (i, j, ai j, bi j).

code words as
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He send the following code words as obtained below:
10b =2d

11b=3d

Then he send the codeword:
00

0lb=1d

10b =2d

(2, 3,1, 0) = 10 11 01

Then he send the codeword:
00
00b =0d
0lb=1d
Then e send the codeword: (0, 1, 1, 3) =00 01 01

(1,2, 3, 0) =01 10 11

11

11b =3d

01b =1d

Then he send the codeword:
00

(3, 1,2, 0) = 11 01 10

And so on for other bits in the transmission media,
Therefore, the data: 1011 0110 0001 1101
is encoded into: 1011 0100 0110 1100 0001
0111 1101 1000
and transmitted.
Suppose the transmitted bits affect by noise cause the
following errors:
1001 0100 0101 1100 1101 0111 1101 0000
The receiver takes each eight bits to convert it into
corresponding codeword and match with its possible
code words and do the following for each eight bits:
1.If the received codeword match with one of the
possible code words there is no error. He takes the first
two symbols of the codeword as four bits
2.1f the received codeword no match with one of the
possible code words there is an error, search the code

words to find almost match three symbols of the
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codeword and correct it. He takes the first two symbols
of the corrected codeword as four bits
3.0therwise there is damage in the transmission and send
an acknowledgement to the sender to retransmit the
data.
Take the first eight bits (codeword): 1001 0100 has
a single error; the third bit is changed from 1 to 0.
Where the error codeword is 1001 0100 = (2, 1, 1, 0).
Therefore, there is no more other the single codeword (2,
3, 1, 0) of the possible codeword match three elements of
the error codeword. Then he receive 1011.
Take the second eight bits (codeword): 0101 1100 have
two simultaneous errors; the third bit is changed from 1 to
0 and the fourth bit is changed from 0 to 1,
Where the error codeword is 0101 1100=(1, 1, 3, 0).
Therefore, there is no more other single codeword
(1, 2, 3, 0) of the possible codeword match three elements
of the error codeword. Then he receive 0110.
Take the third eight bits (codeword): 1101 0111 have two
simultaneous errors; the first bit is changed from 0 to 1
and the second bit is changed from 0 to 1.
Where the error codeword is 1101 0111 =(3, 1, 1, 3).
Therefore, there is no more other single codeword
(0,1, 1, 3), of the possible codeword match three elements
of the error codeword. Then he receive 0001.
Take the fourth eight bits (codeword): 1101 0000
has single bit errors; the fifth bit is changed from 1 to 0.
Where the error codeword is 1101 0000 = (3, 1, 0, 0).
Therefore, there is no more other single codeword
(3,1, 2, 0), of the possible codeword match three elements
of the error codeword Then he receive 1101.
Finally, he receives the data 1011 0110 0001 1101.
Latin Square Error Correcting Code Algorithm
The previous example explain the idea of LSECC,

it is correct even most the two simultaneous bits errors, if
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the sender uses two orthogonal Latin Squares 8 x 8 (i.e.
cayley table of Z8), the three simultaneous bits errors
may be corrected, therefore, the using of the cayley table
of Z2n may be correct the n-simultaneous bits errors.
We can construct the following LSECC Algorithm:
Algorithm: (LSECC)

1- Initialization

1.1- Choose m = 2n, where m represent the dimension of
the Latin Square.

1.2- Build two orthogonal Latin Squares A and B of
dimension mxm (i.e. cayley table of Zm).

1.3- Construct all possible 4-tuples codewords of the
form (i, j, aij, bi j).

2- Coding and Sending

The sender separates the data into 2n-bits words,
and then does the following for each 2n-bits:

2.1- Takes the 2n-bits to make it pair of n-bits numbers

(i, J).

2.2- Takes the codeword correspond to i and j from
possible codewords as (i, j, ai j, bi j).

2.3- Send the codeword (i, j, ai j, bi j).

3- Decoding and Receiving

The receiver takes each 4n-bits to convert it into
corresponding codeword and match with its possible
code words and do the following for each 4n-bits:

3.1- If the received codeword match with one of the
possible code words there is no error. He takes the
first two symbols of the codeword as two n-bits
received data.

3.2- If the received codeword do not match with one of
the possible code words there is an error, search the
code words to find almost match three symbols of the
codeword and correct it. He takes the first two
symbols of the corrected codeword as two n-bits

received data.
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3.3- Otherwise there is damage in the transmission and
send an acknowledgement to the sender to retransmit
the data.

Conclusion

Error-correcting code theory is essential to our
modern life. The rapid growth of the amount of
information needed to be transmitted makes it very
important to continue our study of this subject. Codes that
are more efficient to transmit, correct more errors, and are
more efficient to decode are always needed. The proposed
LSECC is a good algorithm and more efficient than some
previous ECC techniques, which is correct all 1-error and
the most of the burst errors n-error. The main advantages
of LSECC are the n-error correcting code, the second, it is
the redundancy code have length equal the length of the
data we want to transmit, i.e. no more than the length of
the original data such as the previous techniques. The
advantages of the non-complete burst error correcting
code presented in this paper are the very efficient and
simple decoding algorithm, the low redundancy, and the
fact that it is systematic.

Finally, the using of the cayley table of Z2n may be
correct the n-simultaneous bits errors. The more efficient
way to Error Correcting codes would be very helpful.
With

addition to new uses for the subject in other areas, the

increase demands for information transfer, in

importance of research in error-correcting code theory will

only increase as time goes on.
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