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 Digital data stored in computers or transmitted over computer networks are 

constantly subject to error due to the physical medium in which they are stored or 

transmitted. Error-correction codes are means of introducing redundancy in the data 

so that even if part of it is corrupted or completely lost, the original data can be 

recovered. Error correcting codes are used in modern technology to protect 

information from errors. Burst error correcting codes are needed in virtually 

uncountable applications. Such codes will be called complete burst error correcting 

codes. There are quite a few constructions for complete burst error correcting codes. 

This paper presents an error correcting code based on the concept and the theory of 

the Latin Squares, where it employ the characteristics of the orthogonal Latin Squares 

to correct the errors. That is not complete burst error correcting codes, since it can 

correct most burst pattern of length i  n, but not all of them. However, if the number 

of uncorrectable patterns is sufficiently small, this code can be used in practice as a 

burst error correcting code.  
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Introduction 

Information is passes every day in our society. It 

is essential that interference in the communication of this 

information hinders the information from being received 

as little as possible. Error-correcting codes provide us with 

this ability. Error-correcting codes allow us to receive a 

piece of information, identify any errors, locate them, and 

correct them.  

Cyclic codes are an especially useful kind of 

error-correcting code, and BCH codes and QR codes are 

especially useful kinds of cyclic codes. Error-correcting 

code theory has also been used in areas outside of 

information communication. Error correcting code theory 

is an important subject to study. A digital message is a 

sequence of 0’s and 1’s which encodes a given message.  
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More data will be added to a given binary 

message that will help to detect if an error has been made 

in the transmission of the message; adding such data is 

called an error-detecting code. More data may also be 

added to the original message so that errors made in 

transmission may be detected, and also to figure out 

what the original message was from the possibly corrupt 

message that was received.  

Development of algorithmically efficient error 

correcting codes has attracted attention of engineers, 

computer scientists and applied mathematicians for past 

five decades. If a message needs to be received quickly 

and without error, merely knowing where the errors 

occurred may not be enough; the second condition is not 

satisfied as the message will be incomplete. 
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Error Correcting Code 

When a message is transmitted, it has the potential 

to get scrambled by noise. This is certainly true of voice 

messages, and is also true of the digital messages that are 

sent to and from computers. Now even sound and video 

are being transmitted in this manner. A digital message is 

a sequence of 0’s and 1’s which encodes a given message. 

More data will be added to a given binary message that 

will help to detect if an error has been made in the 

transmission of the message; adding such data is called an 

error-detecting code. More data may also be added to the 

original message so that errors made in transmission may 

be detected, and also to figure out what the original 

message was from the possibly corrupt message that was 

received. This type of code is an error-correcting code. 

The encoder transforms an n-letter word x into an m-letter 

word y with m > n. The decoder must be able to recover x 

correctly when up to r letters of y are corrupted in any 

way. 

Several schemes exist to achieve error detection, 

and are generally quite simple. All error detection codes 

(which include all error-detection-and-correction codes) 

transmit more bits than were in the original data. Most 

codes are "systematic" — the transmitter sends the 

original data bits, followed by check bits — extra bits 

(usually referred to as redundancy in the literature) which 

accompany data bits for the purpose of error detection. 

 

Repetition Code 

When sending information over a noisy channel, 

on the highest level of abstraction we distinguish only the 

cases whether a symbol is transmitted correctly or not. 

Then the difference between the input sequence and the 

output sequence is measured by the Hamming distance. 

 

Definition 1 (Hamming distance /weight ) [4]: 

 The Hamming distance between two sequences 

x = (x1 . . .xn) and y = (y1 . . . yn) is the number of 

positions where x and y differ, i.e., 

dHamming(x, y) = |{i : 1 ≤ i ≤ n | xi ≠ yi}|. 

If the alphabet contains a special symbol 0, we 

can also define the Hamming weight of a sequence 

which equals the number of nonzero positions.  

In order to be able to correct errors, we use only 

a subset of all possible sequences. In particular, we may 

take a subset of all possible sequences of length n.  

 

Definition 2 (block code) [4]:  

A block code B of length n is a subset of all 

possible sequences of length n over an alphabet A, i.e., B 

 An. The rate of the code is: 

An

B

A

B
R

n log

log

log

log
  

i.e., the average number of symbols encoded by 

a codeword. 

The simplest code that can be used to detect or 

correct errors is the repetition code. A repetition code 

with rate 1/2 transmits every symbol twice. At the 

receiver, the two symbols are compared, and if they 

differ, an error is detected. Using this code over a 

channel with error probability p, the probability of an 

undetected error is p2. Sending more than two copies of 

each symbol, we can decrease the probability of an 

undetected error even more. But at the same time, the 

rate of the code decreases since the number of 

codewords remains fixed while the length of the code 

increases. A repetition code can not only be used to 

detect errors, but also to correct errors. For this, we send 

three copies of each symbol, i.e., we have a repetition 

http://en.wikipedia.org/wiki/Systematic_code
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code with rate 1/3. At the receiver, the three symbols are 

compared. If at most one symbol is wrong, the two error-

free symbols agree and we assume that the corresponding 

symbol is correct. Again, increasing the number of copies 

sent increases the number of errors that can be corrected. 

For the general situation, we consider the distance 

between two words of the block code B. 

 

Definition 3 (minimum distance) [4]:  

The minimum distance of a block code B is the 

minimum number of positions in which two distinct 

codewords differ, i.e.  

dmin(B) =min{dHamming(x, y):x, y B | x ≠ y}. 

The error-correcting ability of a code is related to 

its minimum distance. 

Theorem 1: Let B be a block code with minimum 

Hamming distance d. Then one can either detect any error 

that acts on no more than d positions or correct any error 

that acts on no more than  (d − 1)/2 positions. 

Proof: From the definition of the minimum 

distance of the code B it follows that at least d positions 

have to be changed in order to transform one codeword 

into another. Hence any error acting on less than d − 1 

positions can be detected. If strictly less than d/2 positions 

are changed, there will be a unique codeword which is 

closest in the Hamming distance. Hence up to (d − 1)/2 

errors can be corrected [4]. 

Definition 4: An (m, n, d)-error-correction code is 

a subset C  Zqm of size qn such that d(x, y)  d for 

every pair of distinct elements x, y  C. The parameter d 

is called the minimum distance of the code, and elements 

of C are called codewords [13]. 

Variations on this theme exist. Given a stream of 

data that is to be sent, the data is broken up into blocks of 

bits, and in sending, each block is sent some 

predetermined number of times. For example, if we want 

to send "1011", we may repeat this block three times 

each.  

Suppose we send "1011 1011 1011", and this is 

received as "1010 1011 1011". As one group is not the 

same as the other two, we can determine that an error has 

occurred. This scheme is not very efficient, and can be 

susceptible to problems if the error occurs in exactly the 

same place for each group (e.g. "1010 1010 1010" in the 

example above will be detected as correct in this 

scheme). The scheme however is extremely simple, and 

is in fact used in some transmissions of numbers stations. 

 

Hamming Code 

In telecommunication, a Hamming code is a 

linear error-correcting code named after its inventor, 

Richard Hamming [5]. Hamming codes can detect and 

correct single-bit errors. In other words, the Hamming 

distance between the transmitted and received code-

words must be zero or one for reliable communication. 

Alternatively, it can detect (but not correct) up to two 

simultaneous bit errors. 

In contrast, the simple parity code cannot correct 

errors, nor can it be used to detect more than one error 

(such as where two bits are transposed). 

In mathematical terms, Hamming codes are a 

class of binary linear codes. For each integer m > 1 there 

is a code with parameters: [2m − 1, 2m − m − 1, 3]. The 

parity-check matrix of a Hamming code is constructed 

by listing all columns of length m that are pair-wise 

independent. 

We now give a simple example of an error-

correction code: a Hamming or repetition code. In this 

example, redundancy is introduced directly into a 

http://en.wikipedia.org/wiki/Numbers_station
http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Linear_code
http://en.wikipedia.org/wiki/Error-correcting_code
http://en.wikipedia.org/wiki/Richard_Hamming
http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Parity
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Parity-check_matrix
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message by repeating each bit (or number in Zq) three 

times. 

For example, consider messages which are 3-bit 

strings, so n = 3. Each bit in the string is repeated three 

times, so the resulting message length is m = 9. 

Message Codeword 

000 000000000 

001 000000111 

010 000111000 

011 000111111 

100 111000000 

101 111000111 

110 111111000 

111 111111111 

Note that the minimum distance between the 

messages may be 1, but the minimum distance of the 

repetition code is 3. This means that any 1-bit error in the 

codewords may be corrected. Indeed, if we look at the 

three blocks of three bits each in a received message, we 

can recover the original bit by taking the most common bit 

among the three. If no error has occurred, the three bits 

would be 000 or 111, and if a single bit flip has occurred, 

the bits would be 100, 010, or 001 in case a zero was 

encoded, and 011, 101, or 110 if a one was encoded. In 

either case, the most common bit gives us the correct 

answer [13]. 

Error Correcting Codes only succeed if the errors 

made in the individual bit positions are relatively 

uncorrelated, so that the number of simultaneous errors in 

many bit positions is small. If there are many 

simultaneous errors, the error-correcting code will not be 

able to correct them (Peterson & Weldon, 1972). 

 

Sequenceable Group and Communication: 

Anon – trivial finite group G of order n is said to 

be sequenceable if its elements can be arranged in a 

sequence  

(b1, b2 ………, bn) in such a way that the partial products  

(a1, a2, ……., an) where ai = b1b2 ……… bi are distinct. 

The sequence (b1, b2, …… , bn) is called a 

sequencing for G. 

If (b1, b2, …… , bn) is a sequencing for G then 

b1= e where e is the identity of G. 

      A Latin square of order n is an n × n array 

defined on a set X with n elements such that every 

element of X appears once in each row and once in each 

column.  

A Latin is said to be based on a group G if the 

Latin square can be bordered with the elements of G to 

form the clayey table of G. 

An n × n Latin is said to be row complete if 

every pair {x, y} of distinct elements of X occurs exactly 

once in each order in adjacent vertical cells. If a Latin 

square is both row complete and column complete then it 

is said to be complete [15]. 

Theorem 2: Let G be a sequenceable group and 

(b1, b2, …… , bn) be a sequencing with a associated 

directed product (a1, a2, ……., an). then L=(Lij) where 

Lij = a i -1 aj  for 1 ≤  i, j  ≤ n. is a complete Latin 

square. 

Proof: Suppose Lij = Lik for some 1≤  i, j  ≤ n. 

then a i -1 aj = a i -1  ak giving aj=ak.. 

Therefore j = k and L has no repeated entries in 

any row. Similarly, L has no repeated entries in any 

column therefore L is a Latin square. To show that: 

L is row complete we need ai -1aj=X and        ai 

-1aj+1 = Y to have a unique solution for i and j given 

any ordered pair (x, y) of distinct elements of G [15].  

Inverting both sides of the first equation and post 

– multiplying by the second gives ai -1aj = x -1y.  

That is bj+1 = x-1 y, uniquely determining j. 

Now ai -1aj  = x uniquely determines i and L is 

row complete. By same way we can show that L is also 
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column complete. Therefore L is a complete Latin square. 

 

Classifying  Sequenceable Group  

In this section we introduced completely 

classified sequenceable groups. 

Abelian groups  

Tthe following  theorem exactly which abelian 

groups are sequenceable. A finite abelian group G is 

sequenceable if and only if G is a binary group. The 

binary group is defined to be a group with a single 

element of order 2. 

 

3-1-2 Dihedral groups 

Let n ≥ 3 we describe the dihedral group D2n, as 

the set of ordered pairs ( x, Є) with x  Zn and Є  Z2   

Defined by  (x, 0) (y, ) = (x+y, ). 

 (x, 1) (y, ) = ( x – y, 1 +   ). 

In 1976 Anderson [1] showed that D2p is a 

sequenceable if p is a prime with a primitive root r such 

that 3r  -1 ( mod p). also in 1976 Friedlander [14] 

showed that D2p is sequenceable if p is prime and p  1 

(mod 4) and where p is a prime such that 

 p  7 (mod 8) and p has a primitive root r such 

that 2r  -1 (mod p) and by [10] the dihedral groups D2n 

of order 2n. are sequenceable for all n. where n  3 ( D6 is 

not sequenceable ) and  n  4k and  the dihedral groups 

D2n are sequenceable when n = 4k, except when n = 4. 

Therefore, the following groups are known to be 

sequenceable. 

Some groups of order pq where p and q are odd 

prime, direct product, of some of the groups of the 

previous type if both p and q are congruent to 3 modulo 4,  

at least one of the non – abelian groups of order pm, for p 

an odd prime and m ≥ 3, non – abelian groups of order n, 

where 10 ≤ n ≤ 32. and A5, S5.  

 

Orthogonality: 

Definition 5: Tow Latin squares A = ( aij) and B 

= (bij) are orthogonal if the set  

{(aij, bij): 1 ≤ i, j ≤ n} contains all possible paris.  

Example:- The following tow Latin squares are 

orthogonal  

1 2 3 4 1 4 3 2 

2 1 4 3 3 2 1 4 

3 4 1 2 2 3 4 1 

4 3 2 1 4 1 2 3 

Theorem 3: If A1, A2, …., Am are mutually 

orthogonal Latin squares of order n then 

 m ≤ n-1 

Proof: Let Ak= ( aij(k))nxn. By ( if A and B are 

orthogonal Latin squares. Then the standard form of A 

and B is A* and B* respectively, are orthogonal) [18].  

We may assume that all A1,…., Am are in 

standard form, otherwise we standardizes them, without 

affecting orthogonally. i.e. ajk(k)=1. 

Consider the set S= { (i, j, k): aij (k)= 1}. 

Clearly the number of elements of S is equal to 

the total number of 1's in A1, ….., Am, so that  

| S | = n m ……………… (1) 

Consider a triple (i, j, k)  S, each of the squares 

has 1 in the position (1, 1). 

Hence, if  i = j = 1 then k can be arbitrary. Also, 

no other entry in the position (1, j) or 

 (i,1) can be 1 so that we can not have 

 i = 1 ≠ j or i ≠ 1 = j, finally, if i ≠ 1 and j ≠ 1, then 

because of orthogonally, there may exit at most one k 

such that (i, j, k)  S. 

We conclude that 

 | S | ≤  m + ( n-1) 2. ……………. (2)  
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Combining (1) and (2) we obtain m ≤ n -1. 

 

 Latin squares from finite fields: 

In this section we introduce a method of 

constructing orthogonal Latin squares from finite fields. 

Theorem 4: If n = pt. where p is a prime and t ≥ 1, 

then there exist n-1 mutually orthogonal Latin squares of 

order n [19]. 

Example:- Let us use the finite field Z5 to construct 

4 mutually orthogonal Latin squares of order 5.  

First, we Let f1= 1, f2 = 2, f3 = 3, f4 = 4, f5 = 0. 

The first Latin squares A1 = (aij(1))5×5 is given by 

aij(1)= fi + fj. 

j 

fj 

i      fi 

1    2    3     4    5 

1    2    3     4    5 

1      1 

2      2 

3      3 

4      4 

5      0 

2    3    4     0    1 

3    4    0     1    2 

4    0    1     2    3 

0    1    2     3    4 

1    2    3     4    0 

Similarly, the second Latin square A2 = (aij
(2)) is given by 

aij
(2) = 2fi + fj  

  

j 

fj 

i      fi    2fi 

1    2    3     4    5 

1    2    3     4    5 

1      1     2 

2      2     4 

3      3     1 

4      4     3 

5      0     0 

3    4    0     1    2 

0    1    2     3    4 

2    3    4     0    1 

4    0    1     2    3 

1    2    3     4    0 

Repeating similar calculation for A 3  and A 4  we obtain 

the squares: 

2 3 4 0 1 

  3 4 0 1 2 

A 1  =    4 0 1 2 3   

 0 1 2 3 4 

 1 2 3 4 0  

 

3  4 0 1 2 

  0  1 2 3 4 

A 2  =    2  3 4 0 1 

            4  0 1 2 3 

 1  2 3 4 0 

 

4 0 1 2 3  

  2 3 4 0 1  

A 3 =    0 1 2 3 4 

 3 4 0 1 2 

 1 2 3 4 0 

 

0  1 2 3 4 

 4  0 1 2 3 

A 4  =    3  4 0 1 2 

 2  3 4 0 1 

1  2 3 4 0 

 

Definition 5: Let A = (aij)m × m and B = (bij)n × n two Latin 

square. Their direct product  

C = A × B is an mn × mn array, in dexed by the elements 

of {1, ……,m} × {1,……..,n} and entries C(I,j), (k,l) = (aik, 

bjl) [19]. 

Example:- consider the following tow Latin square  

 1 2  2 3 1 

 2 1 , 3 1 2 

    1 2 3 

 

Their direct product, according to definition, is  

 (1,1),(1,2),(1,3),(2,1),(2,2),(2,3) 

(1,1) 

(1,2) 

(1,3) 

(2,1) 

(2,2) 

(2,3) 

(1,2),(1,3),(1,1),(2,2),(2,3),(2,1) 

(1,3),(1,1),(1,2),(2,3),(2,1),(2,2) 

(1,1),(1,2),(1,3),(2,1),(2,2),(2,3) 

(2,2),(2,3),(2,1),(1,2),(1,3),(1,1) 

(2,3),(2,1),(2,2),(1,3),(1,1),(1,2) 

(2,1),(2,2),(2,3),(1,1),(1,2),(1,3) 

After renumbering this becomes 
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 2              3 1 5 6 4 

 3 1 2 6 4 5 

 1 2 3 4 5 6 

 5 6 4 2 3 1 

 6 4 5 3 1 2 

 4 5 6 1 2 3 

Theorem 5: If A and B are orthogonal Latin squares 

of order m, and if C and D are orthogonal Latin squares of 

order n. then A × C and B × D are orthogonal Latin square 

[19]. 

Corollary : If n  2 (mod 4) then there exists a pair 

of orthogonal Latin squares of order n. 

Proof: Let n p1a1 p2a2…. Pkak be the 

decomposition of n into a product of primes, with p1 < 

…< pk, since n  2 (mod 4) it follows that p1a1 > 2, and 

so  piai >2 foe every i, by theorem  (4), for each i ( 1 ≤ i ≤ 

k) there exist a pair Ai, Bi of orthogonal Latin squares of 

order pia1, but then the Latin squares A = A1 × …× Ak  

and B = B1 × …× Bk  are orthogonal by theorem (5) and 

have order n [19]. 

The Proposed Latin Square Error Correcting Code 

(LSECC) 

This section obtain who we can exploit the 

characteristics of the orthogonal Latin Squares mentioned 

to design a new technique of the Error Correcting Code 

we call it: Latin Square Error Correcting Code (LSECC). 

The proposed new technique is an Error Correcting code 

method that is used to save the information from the lost 

may be occur in the transmission media. The new 

technique is uses the characteristics of the Orthogonal 

Latin Squares and employ it to correct most of the 

simultaneous errors in bits caused by noise.   

Definition 6: A code is said to be t-error correcting if 

when no more than t-error has occurred in the 

transmissions of codeword. 

We note that if we have n × n Latin Square (ai j), 

we can build n2 codewords, by using ordered triples (i, j, 

ai j). 

These triples are of Hamming distances of at least 

2 a part because of constructions Latin square. 

Example:- Let the Latin Square of group Z3, the 

codewords are:      

The Latin Square: 

















102

021

210

 

The code words: 

   (0, 0, 0), (0, 1, 1), (0, 2, 2), 

   (1, 0, 1), (1, 1, 2), (1, 2, 0), 

   (2, 0, 2), (2, 1, 0), (2, 2, 1), 

A single error detecting code formed from Z3 and its 

corresponding code words. 

Theorem 6: Any pair of orthogonal Latin Square of order 

n yields a 1-error correcting code with n2 code words. 

 

Proof: Let the n2 code words of length 4 over the 

alphabet {0, 1, …., n-1} the code words are merely the 

4-tuples code words of the form (i, j, aij, bi j) 0  i, j  

.n-1. 

Such that [ai j] = A and [bi j] = B forming two Latin 

Squares. 

Suppose that w = (i, j, ai j, bi j) and w` = (i`, j`, ai 

j`, bi j` ) are two such words. 

If i = i` and j = j` clearly the two words are the 

same, if ai j=ai` j` and bi j=bi` j` they must be the same 

words A and B are orthogonal. If i = i` and ai j=ai` j` 

then the words are same, since, A is Latin Square [14]. 

The other cases are all similar. 

Thus any two codewords of distances 3 which will 

be corrected one error. 
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Now, from this theorem we can use sets of 

orthogonal Latin Squares to construct codes. 

If we have q × q Latin Squares L1, L2, …., Ln, we 

construct codewords by taking a coordinate pair and 

adjoining the corresponding element from each Latin 

Squares  

 (i, j, L1, L2, …., Ln). 

These q2 codewords have hamming distance of at 

least 2t + 1 from each other. 

    We can show that any pair of orthogonal Latin 

Squares of order n yields a 1-error correcting code with n2 

code words of length 4 over the alphabet {0, 1, …., n-1}. 

Thus any two code words at distance 2 or less are the 

same and have a code of distance 3 which will correct one 

error.   

   

Example:- Let the following cayley table of Z4 and one of 

its orthogonal mates is: 























0123

1032

2301

3210

A

   






















2103

0321

3012

1230

B

 

 (0, 0, 0, 0), (0, 1, 1, 3), (0, 2, 2, 2), (0, 3, 3, 1), 

(1, 0, 1, 2), (1, 1, 0, 1), (1, 2, 3, 0), (1, 3, 2, 3), 

(2, 0, 2, 1), (2, 1, 3, 2), (2, 2, 0, 3), (2, 3, 1, 0), 

(3, 0, 3, 3), (3, 1, 2, 0), (3, 2, 1, 1), (3, 3, 0, 2)  

The codewords generated from the above Orthogonal 

Latin Squares are. 

When the sender want to transmit the following bits: 

 10 11 01 10 00 01 11 01 

The sender do the following for each four bits: 

Takes the four bits to make it pair of two bits numbers (i, 

j). 

Takes the codeword correspond to i and j from possible 

code words as    (i, j, ai j, bi j). 

Send the codeword (i, j, ai j, bi j). 

He send the following code words as obtained below: 

10b = 2d  

11b = 3d 

Then he send the codeword:  (2, 3, 1, 0)  10 11 01 

00 

01b = 1d 

10b = 2d 

Then he send the codeword:  (1, 2, 3, 0)  01 10 11 

00 

00b = 0d 

01b = 1d 

Then e send the codeword: (0, 1, 1, 3)  00 01 01 

11 

11b =3d 

01b =1d 

Then he send the codeword:  (3, 1, 2, 0)  11 01 10 

00 

And so on for other bits in the transmission media, 

Therefore, the data:  1011 0110 0001 1101   

is encoded into:     1011 0100 0110 1100 0001 

0111 1101 1000  

and transmitted. 

Suppose the transmitted bits affect by noise cause the 

following errors: 

1001 0100 0101 1100 1101 0111 1101 0000 

The receiver takes each eight bits to convert it into 

corresponding codeword and match with its possible 

code words and do the following for each eight bits: 

1. If the received codeword match with one of the 

possible code words there is no error. He takes the first 

two symbols of the codeword as four bits    

2. If the received codeword no match with one of the 

possible code words there is an error, search the code 

words to find almost match three symbols of the 
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codeword and correct it. He takes the first two symbols 

of the corrected codeword as four bits 

3. Otherwise there is damage in the transmission and send 

an acknowledgement to the sender to retransmit the 

data. 

Take the first eight bits (codeword): 1001 0100 has 

a single error; the third bit is changed from 1 to 0.  

Where the error codeword is  1001 0100  (2, 1, 1, 0). 

Therefore, there is no more other the single codeword (2, 

3, 1, 0) of the possible codeword match three elements of 

the error codeword. Then he receive 1011.  

Take the second eight bits (codeword): 0101 1100 have 

two simultaneous errors; the third bit is changed from 1 to 

0 and the fourth bit is changed from 0 to 1, 

Where the error codeword is  0101 1100  (1, 1, 3, 0).        

Therefore, there is no more other single codeword 

(1, 2, 3, 0) of the possible codeword match three elements 

of the error codeword. Then he receive 0110. 

Take the third eight bits (codeword): 1101 0111 have two 

simultaneous errors; the first bit is changed from 0 to 1 

and the second bit is changed from 0 to 1. 

Where the error codeword is  1101 0111  (3, 1, 1, 3).        

Therefore, there is no more other single codeword 

(0, 1, 1, 3), of the possible codeword match three elements 

of the error codeword. Then he receive 0001. 

Take the fourth eight bits (codeword): 1101 0000 

has single bit errors; the fifth bit is changed from 1 to 0. 

Where the error codeword is  1101 0000  (3, 1, 0, 0).        

Therefore, there is no more other single codeword 

(3, 1, 2, 0), of the possible codeword match three elements 

of the error codeword Then he receive 1101.  

Finally, he receives the data 1011 0110 0001 1101.  

Latin Square Error Correcting Code Algorithm 

The previous example explain the idea of LSECC, 

it is correct even most the two simultaneous bits errors, if 

the sender uses two orthogonal Latin Squares 8 × 8 (i.e. 

cayley table of Z8), the three simultaneous bits errors 

may be corrected, therefore, the using of the cayley table 

of Z2n may be correct the n-simultaneous bits errors.  

We can construct the following LSECC Algorithm:  

Algorithm: (LSECC) 

1- Initialization 

1.1- Choose m = 2n, where m represent the dimension of 

the Latin Square. 

1.2- Build two orthogonal Latin Squares A and B of 

dimension m×m (i.e. cayley table of Zm). 

1.3- Construct all possible 4-tuples codewords of the 

form (i, j, aij, bi j).  

2- Coding and Sending 

The sender separates the data into 2n-bits words, 

and then does the following for each 2n-bits: 

2.1- Takes the 2n-bits to make it pair of n-bits numbers 

(i, j). 

2.2- Takes the codeword correspond to i and j from 

possible codewords as (i, j, ai j, bi j). 

2.3- Send the codeword (i, j, ai j, bi j). 

3- Decoding and Receiving 

The receiver takes each 4n-bits to convert it into 

corresponding codeword and match with its possible 

code words and do the following for each 4n-bits: 

3.1- If the received codeword match with one of the 

possible code words there is no error. He takes the 

first two symbols of the codeword as two n-bits 

received data.    

3.2- If the received codeword do not match with one of 

the possible code words there is an error, search the 

code words to find almost match three symbols of the 

codeword and correct it. He takes the first two 

symbols of the corrected codeword as two n-bits 

received data.     
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3.3- Otherwise there is damage in the transmission and 

send an acknowledgement to the sender to retransmit 

the data. 

 

Conclusion 

Error-correcting code theory is essential to our 

modern life. The rapid growth of the amount of 

information needed to be transmitted makes it very 

important to continue our study of this subject. Codes that 

are more efficient to transmit, correct more errors, and are 

more efficient to decode are always needed. The proposed 

LSECC is a good algorithm and more efficient than some 

previous ECC techniques, which is correct all 1-error and 

the most of the burst errors n-error. The main advantages 

of LSECC are the n-error correcting code, the second, it is 

the redundancy code have length equal the length of the 

data we want to transmit, i.e. no more than the length of 

the original data such as the previous techniques. The 

advantages of the non-complete burst error correcting 

code presented in this paper are the very efficient and 

simple decoding algorithm, the low redundancy, and the 

fact that it is systematic.    

Finally, the using of the cayley table of Z2n may be 

correct the n-simultaneous bits errors. The more efficient 

way to Error Correcting codes would be very helpful. 

With increase demands for information transfer, in 

addition to new uses for the subject in other areas, the 

importance of research in error-correcting code theory will 

only increase as time goes on. 
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 تصحيح خطأ الرموز باستخدام المربع اللاتيني

 جبارعلي مكي صغير        مكارم عبد الواحد عبد ال

Email: ali_makki_sagheer@yahoo.com 

 الخلاصة
تخدم البيانات الرقمية التي تخزن في الحاسبات أَو التي ترسل عبر شبكات الحاسوب بالتاكيد خاضعة للخطأ بسبب الوسطط الييزيطا ي المسط

هي وسطا ل تسطتخدم فضطلة مطن البيانطات حتطت رضا تعطرن اطزل من طا للخططأ أَو الي طدان   (ECC) الخطأ في الخزن او الارسال. ان رموز تصحيح
تسطتخدم فطي الت نيطة الحديلطة لكطي نحمطي المعلومطات مطن ايخططال. رمطوز  (ECC) يمكن طا ان تسطتراا البيانطات ايصطلية. رمطوز تصطحيح الخططأف

بياً . ملل هضه الرمطوز تطدعت رمطوز تصطحيح الخططأ المتتطابا الكامطل. هنطاد عطدد محطدود نسطةالمختلي تصحيح الخطأ المتتابا مطلوبة في التطبي ات
 .من رموز تصحيح الخطأ المتتابا الكامل

رموز تصحيح الخطأ تستند علت مي وم ونظرية المربعات اللاتينية  حيث يستخدم خصطا   المربعطان  ي دم هضا البحث طري ة م ترحة من
اللاتينية المتعامدة لتصحيح ايخططال. ان الطري طة المططورة هطي ليسطت مطن ططرت رمطوز تصطحيح الخططأ المتتطابا الكامطل  لكطن يممكطن أن تصطحح 

أَن  مكطنم. علطت أيطة حطال  رضا كانطت الاخططال صطميرة بمطا فيطة الكيايطة  فطان هطضه الطري طة   لكطن لطيا الكطلn   i أكلر تتابا من الاخطال بططول
 .تستخدم كطري ة من طرت رموز تصحيح الخطأ المتتابا
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