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Abstract 
 This paper presents and validates a single degree of freedom (SDOF)analysis method of steel 
beamssubjected to airs blast loadsinduced by explosions. The method usesa quasi-static non-linear 
resistance function of beams under uniformly distributed pressure.The non-linear resistance function 
has been implemented in a single degree of freedom analysis procedure to determine the 
nonlineardisplacement –time history of the steel beams subjected to air blast pressure.Strain rate effects 
have been accounted for usingthe well-known Cowper Symonds equation by differentiating the 
corresponding strain rate equations. Thesuggested SDOF analysis method was validated against the 
available experimental tests results using two W sections steel beams subjected to different values of 
the blast pressures and impulses. The validation results have indicated the accuracy and reliability of 
the suggested method to predict the nonlinear response of steel beamsunder transverse air blast 
pressure. 
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  الخلاصة
المعرضة الى ضغط عصف الھواء الناجم  الفولاذیةطریقة للتحلیل الدینامیكي للعتبات تدقیق یھدف ھذا البحث الى عرض و  

 تستخدم الطریقة المقترحة دالة مقاومة غیر خطیة. SDOF) (درجة حریة احادیة  اتذمن الانفجارات وذلك باستخدام طریقة التحلیل 
دینامیكي في طریقة تحلیل ذه الدالة التحلیل شبھ الاستاتیكي و من ثم توضیف ھعلى بالاعتماد  للاحمال العرضیة الموزعة بانتضام 

تم ادخال تاثیر نسبة الانفعال ضمن التحلیل . ع الزمن الفولاذیة مزاحة الجانبیة للعتبات للااحادي درجة الحریة لایجاد علاقة غیر خطیة 
تم التحقق من دقة الطریقة المقترحة وذلك بمقارنة . المعروفة عالمیا  Cowper Symonds equationالدینامیكي وذلك باستخدام دالة 

و معرضة لقیم مختلفة من الضغط  Wبمقاطع فولاذیتین تبتین المختبریة المتوفرة لعالنتائج النتائج المستحصلة من الطریقة المقترحة مع 
یقة المستخدمة في توقع و ایجاد التصرف غیر الخطي للعتبات رنةدقة و موثوقیة الطرابینت نتائج المق. العصف ة من جمانو النبضات ال

  .العرضي لعصف الھواء الناجم من الانفجارتحت الضغط الفولاذیة 
 .النتائج المختبریةالمقاومة،  دالةالفولاذیة، الاستجابة غیر الخطیة، العتبات ، SDOFضغط الانفجار، طریقة : كلمات الدالةال

1. Introduction  
 During the last decades, many buildings and structural members have been 
severely damaged due to air blast and fire induces by explosions caused by terrorist 
attack.Sincethese terrorist attacks events are increasing at considerable rate, the 
awareness of civil engineering community has increased to the importance of 
developing strategies and design methods for blast protection of structures that are 
prone to such loading conditions. 
 The single degree of freedom (SDOF) analysis method has been proven to be a 
simpleand powerful tool for predicting the dynamic response of structural members 
under blast load with reasonable results. One of the major parameters that an 
equivalent single degree of freedom system relies uponis the resistance functionof the 
structural member (Biggs, 1964). The resistance function must accurately represent 
the nonlinear resistance-deflection behaviourof the selected degree of freedom for the 
actual system with accenting for the strain rate effects. However, for steel beams 
under blast load, no such nonlinear resistance function has yet been developed.  

The UFC manual (USDOD, 2008) has suggested simple equations to calculate 
the elastic-plasticresistancefunctions of one-way and two-way structural members 
tobe used for a single degree of freedom systemof either simple or complex structures 
subjected to blast pressures as shown in Table 1. However, as it will be shown in this 
study, the suggested simple equations do not consider the nonlinear elastic-plastic 
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behavior of the beam resistance which may result overestimated strength of the steel 
beams. 
 

Table 1: Resistance functions of beams under uniform distributedblast pressure 
[USDOD, 2008] 

 
Cartaand Stochino(2013 and 2014)have recently presented studies inwhich a 

SDOF method wasused to assess the dynamic response of reinforced concretebeams 
subjected to uniformly distributed blast load. The elastic and plastic resistance 
functions were derived from the static equilibrium equations in conjunction withthe 
linear elastic bending theory.The strain rate effect was incorporatedinto the analysis 
by calculating the differentiation of the elastic and plastic strain-curvature 
relationships with respect to time. 

(Shope ,2006)has developed a simplified model for a steel beam-column under 
static axial force subjected to a blast load using energy conservation principle with 
quasi-static approximation of the beam-column behavior. It has been assumed that the 
dynamic system behaves as a single degree of freedom model in an elastic perfectly 
plastic manner. However, the suggested method has not been validated against 
experimental data or numerical results.  

(Nassr et.al.,2012)have also used the equivalent SDOF analysis to analyzethe 
response of steel beamsunder blast loads taking into account the material nonlinearity. 
The strain rate effect has been accounted for in the moment-curvature response of the 
steel beam using Cowper–Symonds equation to trace the nonlinear stress distribution 
over the section. It has been concluded that the assumption of a constant dynamic 
implication factor(DIF) as suggested by current designcodes may lead to conservative 
estimation of the dynamic effect of the blast pressure when compared to that 
incrementally calculated based on the updated strain rates during the analysis. 

(Astarliogluaetal ,2013)haveemployed a single degree of freedom (SDOF) 
model to study the effect of axial compressive load on the resistance function of 
reinforced concrete (RC) columns subjected to axial load and blast induced transverse 
loads. The effects of flexural, diagonal shear, and tension membrane behaviours were 
also included in the column behaviour. It has been shown that the level of axial 
compressive load has a significant influence on the behaviour of RC columns when 
subjected to transverse blast-induced loads. 

(Anderson and Karlsson ;2012) used SDOF system to design of reinforced 
concrete members subjected to explosions. In their SDOF model, Anderson and 
Karlsson have introduced the concept of time dependent transformation factors at 
which the transformation factors come from an assumed deformation shapewhich in 
turn governed by the wave propagation rather than form a fixed deformation shape. 
This concept is based on the energy conservation principle and makes the 
deformations in the SDOF approach more accurate. 

It is the aim of this paper to present a single degree of freedom analysis 
method for steel beams subjected to transverse blast pressure. The development 
focuses on deriving a nonlinear resistance function of the steel beams under transvers 
pressure based on a quasi-static approximation of the steel beam behaviour taking into 
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account the strain rate effects. Afterward, the developed analysis method will be 
validated against the availableexperimental test results  
 

2.Modified single degree of freedom (SDOF)method. 
Figure 1(A) showsa steel beam subjected to blast pressure. The steel beam can 

be idealized into an equivalent SDOF model asshown inFigure 1 (B). 
 

 
     (A)       (B) 

Figure 1: Steel beam model (A) with the equivalent SDOF model (B) 
 

 The suggestedsimplified SDOF model shown in Figure 1consists of 
equivalentmass, Me, equivalent resistanceR(t) and equivalent blast load F(t). The 
equivalent resistance is equal to equivalent stiffness (Ke) multiplied by the 
displacement (y(t)). The damping effects were neglected in model because the duration 
of the blast event is very small compared to the natural time period of the column 
(Thilakarathna et.al., 2010). 

The accuracy of the SDOF model significantly depends on the accuracy of the 
adopted resistance function R(t). The resistance function must simulatethe actual 
behaviour of the columntaking into account the nonlinear elastic-plastic behavior of 
the steel material. In the following sections, a modified nonlinear resistance function 
of the steel beamof the SDOF systemwill be derived. The modified resistance function 
allows for tracing the full elastic-plastic response of the steel beam. 
 

2.1 Derivations of the resistance functions  
Figure 1 (A) shows the assumed elastic- plastic deformation shape of the steel 

beam under transverse blast pressure.For simple material modelling, the elastic-
perfectly plastic behaviour can be assumed with yielding being concentrated at the 
plastic hinge locations.The equilibrium equationsof the beam are derived based on the 
quasi-static state(Al-Thairyand Wang, 2011).It is further assumed that the 
steelbeamhas a compact cross section andthe elastic deformed shape of the 
beamfollows the beamelastic buckling shape. The intermediate plastic hinge location 
was assumed to beclose to the position of the maximum lateral displacement of the 
beam. 

Replacing the dynamic blast load by a nominal elastic-plastic quasi-static 

resistance unite (load/unite length), PlElr  , and referring to Fig.1(A- top), the reaction 
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of the column at end 1, (R1)can be determined by assuming the quasi-static 
equilibrium condition and taking moment about end 3: 
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The relationship between the equivalent elastic-plastic quasi-static resistance,

PlElr  ,and the intermediate plastic hinge location ( x ),can be determined by the quasi-

static moment equilibrium condition of Fig.1(bottom) as follows: 
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Substituting the value of R1from Eq.1into Eq.2and solving for PlElr  gives the 

following equation: 
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By calculating the values of M

)1(PlEl , M
)2(PlEl andM

)3(PlEl  corresponding to 

each lateral displacement of the steel beam behaviour, Eq.3can be used to determine 
the equivalent nonlinear elastic –plastic resistance functions against thetransverse 
blast load. 
 
2.2 Derivation of the elastic-plastic bending resistance about major (x-axis) 

Figure 2 (A) shows I shaped steel section subjected to bending moment causes 
bending about the major (x-x) axis of the section. The section is assumed to be in the 
elastic-plastic phase of deformation where strains at top and bottom layers of the 

section are beyond the yielding strainlimitof steel y whereas strains at other layers 

are still elastic y . The extend of yielding over the cross section depth in 

compression and tension zones are denoted here as yc and ytrespectively calculated 
from the top and bottom layers of the steel section respectively. The strains at the top 
and bottom layers of the elastic part of the section,corresponding to each value of 
transverse displacement (u+Δu), can be calculated as a function of the elastic 
curvature, section depth, and depth of yielding at compression and tension 
zonescorresponding to the previous value of transverse displacement (u),using the 
elastic bending theory as follows, seeFigure 2(A). 
 

) y -(h /2 
 (u)topu)(u




Top f
 .......................................................................... 4 

) y -(h /2  (u)bottomu)(u  Bottom f
 ........................................................ 5 

 
 Where u is the accumulative value of the transverse displacement at the 
previous analysis step; Δu is the incremental value of the transverse displacement 
used in the analysis; h is the cross section depth; ytop(u), ybottom(u) are depths of yielding 
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calculated from the top and bottom layers of the section respectively atthe previous 

analysis step (u) as shown in Figure 2(A); f  is the fracture strain of the steel material; 

  is the elastic curvature of the beam at the location where moment is to be 

calculated. is calculatedfor the elastic part of the elastic- plastic section using the 

elastic bending theory by the equation: 
 

2

2 )(

x

xu






 ................................................................................................................. 6 
Whereu(x) isthe lateral displacement of the beam at the distance (x) along its 

axis.Assuming that the displacement shape of the steel beam during the elastic phase 
is as shown in Figure 3 and Table2. 

 
A. bending about major (x-axis) 

 
B. bending about minor (y-axis) 

Figure 2: Strain distribution over a cross section of the steel column 
 

 Eq. 6 must be evaluated for the locations of M
)1(PlEl , M

)2(PlEl  and M
)3(PlEl in 

Eq.3. For example, for the simplysupported steel beam, the equation of elastic 
displacement shapes is as follows (Timoshenko and Gere, 1961): 
 

)()( xSinUu x 
 ......................................................................................................  7 
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SubstitutingEq. (7) into Eq. (6), the elastic curvature at locations (x=0 for M

)1(PlEl , x=0.5Lfor M
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Figure 3: Assumed displacement shapes of steel beams for three cases of 

boundary conditions 
 
 The yieldingof the section is initiated when values of 

u)(u Top  and u)(u Bottom

calculated from Eqs.4 and5 exceed the yielding strain, y . Values of ytop, 

ybottomarecalculated accumulatively according to the following incremental equations 
derived using trigonometric symmetry assuming a linear strain distribution over the 
elastic part of the section; see Figure 2 (A). 
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 Eqs. 11and 12can be used to trace the gradual spread of yielding over the cross 
section depth of the steel beam due to the increasing of the transverse 
displacement(u+Δu). 

The equation for theelastic-plastic bending resistance of a beam-column 
section at locations 1, 2 and 3 in Figure 1corresponding to each value transverse 
displacement (u+Δu) can be calculated by summing up the bending resistance of all 
the layers overthe section depth as follows, see Figure 2(A): 
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Where 2,1  are values of strainsateach layer of compression and tension zones 

of the section respectively, and∆h is the selected layer depth which must be small 
enough to give accurate results. Values of 2,1   can be calculated from the following 

equations assuming a linear strain distribution over the cross section depth as shown 
in Figure 2(A): 

 

U  11  y
 ................................................................................................ 14 

U 22  y
 ............................................................................................ 15 

 
 isthe distance from theneutral axis (N.A.) to the corresponding layer in the 

compression and tension zones respectively;bis the layer width which is taken 
according to the location of the layer over the cross section as follows, see Figure 2 
(A): 
 

b=tw .......................................................... when 0 2/  
f

th           16 

b=bf ....................................... when f
thh  2/2/            17 

 

2.3 Derivation of the elastic-plastic bending about minor axis ( y-axis) 
Using same procedure described above, the bending resistance of the steel 

beam section about y-axis can be determined. However, two adjustmentshave to be 
made to account for the change in the direction of bending; these are,see Figure 2(B): 

 
1. The dimension h in Eqs. (4-5 and 11-17) must be replaced by the dimension bf. 
2. The bending resistance equation is calculated using the following equation.  
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Where cw is the compressive strain at the web calculated by: 
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Figure 4 shows the elastic-plastic moment resistance of steel beamwhen it is bent bout 
major and minor axes (i.e. Eq. 13and Eq.18). 
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Figure 4: Elastic Plastic moment –displacement relationship ofsteel beams sections bent 

about major and minor axes. 
 

 Finally, substitutingMEl-Pl(1)=0, MEl-Pl(2)=MEl-Pl and MEl-Pl(3)=0and x =0.5L in 
Eq.3gives the following equationfor the elastic-plastic resistance function for the 
simply supported beam: 
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The elastic-plastic resistance functions for any boundary conditions can be 

derived using the same above procedure. 
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Figure 5demonstrates the nonlinear elastic-plastic behavior of the resistance function 
of asimply supported beamaccording to Eqs. 20 
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Figure 5: Nonlinear elastic-plastic behavior of the resistance function of a simply 

supported beam 
 

2.2Equivalent SDOF system parameters  
 The total mass Mtand stiffness Ktof a steel beam with a uniform cross section 
along with the blast pressure Ptcan be idealized to equivalent mass Me, equivalent 
stiffness and  equivalent load Pe respectively fora SDOF model bythe following 
equations(Biggs, 19964, USDOD, 2008 and ,Timoshenko and Gere, 1964): 
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Where )(xu  is the elastic and plastic shape functions of the steelbeam which 

should satisfy loading and boundary conditions.The elastic deflection shapeand the 
linear plastic shapes of the beamwere used in the present study for the elastic and 

plastic phases respectively.The integrals 
L
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2 )( dxand 
L

xu
0

).(. are referred to as the 

mass transformation factor, KMand load transformation factor,KL respectively.. 
However, it is common that both transformation factors are put together in one factor 
which can be used in an equation of motion and is referred to as the load-mass 
transformation factor,KLM using the following integral: 
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 The integral 
LL

dxxudxxu
00

2 )()( was evaluated for the assumed elastic and 

plastic deformation shapes of the steel beam for the three cases of boundary 
conditions listed in Table 1.Table 3presents the calculated results. 
 

 

2.3The idealized blast load-time relationship 
The blastload-time function generated byexplosions canbe idealized to a blast 

load -time function to be used in the SDOF analysis as shown in Figure 6According to 
Figure 6, the idealized load-time function,P(t)can be expressedbythe following 
function derived by assuming  a triangular impulse shape: 
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WherePmaxis the maximum value of the blast load; td is the positive phase time 

duration of the blast load-time history; T is the total time required for the analysis and 
tis the time at which the blast load is to be calculated.  

 

 
Figure 6: The idealized blast load-time function used in the equivalent SDOF 

model  
 

2.4The dynamic equation of motion  
 The dynamic equation of motion intheequivalent SDOF system of steel beam 
subjected to lateral blast pressure can be expressed as follows: 
 
1. For the elastic and elastic- plastic response: 

)()( tPLrtUM plele  
 0<U(t)<Uult ......................................................................... 27 

 Where Uult is the required ultimate displacement at which the analysis is to be 
stopped. 
 

Table 3: Elastic and plastic equivalent mass of the steel column 

B.C. S-S F-F H-F 

KLM (Elastic) 0.78 0.77 0.78 
KLM (Plastic) 0.66 0.66 0.66 
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2. When unloading or displacement rebound occurs, the following equation may be 
used to determine the beam response: 
 

)()( )()( tPLrLrtUM uupleluplele RR
 

 U(t)< UR   28 

 
Where UR is the displacement at which unloading occurred. 
When a reloading occurs after unloading, Eq. 28can be used for U(t) < UR and 

Eq. 27can  be used for UR< U(t) <Uult 
As mentioned earlier, the damping termhas been neglected in the above 

equation becauseit has a minor effect on the behaviour of steel beam subjected to a 
blast load with very short time duration compared to the natural period of the 
structure’s system (Thilakarathna et.al., 2010, Jones, 1997).Figure 7shows the three 
phases of steel column behaviour. 
 

 
Figure 7: Generalized non-linear resistance-displacement relationship of steel beams 

 

2.6Calculation ofstrain rate effect 
 Strain rate has a considerable effect on the material behaviour of steel 
members subjected to short duration dynamic loading (Cowper and Symonds, 
1957).The strain rate effect has been accounted for in the present researchby 
calculating the dynamic amplification factor (DIF) which is determined using the 
following constitutive relationshipsuggested by Cowper-Symonds [14]: 
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Where 
pl

 is the uniaxial plastic strain rate.D and narematerial parameters 
which can be obtained from the uniaxial compression test [Jones, 1997, Cowper and 
Symonds, 1957].For structural steel, values of  D and nare suggested to be D=40.4 
and n=5 data [ones, 1997]. 

Hence, the dynamic yield stress ( ydF
) at each time step of the SDOF analysis 

can be determined by multiplyingthe static yield stress ( yF
)by the dynamic 

amplification factor (DIF) 
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The equivalentplastic strain rate
pl

 can be calculated by numerical 
differentiating of the axial strain equation (Eqs. 4and5) with respect to time as 
follows:  
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Up to the yielding point, the strain rate effect has no effect (DOF=1). After 

yielding, the plastic strain rate iscalculated using Eqs.30 and 31at each time increment 
and the dynamic yield stress is evaluated accordingly.Figure 8 shows the relationship 

between the dynamic amplification factor and the plastic strain rate (
pl

 ). 

 

 

Figure 8: Dynamic amplification factor (DIF) as a function of the plastic strain rate (
pl

 ) 
 

3.Validation of the SDOF method. 
The suggested SDOF model was validated against the experimental tests’ 

results of Nassret. al (Nassr et.al.,2012,Nassr.,2012)who have conducted experimental 
tests on full scale simply supported W-shape steel beamsusing two different section 
sizes, W150×24 and W200×71, and a total length of 2.413m. The beams were 
subjected to a direct explosion to cause bending about major and minor axes of the 
columns. Table 4shows geometrical properties and blast pressure parameters of the 
test cases used in the validation examples. 

 

Table 4: Geometrical properties andblast loads parameters of steel beamsused inthe validation 
examples (Nassr et. al, 2012).  

Test 
case 

Section Blast 
direction 

KL/r Pmax 

(N/mm2

) 

td 

(ms) 
I 
((N/m2)×sec.) 

1 W150×24 x-x 36.5 0.307 7.3 715 
2 W150×24 y-y 98.1 0.623 6.0 1279 
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3 W150×24 x-x 36.5 1.560 6.2 2130 

5 W200×71 x-x 26.3 2.098 8.4 3144 
Pmax= Maximum blast pressure, td= Positive blast pressure time duration, 

 

 The test beams shown in Table 4 have been analysed using the SDOF analysis 
method presented in previous sections. A numerical and incremental analysis 
procedure has been used to solve the dynamic equations of motions (Eq. 27 and 28) to 
determine the beam response, y(t)  at each time increment (∆t).The results of analysis 
has been validated against experimental test results of Nassir (Nassret.al., 
2012,Nassr., 2012) and the comparison results are shown in Figures 10 to 14. 
 

 
Figure 9:Comparison between the proposed SDOF method and the experimental 

testresults of the test caseNo.1(Nassr et. al, 2012,Nassr., 2012) 

 
Figure 10: Comparison between the proposed SDOF method and the experimental test 
results of the test case No. 2 (A) and test case No. 5(Nassr et. Al., 2012,Nassr., 2012) 
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Figure 11Comparison between the proposed SDOF method and the experimental test 

results of the test case No.3(Nassr et. al., 2012,Nassr., 2012) 
 

 
(A)       (B) 

Figure 12: Resistance function-mid span displacement behavior of the steel beam.(A) 
test case 2;(B) test case 3 

 
 Figs. 10 to 12 show the displacement and the strain time histories of the tested 
beams. Reasonable agreement can be seen between the experimentally recorded 
(Nassr, 2012-2) and the analytically calculated results. The experimental test results 
have shown that test beam 1 has experienced elastic displacement while the tested 
beams 2, 3 and 5 have shown inelastic displacement (Nassr et. al, 2012). It is clearly 
shown from Fig. 10-12 that the suggested SDOF method has reasonably captured the 
elastic and plastic nonlinear behaviour of all tested beams as shown from the 
nonlinear resistance behaviour of these cases (Fig 13(A, B and C). However, the 
extracted strain time history in Figs. 10(B) has shown some divergence compared 
with the experimental results. Nevertheless, as the beam response is more important 
for design purposes, the divergence in strain does not affect the reliability and 
applicability of the suggested SDOF method.  

Figs. 11(A) and 12(A) show a comparison of the mid-span displacement 
history of test beams 2 and 3 calculated form SDOF analysis when using a linear 
resistance function suggested by UFC-304-2 (USDOD, 2008). It can be seen from 
these figures that a much lower displacement values were obtained when using the 
linear simple resistance functions compared with the experimental results and 
compared with the displacement values obtained using the suggested nonlinear 
resistance functions which may results overestimate the beam strength. 
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 On the other hand, Fig.14) shows the calculated lateral displacement time 
history when the strain rate effect was not accounted for in the SDOF analysis of test 
beam No.3. The figure has clearly demonstrated that when strain rate effect is no 
included in the analysis, the beam behaviour becomes more flexible and the SDOF 
method gives high values of the beam maximum displacement compared with the 
experimental results. 

 
Figure 13:Comparison of the transverse mid span displacement time history of the 

tested case No.3between the proposed equations (with and without the inclusion of the 
strain rate effects)and the experimental testresults(Nassret. al, 2012) 

 
4.Conclusions 

The presentstudy has suggested and validated a single degree of freedom 
method for the analysis of steel beamssubjected to lateral blast loads. The suggested 
method has employeda non-linear elastic-plastic resistance function ofsteel beams 
under transverse blast loadderived based on a quasi-static approximation of the beam 
behaviour taking into accountthe strain rate effect.The accuracy of the nonlinear 
resistance function was validated against experimental tests resultsusing two simply 
supported W-shape steel beamssubjected to a different blast pressures to cause 
bending about major and minor axes of the beam. The validation results haveshown 
the validity of the suggested method to capturethe response steel beams under 
transverse blast load.The following conclusions may be extracted from the present 
study:  
 
1.The nonlinear behaviour of the resistance function of steel beams under transverse 

blast has a remarkable effect on the beam response.  
2.The linear equations of the resistance function suggested by the currents standards 

and codes to be used in the SDOF analysis do not represent the realistic behaviour 
of steel beams resistance to transverse blast. Using such equations in the SDOF 
analysis resultsin inaccurate behaviour of the beam and leads to underestimate the 
beam displacement which may be unsafe for the design purpose. 

3.Strain rate behaviour of steel material has a considerable effect on the dynamic 
response of steel beams and must not be neglected in the SDOF analysis of steel 
members subjected to dynamic loads during shorttime duration. 
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