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Abstract 
This paper presented a detailed description of how the magnetic vector potential (A) can be evaluated  for an 

infinite weak link Josephson junction with planar geometry. Utilizing the magnetic vector potential formulation, 

both electric and magnetic fields were computed , and by using MATLAB model we showed that we obtained 

the same dispersion results as other approaches have previously demonstrated. However, we first revisited the 

beginnings of the Josephson junction and the conventional formulation techniques used to describe the 

electromagnetism of layered superconducting structures and Josephson junctions. In addition, we derived the 

field equations, for a transverse magnetic, for a superconducting transmission line, and take an in depth look at 

what these electromagnetic field equations represent.  

Keywords; Electromagnetic fields, Josephson junctions, Superconducting transmission lines, magnetic vector 

potential, and dispersion relation.  

1. Introduction  
Even before the advent of Josephson’s initial paper 

“Possible new effects in superconductive tunneling” 
[1], much interest and excitement existed over the 

structure that would later be known by Josephson’s 

name. Scientists such as P.W. Anderson [2], A. B. 

Pippard [3], and J. C. Swihart [4] among   others were 

intently trying to unravel   the mysteries of   coupling   

and electromagnetic propagation in superconducting 

devices of different architectures in hopes of 
discovering a novel application, some new and exotic 

physics, or a physical realization of a past theory. 

While none of this flurry of work would be possible 

without the discovery of superconductivity by Heike 
Kamerlingh Onnes [5] in 1911 when he observed the 

disappearance of resistance in mercury at liquid 

Helium temperatures, the interpretation of 

superconductivity as a quantum phenomena by F. and 

H. London [6] in 1935, the modification of London’s 

theory by Ginzburg and Landau [7] in 1950 giving us 

an equation by their names, or the microscopic (BCS) 

theory of superconductivity developed by Bardeen, 

Cooper, and Schrieffer [8] in 1957 .Much of the 

general and applied research being done on 

Josephson junctions depends greatly on how these 

junctions respond to internal electromagnetic fields. 
Consequently, an alternative formulation of the 

propagating fields in a Josephson junction may 

increase the quality of the production of more precise 

and effective devices. Many applications have already 

been studied and presented using different approaches 

to study the electromagnetic behavior of the 

Josephson junction. Bulaevskii et al.[9] have used 

Maxwell’s equations and the Josephson relation to 

derive the equation for time-dependent phase 

differences for Josephson-coupled multilayer systems 

. Wu et al.[10] have used the dispersion relationship 
obtained by matching the tangential components of 

the fields to investigate the propagation of an 

electromagnetic wave in a stack of superconducting 

layers . Aziz and Saeed have used HTS strip line 

model to investigate some important parameters like 

pulse propagation and comparing their results with 

normal conductors [11].  Additionally, with the onset 

of high Tc superconductors, it may one day be 
feasible to use superconducting transmission lines for 

low-loss power distribution, energy storage, and fault 

current limiters [12]. Finally, these structures are an 

essential component of today’s and tomorrow’s high-

energy experimental physics labs [13]. In particular, 

the application that is addressed in this paper is 

basically superconductive layered structure that is a 

form of a superconducting transmission line. It should 

also be noted that a true Josephson junction, and 

related devices, do have much more complex 

behavior compared to what is addressed in this paper. 
In particular, a more detailed formulation of the 

currents involved is needed for fully extending the 

proposed approach to Josephson junctions and related 

devices. 
2. Theory 
We begin by looking at the fundamental approach of 

using Maxwell’s equations to solve for the 

propagating fields in a Josephson junction, which we 

noted earlier was employed by Swihart [4] in his 

investigation of propagation. For simplicity, we 
assume that our Josephson junction consists of two 

identical superconducting layers and a thin insulator 

of thickness D. We also assume that the 

superconductors are much thicker and the insulating 

layer thinner than the London penetration depth, 

 [11], and that structure is infinite in both the y 

and z directions and centered at the origin. Fig. 1 
illustrates the junction of interest. 

 

 
 
Fig. 1. A simple superconducting transmission line 

composed of two superconductors separated by a 

dielectric of thickness D 
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We start by using Faraday’s law[14], 
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Now, we can integrate this equation over the dashed 

surface (Fig.1). 
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The left hand side can then be rewritten using Stoke’s 

law and the definition of a derivative with respect to 

z. 
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 Here, Ex is the electric field polarized in the x-

direction inside the insulator. The right hand side is 

then evaluated giving us: 
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Again, By is the magnetic induction polarized in the 

y-direction inside the insulator and λ is the 

penetration depth into the superconductor.. Equating 

(3) and (4) now gives rise to  
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Operating on (5) with d/dz yields the following 

relation 
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If we now consider a similar surface but this time 

position it normal to the z-axis, it is easily shown that 

this results in 
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This is similar to that seen for our original surface. 

Now using Maxwell’s equation for Ampere’s law we 

can derive another relation governing our Josephson 

junction. 
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Where J is the current density and ε is the dielectric 

constant of the layer under consideration. Expanding 

this expression using the constitutive relation for H 

and B, and keeping only the x-components we have 
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Where μ is the permeability close to that of the 

vacuum. Now, taking the time derivative of this 

expression we obtain 
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If we add (6) and (7) and multiply by 1/μ we find that 
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The left hand side of (11) is then the same as the left 
hand side of (10). Now equating the right hand side 

of (10) with the right hand side of (11) and 

simplifying we have the following relation 
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We can then rewrite this expression by factoring out 

Ex to get 
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We now define the phase velocity, v to be 
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Rearranging this equation we find that 
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Substituting this result into equation (13) we now 

have 
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It is seen that for the steady state where 0/  tJ x
, 

equation (16) well describes a transverse 

electromagnetic (TEM) wave propagating between 

parallel plates with properties differing from a normal 

metal system [10]. It is also observed that the phase 

velocity, v, is lowered by a factor equal 

to 2/1)/21(  D .To write equation (16) in terms of 

the phase change, ϕ across the junction we use 
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Where  ϕ is the phase difference across the barrier, 

 is Dirac’s constant, e is the electron charge, and D 

is the barrier thickness, which is assumed in the 

present case to be smaller than the penetration depth 

 .  Solving for Ex we find 
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We see here that the electric field depends on the first 

time derivative of the phase change and is inversely 

proportional to the barrier thickness. Now if ϕ is 

taken to have the form
).( rkte


  [13], then 

the following dispersion relation holds: 
2222
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This is then the governing relation describing our 
junction, where k is the propagation constant, v is the 

propagation velocity, ωJ is the Josephson angular 

frequency, Here ω our angular operating frequency 

and ωJ is given by 22 )/( JJ v    where λJ 

is the Josephson penetration depth. It is obvious from 

this result that no propagating waves exist below ωJ. 

While equation (19) is a good approximation, more 

explicit equations may be obtained using an argument 
based on the current density in the junctions  [9]. 

Since, we have taken the structure to be infinite in the 

y and z directions, there can only be current in the x 

direction, and therefore, |J|=Jx . This method then 

gives us the following field equations for a 

superconducting media: 
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Where ω is the angular frequency of the 
electromagnetic wave. 
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We can also develop a dispersion relation inside the 

superconducting layer using the Helmholtz equation 

[15], giving us 
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Here λ is the London penetration depth, kx is the 
wave number for the x dimension, and kz is the wave 

number for the z direction. We note that the only 

difference between the dispersion relation seen in 

(22) and the dispersion relation for vacuum is the 

term containing λ [16]. 

3. The magnetic vector potential 
The use of the magnetic vector potential, A is a 

powerful tool for solving Maxwell’s equations which 

has proven to be a mainstay approach for device level 
formulation including antenna [13], microwave [17], 

and optoelectronics [18] as opposed to the traditional 

approaches we reviewed in the previous section. 

While A is not a physically measurable quantity, it 

does mathematically lend itself as a useful tool to 

simplify possibly complicated mathematical systems. 

That is why it is the dominant approach for most of 

the electromagnetic-based devices [19].  

As described by Balanis [20], there are two ways to 

specify an electromagnetic boundary-value problem. 

One way is the method we have just looked at, the 
current density method, which is a direct integration 

from J to E and H. The other method is the one that 

we will look at in this section, which is to determine 

A from J and then E and H from A. Utilization of the 

magnetic vector potential to solve Josephson Junction 

problems will enable analytical closed form solutions 

to more complicated superconducting geometries that 

otherwise would require numerical techniques to 

solve [20]. We now review an alternative approach 

that relies on the magnetic vector potential to 

mathematically simplify the problem further. 

Utilization of vector potential and resultant equations 
are not new to this field [9] and [21]. Consequently, 

almost all of the available formulations are based on 

the conventional and equations [4] and [22]. 

Consequently, this paper will examine viewing 

Josephson junctions as devices (superconducting 

transmission lines) and utilizing magnetic vector 

potential formulation to describe the theoretical study 

of the electromagnetic wave behavior in Josephson 

transmission line. In fact this approach has many 

benefits. In this paper, our aim is to show the basis of 

this formulation and show that it fundamentally 
provides the same answers as the conventional 

approaches do. We will develop a solution based on 

A and show that such a solution will provide the same 

E and H fields as the conventional approaches. In 

addition, we will show that the gauge properties can 

be understood based on the boundary conditions. We 

begin by looking at the initial structure that Josephson 

proposed, which was used in the conventional 

formulation, as depicted in Fig. 1. The magnetic 

vector potential stems from the absence of free 

magnetic poles. This is most commonly exemplified 

by the following Maxwell equation[14]: 
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                    (23) 
Due to this, B can then be written as the curl of 

another vector quantity since the 

divergence of a curl is zero. 

0 A


              (24) 

This vector is defined as the magnetic vector 

potential.  We can easily determine both magnetic 

and electric fields quite simply from A using: 
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The reason we introduce A is because both the 

electric and magnetic fields remain unchanged under 

a scalar transformation of A. 

We now turn our attention to the calculation of the 

magnetic vector potential for a superconducting 

transmission line, going to Fig.1, we look at the TM 

case [16] . Based on the symmetry of the problem, we 
can choose a magnetic vector potential A such that Az 

is the only nonzero component of the vector potential 

given by: 
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We then solve the following wave equation to obtain 
the general form of the magnetic vector potential in 

the three regions: 
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This equation holds provided that the divergence of A 

is zero. We use separation of variables to determine 

the general form of Az. Earlier we had defined the 
current density traveling in the y-direction to be zero 

leading to Bx = Ey = 0. Using this and the relation 

between B and A given by (25) and (26) we have 
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Since we have already defined Ay =0 , we clearly see 

that 
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We can then use separation of variables with 

Az=X(x)Z(z). If we choose 
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Where 
22 K ,and 

222  K  

we have the following general solutions  
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Selecting a +z traveling solution and adding in the 

time dependence e-iωt we find the following solution 

for Az 
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This is obviously the vector potential given in the 

region of the insulating barrier, where kz
2 >kx

2 and 

leads to the dispersion relation 

222  zx kk                            (34) 

To keep our vector potential from diverging, the 

general form of the magnetic vector potential for the 

top and bottom superconductors is then given by 
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However, the divergence of A must vanish for both 

regions if we want to work in the Coulomb 

gauge[23], but this is not the case for the general 

solutions we derived. We must now apply a gauge 

transformation [23]such that 
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Where Λ is a scalar function chosen to make the 

divergence of A vanish and is found to be of the form 
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Now, A for the insulating layer becomes 
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Where a = 0 for the top superconductor and b = 0 for 

the bottom superconductor as we saw before. We can 

substitute this relation for A into (25) and (26) to 

determine the electric and magnetic fields in the 

dielectric region. Taking the curl of A we find 
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Equations (39) and (40) are the electromagnetic 

equations for the insulating region of the 

superconducting transmission line. For the 

superconducting region of the transmission line 

structure, we use the Helmholtz equation with a non-

zero current since we have propagating currents in 

this region [15]. Equation (28) is rewritten as, 

JAA zz   22                        (41) 

Where J is the current density in the superconducting 

region. The London equation relates the current 

density to the magnetic vector potential for a 

superconductor. 
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Here, λ is the London penetration depth given by 
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In this equation, m is the mass, n the concentration, 

and q the charge. The London penetration depth is the 

thickness of the surface layer in which currents and 

magnetic fields can exist. General values for the 

London penetration depth are calculated to be about 4 

× 106 cm for many elemental metals at absolute zero. 

If we may digress slightly from our field calculations, 

it is interesting to note at this point that the magnetic 
field in the superconducting region should decay 

exponentially as [24] 
/)( x
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We will see that this relation is indeed found in our 

solutions using the magnetic vector potential. 

Resuming our prior calculation we find that by 

inserting (42) into (41) the following dispersion 

relation exists in the superconducting region. 
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The dispersion relation found in (45) matches the 

dispersion relation found using current density 

method but using much simpler mathematics to do so. 

This relation is very similar to the dispersion relation 

found for the insulating region with the exception of 

the London penetration depth term. Still, this relation 

is simple enough that we can visualize the general 
form of it based on the result for the insulating 

region.  

4. Results 
Since we are working with a TMz mode of 

propagation, our Helmholtz equation in the Lorentz 

gauge reduces to 

 0)
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This is very similar to the Helmholtz equation we 

found in the insulating region with an extra term in 

the coefficient of Az. Solving in a similar manner as 

previously, we determine that A at the top and bottom 

superconductors is given by 











































z
k

xede
kik

A ztzkixkxz
top

zx ˆ
1

1ˆ

2

2

2
)(

2







  

(47) 

 













































z
k

xece
kik

A ztzkixkxz
bottom

zx ˆ
1

1ˆ

2

2

2
)(

2







    

(48) 

where d and c can be written in terms of a and b 

using boundary conditions. We confirm that the 
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divergence of both the top and bottom 

superconductor magnetic vector potentials goes to 

zero.  
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Using (45) it is clear that the quantity on the final 

equation in parenthesis is equal to zero, confirming 

that the divergence of A does indeed go to zero. By a 

similar solution, the divergence of Abottom goes to 

zero. Using the relations found in (25)and (26) , the 
magnetic and electric fields can be determined in the 

same way as in the insulating layer. After taking the 

curl of the magnetic vector potential and rearranging 

terms, we find the following relation for the magnetic 

field for the top and bottom superconductors. 
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We can also use the dispersion relation (45) to rewrite 

these equations in varying forms. From equations 

(51) and (52) we see that since kx is a function of 1/λ, 

the magnetic field inherently decays as a function of 
the London penetration depth as discussed earlier. 

In order to obtain a physical representation of the 

spatial and time dependence of the magnetic field, we 

look at the spatial dependence of the magnetic field at 

selected times. By symmetry, the top and bottom 

magnetic field equations should yield the same result, 

so we will focus on the magnetic field for the top of 

the structure. To get a realistic sense of time 

dependence we use a frequency of 100 G-rad/s, 

which is in the range of a typical Josephson 

frequency [10]. This frequency value gives rise to a 
Josephson length of 150 μm, which is equivalent to 

the London penetration depth, but for a Josephson 

junction[10] . For consistency we will use the same 

values of wave-numbers that we used in the 

insulating layer and set all other general constants 

equal to 1. The following shows the results of these 

simulations. 

 

 
Fig. 2. Magnetic field in the superconducting region at (a) t = 1s, (b)t =2s, (c)t =3s and (d)t =4s. 

(c) 

(c) 
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Now, we derive the Electric Field equations using the 

magnetic vector potential and equations (25)and (26). 

Taking the negative of the derivative of A with 

respect to time we find the following equations for 

the top and bottom superconductor electric fields. 
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In a similar manner we can obtain a visualization of 

the spatial and time dependence of the electric field 

equations using the same simplifications and values 

used to plot the magnetic field previously.

 

 
Fig. 3. Electric field in the superconducting region at (a) t = 1s, (b) t = 2s,(c) t =3s and (d) t =4s. 

 

5. Conclusion  
We began by reviewing the work of Josephson and 

the events leading up to his discovery of the 

Josephson junction. It was this work on the coupling 

between superconductors separated by a thin non-

superconducting layer that has led to an increasingly 

large body of research on superconducting devices. 

More recently, it was the work by Wu and others [10] 

that re-kindled the interest in the investigation of the 
electromagnetic fields of a superconducting layered 

device and was the starting point of the research in 

this paper. We have calculated the dispersion relation, 

magnetic vector potential, and electromagnetic field 

equations for the insulating and superconducting 

regions of the superconducting transmission line 

depicted in Figure 1. The results obtained are similar 

to those previously obtained by only considering the 

electric and magnetic fields [13]. We also found 

closed form solutions for the propagating fields of the 

superconducting transmission line structure. These 

fields were then simulated using a MATLAB script in 
order to obtain a realistic view of the behavior of 

these fields. Our results for the electromagnetic fields 

for the top and bottom superconductors are then 

summarized by equations (51-54). Figure 2 depict the 

magnetic fields in the top superconducting layer in 

the xz-plane for times of 1s, 2s, 3s, and 4s. The 

propagation of the magnetic field in the 

superconducting layer is consistent with that seen in 

the insulating layer as expected. We note that the 

minimum and maximum values do not align along the 

insulating / superconducting boundary as one would 

expect. We do note, however, that these fields were 

not plotted in the same manner. While we are looking 

at the magnitude of the magnetic field in the 
superconducting layer, we looked at the actual 

magnetic field in the insulating layer. We will get a 

better idea of the possible cause of this phenomenon 

when we look at the comparison of the electric fields 

in the two regions. Finally, we note that the 

magnitude of the magnetic field does indeed decrease 

as expected as we move in the x-direction. Turning 

now to the electric fields in the superconducting 

region, we look at figure 3. We see, as we have for all 

of the fields so far, that the electric field is 

propagating in the z-direction. In this case, we do not 

see a phase difference between the insulating and 
superconducting regions. This leads us to believe that 

(a) 
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the difference in representation of the magnetic fields 

is the cause of the apparent shift in phase; however, 

more work is necessary to verify this but will not be 

carried out here since this is not the focus of our 

efforts. Returning to our discussion of the electric 

field, we note that the electric field also shows a 

decaying behavior as it penetrates into the 

superconductor. Looking at our solution to the 

superconducting transmission line problem, we see 

that we have successfully calculated the 

electromagnetic fields of this structure using the 

magnetic vector potential as a mathematical tool to 

eliminate the need for direct integration.  

Appendix: 

One of the main programs in MATLAB to obtain 
figures in this paper: 

%%% Theoretical study of the electromagnetic wave 

behavior in %%%Josephson transmission line using 

MATLAB model  

%Aziz A. Aziz Al-Barzinjy 

%clear all variables 

warning off; 

clear all, 

%Initialize constants 

w = 100e9, %rad/s 

kx = 100, %1/m 
kz = 348, %1/m 

c=3e8, %m/s 

%Set x and z dimensions for movie axes 

xdim=-40e-5:.25e-5:40e-5, 

zdim=-15e-3:.25e-3:15e-3, 

%initialize movie image counter 

l=1, 

%begin time loop 

for i=1:1:10 

%initialize row counter 

m=0, 
%begin x loop 

for j=-40e-5:.25e-5:40e-5 

%increment row counter 

m=m+1, 

%initialize column counter 

n=0, 

%begin z loop 

for k=-15e-3:.25e-3:15e-3 

%increment column counter 

n=n+1, 

%calculate x-component of Electric field 

Efieldx=c^2*(kz*kx*(exp(kx*j)-exp(-
kx*j))*exp(sqrt(-1)*(kz*k-w*i))), 

%calculate z-component of Electric field 

Efieldz=c^2*(kx^2*(exp(kx*j)+exp(-

kx*j))*exp(sqrt(-1)*(kz*k-w*i))), 

%calculate magnitude of electric field 

Efield(m,n) = sqrt(Efieldx^2+Efieldz^2), 

%calculate Magnetic field 

Bfield(m,n)=-kx*(exp(kx*j)-exp(-kx*j))*exp(sqrt(-

1)*(kz*k-w*i)), 

%end z loop 

end 
%end x loop 

end 

%String Concactinate time counter 

istr = strcat(num2str(i),' (s)'), 

%Start a new figure for Efield movie image 

figure(2) 

%Clear previous figure 
Clf, 

%Plot 3-d countours of Electric field using 100 

contours 

contour3(zdim,xdim,Efield,100) 

%Hold the current figure to plot over 

hold on 

%Set axis dimensions and ticklength 

axis([-15e-3,15e-3,-40e-5,40e-5]) 

set(gca,'TickLength',.025,.025]) 

%Label x and y axes and enter current time as title 

xlabel('Distance (m)') 
ylabel('Distance (m)') 

title(istr) 

%Add frame to movie 

M(:,l)=getframe, 

%Turn off figure hold 

hold off 

%Start new figure for Bfield movie image 

figure(3) 

%Similar setup as for Efield 

Clf, 

contour3(zdim,xdim,Bfield,100) 
hold on 

axis([-15e-3,15e-3,-40e-5,40e-5]) 

set(gca,'TickLength',[.025,.025]) 

xlabel('Distance (m)') 

ylabel('Distance (m)') 

title(istr) 

%Add frame to Bfield movie 

D(:,l)=getframe, 

hold off 

%Increment movie frame 

l=l+1, 

%Use if statements to save files at time = 1,2,3,and 4 
seconds 

if i==1 

%save Efield1.dat Efield -ascii -tabs 

save Bfield1.dat Bfield -ascii -tabs 

elseif i==2 

save Efield2.dat Efield -ascii -tabs 

save Bfield2.dat Bfield -ascii -tabs 

elseif i==3 

save Efield3.dat Efield -ascii -tabs 

save Bfield3.dat Bfield -ascii -tabs 

elseif i==4 
save Efield4.dat Efield -ascii -tabs 

save Bfield4.dat Bfield -ascii -tabs 

end 

%end time loop 

end 

%Initialize file and store Electric field movie 
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aviobj = avifile('EfieldVid','compression','indeo5', 

'FPS', 10), 

%Add frames to Electric field movie 

aviobj = addframe(aviobj,M), 

%Initialize file and store Magnetic field movie 

aviobj = avifile('BfieldVid','compression','indeo5', 

'FPS', 10), 

aviobj = addframe(aviobj,D), 

%Close AVI files so they are no longer writeable and 

can be viewed. 

aviobj = close(aviobj), 

end 
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موجات الكهرومغناطيسية داخل وصلات خطوط ارسال جوزيفسون الدراسة نظرية لكيفية تصرف 
 باستخدام برنامج ماتلاب

 عزيز عبدالله عزيز البرزنجي
( 7200/  3/  01   تاريخ القبول: ---- 7202/  9/  72   تاريخ الاستلام:)   

 الملخص
اح غنصطک ذذل حفاذذيت ئن صوکذذت ف مقکوذذت  ذذي فاذذذا  فلاکف ذذفي  اا ائث ذذص  اح ن  ذذکت  قذذ و فاذذفص لفاذذکيکص ححکفکذذت   ذذصه  ل ذذ  اح  ذذ هذذ ا احث ذذ  

 MATLAB)اح  ذلفکت  فثص ذلا او  ل ذ  اح  ذ  اح غنصطک ذل لذو   ذصه لذج  ذي اح  ذصحکي احح مثذصول ف اح غنصطک ذل  م فثص ذلا او  ف کذج  ذصلذه

Model)  لو اح افج عيى نلصوج احلفمکق نف  ص ل ص فل اح ما صا اح نشفمة    ثل وکي ثفايت  فلاکف في ف لونکصا اکصغت اح  ص ئا ح ما ت اح  صج
اح غنصطک ل  ااج فايت  فلاکف في اح انفعت  ي  فا  فصووت احلفاکج  اضصفت احى ان  لو اشذلوصق   ذص ئا اح  ذصج ح  ذصج  غنصطک ذل   ذل م  

 م صج ثشكج  فاج حاطفط ائ

  


