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 Differential Operators (Gradient, Laplacian and Biharmonic) have been used to 

determine anomaly characteristics using theoretical gravity field for prismatic bodies 

with different top depths, dimensions and density contrasts. The concepts of gradient 

and laplacian operator are widely used in image processing. The intersection between 

the gravity field and the three differential operator's fields could be used to estimate 

the depth to the top of the prismatic bodies regardless of their differences in 

dimensions, depths and density contrasts. The Biharmonic Operator has an excellent 

result, were two zero closed contour line produced. The outline of the internal closed 

zero contour line define precisely the dimension of the prismatic bodies. The distance 

between this zero contour and the maxima of the Laplacian Operator define the exact 

depth to the top of the prismatic bodies. The maxima of the Biharmonic amplitude 

could be used for density contrast approximation. This is the first attempt to use such 

technique for estimating body characteristics. Also, the Biharmonic Operator has 

high sensitivity to resolve hidden small anomaly due the effect of large neighborhood 

anomaly, the 2nd derivative Laplacian Filter could reveal these small anomaly but the 

Biharmonic Operator could indicate the exact depth. The user for such technique 

should be very care to the accuracy of digitizing the data due to the high sensitivity of 

Biharmonic Operator. The validity of the method is tested using field example for salt 

dome in Gulf Coast basin.  

 

Keywords: 

Gravity,  

Depth Estimation,  

Prismatic bodies,  

Differential Operator,  

Gradient,  

Laplacian,  

Biharmonic. 

 

 

 

 

 

 

 

Introduction: 

Defining depth to the top or center of simple 

geometrical bodies using its gravity data is greatly help 

in interpretation of real field data. Several methods have 

been implemented for that from the beginning of using 

gravity in exploration geophysics at the 1930. 

 Due to the fast development in computer 

software that deal with mathematical approaches, new 

automated methods have been prepared and applied in 
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different studies. These methods tried to simplify the 

procedure as possible so that the interpreter could get 

the direct information for body characteristics directly 

from profiles or grid data. 

The interpreter normally use simple geometrical 

shape models such as sphere, horizontal or vertical 

cylinder, dyke, prisms and contact (fault) and calculate 

their theoretical gravity effects to find any rules that 

could help him to know the depth directly from a profile 

measurements. For a spherical shape body, the half-

width (X1/2) method is the commonest rules of thumb, 

these named Smith Rules (1). The maximum depth at 
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which the top of any particular geological body can be 

situated is known as the limiting depth. Methods of 

obtaining this information depend on which 

interpretational technique and model are being used (2). 

Another major important is to delineate the edge of the 

buried objects. The detection of border of subsurface 

bodies can be investigated by using either derivative 

based classical approaches or contemporary image 

processing algorithms (3). 

Several numerical methods have been developed 

by various authors for interpreting gravity anomalies 

caused by simple models to find the depth of most 

geological structures. Excellent reviews are given by (4, 

5). Nabighian et al. (5) presented excellent historical 

reviews for the development of the gravity method in 

exploration. Their paper included the main progress in 

gravity instrumentation, data reduction and processing, 

data filtering, enhancement and data interpretation. 

Also, they summarized a timeline of gravity exploration 

including the date and important event type.  

For the first time, it has been proven by (6) that the 

Differential Operator could be used for delineating the 

depth to the center of spherical bodies using grid data 

and applied it for Salt Dome.  

Prismatic bodies are widely used as an example for the 

purpose of defining depth. The present study is aiming 

to apply the Differential Operators (Gradient g


, 

Laplacian Z
2

 and Biharmonic Z
4

 ) on the 

theoretical gravity field of prismatic bodies and 

introducing a new novel method to get its edge 

boundary, density contrast and the depth to its top. This 

attempt is the first of using such technique in gravity 

interpretation for prismatic bodies.                

The validity of the method is tested on field example for 

Salt Diapirs in Gulf Coast basin from an offshore area. 

THEORETICAL BACK GROUND  

The branch of mathematics that deals with 

derivatives is called Differential Calculus (7). Famous 

contouring program - Surfer Program (Version 7.0 and 

later) (8) can calculate the Differential Operator for a 

grid data. The Differential Operator includes Gradient 

Operator, Laplacian Operator, and Biharmonic 

Operator. 

Gradient Operator: generates a grid of steepest 

slopes (i.e. the magnitude of the gradient) at any point 

on the surface (9). The Gradient Operator is zero for a 

horizontal surface, and approaches infinity as the slope 

approaches vertical. The definition of the gradient yields 

the following equation (8 and 9): 
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Laplacian Operator:  

provides a measure of discharge or recharge on a 

surface (9).  In grid files generated with the Laplacian 

Operator, recharge areas are positive, and discharge 

areas are negative. Groundwater, heat, and electrical 

charge are three examples of conservative physical 

quantities whose local flow rate is proportional to the 

local gradient. The Laplacian operator, Z2 , is the 

mathematical tool that quantifies the net flow into 

(Laplacian > 0, or areas of recharge) or out of 

(Laplacian < 0, areas of discharge) a local control 

volume in such physical situations. The Laplacian 

Operator is defined in multivariable calculus by (8 and 

9): 
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Grid filtering applies methods of digital image 

analysis to grids. The Laplacian Operator is equal to 

inverse second derivative operator by applying a simple 

3x3 Laplacian filter which has the following 

coefficients: 

0 -1 0 

-1 4 -1 

0 -1 0 

on the original data using linear convolution 
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approach. (10) (This will be proven during the text). 

In Image Processing the Laplacian responds to 

transitions in intensity, it is seldom used in practice for 

edge detection. As a second-order derivative, the 

Laplacian typically is unacceptably sensitive to noise 

(11). 

Biharmonic Operator: Bending of thin plates and 

shells, viscous flow in porous media, and stress 

functions in linear elasticity are three examples of 

physical quantities that can be mathematically described 

Biharmonic Operator (13). The Biharmonic Operator

Z4  is defined in multivariable calculus by (8 and 9):  
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 This is comparable to applying the Laplacian 

Operator twice (bilaplacian).   

 

COMPARISON BETWEEN SPHERICAL AND 

PRISMATIC BODIES 

Trying to develop the new novel method that has 

been presented by (6) for spherical bodies, a prism with 

dimension, depth and density contrast has been chosen 

to be with volume near to one of the spheres used by 

(6), the reason is to get a gravity field near in shape to 

the spherical body. So that, a prism with dimension 

10x10 km, depth to the top of the prism is 5 km, depth 

to the bottom is 15 km and density contrast 0.2 g/cc 

(For prismatic bodies, a program designed by (13) has 

been used to calculate the gravity field of the prism). 

This prism has volume near to sphere with 5 km radius, 

10 km depth to the center and 0.2 for density contrast. 

Figure (1) represents the 2D and 3D gravity field for 

both the sphere and prism. From the first looking to the 

figure, it is very difficult even for expert interpreter to 

resolve which one is related to sphere or prism (except 

the amplitude of the anomaly). But when applying the 

Biharmonic Operator for both models, it is clear that 

both of them are differs in shape. For spherical body, 

the shape is like Mexican hat shape and the diameter of 

the zero closed interior contour determine directly the 

depth to the center of the spherical body (6). For the 

prismatic body the shape of the Biharmonic Operator 

has four protrusions and the zero closed contour has 

square shape with dimension exactly 10x10 km. This 

encourages the researcher to operate for more prismatic 

bodies to come across new ways for depth estimation 

for prismatic bodies.  

  

 
The gravity field Its Biharmonic Operator  

Fig. 1. 2D and 3D presentations for the gravity 

field of spherical and prismatic bodies and its  

             Biharmonic Operator shapes. The spherical 

body has 5 km radius, 10 km depth to the  

             center and 0.2 g/cc density contrast, while 
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the prism has 10x10 km dimension, 5 km  

             depth to the top, 15 km depth to the bottom 

and 0.2 g/cc density contrast. 

 

METHODOLOGY 

To apply the Differential Operator on the gravity 

field for simple prismatic shape, Program (13 using 

formula derived by 14) has been used for nine prisms 

with different dimensions, depths and density contrasts. 

For each prism, the theoretical gravity field has been 

calculated for three different density contrasts (0.2, 0.3 

and 0.4 g/cc). The total cases used are 27. The 

dimension of the models is 64 x 64 km. Figures (2) 

illustrates 3D presentations for three of the 27 case 

mentioned above and table (1) shows the data used for 

each prism. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2.  3D Representation for the gravity field of 

prisms: 

        (a) Dimension: 10x10 km, Top Depth: 2 km, 

Bottom Depth: 12 km, D.C.: 0.2 g/cc. 

        (b) Dimension: 10x20 km, Top Depth: 3 km, 

Bottom Depth: 13 km, D.C.: 0.3 g/cc. 

        (c)  Dimension:20x20 km, Top Depth: 4 km, 

Bottom Depth: 14 km, D.C.: 0.4 g/cc. 

 

 

Table (1) shows the 27 cases used to apply by 

Differential Operator. 
Prism  No.1 Prism  No.2 Prism No.3 

Dimension: 

10x10 km 

Top Depth: 2 

km 

Bottom Depth: 

12 km 

Density 

Contrast: 0.2, 

0.3 and 0.4 g/cc. 

Dimension: 

10x10 km 

Top Depth: 3 

km 

Bottom 

Depth: 13 km 

Density 

Contrast: 0.2, 

0.3 and 0.4 

g/cc. 

Dimension: 

10x10 km 

Top Depth: 

4 km 

Bottom 

Depth: 14 

km 

Density 

Contrast: 

0.2, 0.3 and 

0.4 g/cc. 

Prism No.4 Prism No.5 Prism No.6 

Dimension: 

10x20 km 

Top Depth: 2 

km 

Bottom Depth: 

12 km 

Density 

Contrast: 0.2, 

0.3 and 0.4 g/cc 

Dimension: 

10x20 km 

Top Depth: 3 

km 

Bottom 

Depth: 13 km 

Density 

Contrast: 0.2, 

0.3 and 0.4 

g/cc 

Dimension: 

10x20 km 

Top Depth: 

4 km 

Bottom 

Depth: 14 

km 

Density 

Contrast: 

0.2, 0.3 and 

0.4 g/cc 

Prism No.7 Prism No.8 Prism No.9 

Dimension: 

20x20 km 

Top Depth: 2 

km 

Bottom Depth: 

12 km 

Density 

Contrast: 0.2, 

0.3 and 0.4 g/cc 

Dimension: 

20x20 km 

Top Depth: 3 

km 

Bottom 

Depth: 13 km 

Density 

Contrast: 0.2, 

0.3 and 0.4 

g/cc 

Dimension: 

20x20 km 

Top Depth: 

4 km 

Bottom 

Depth: 14 

km 

Density 

Contrast: 

0.2, 0.3 and 

0.4 g/cc 

 

After that, Surfer version 9.0 program used to 

applying calculus – Differential Operator for all these 

27 case. Figure (3) illustrates 2D and 3D representations 

for prism No.1 with dimension 10x10 km, depth to the 

top is 2 km and 12 km depth to the bottom with density 

contrast 0.2 g/cc. A slice profiles across the center of the 

four maps (Gravity, Gradient, Laplacian and 

Biharmonic) are plotted on one graph to be apple to 

compare between them as shown in figure (4). It is clear 

from figure (4) that the intersection between the gravity 

field and the three differential operator's fields could be 

used to estimate the width of the model and depth to the 

top of the prismatic body. Searching for the zero 

location of the Biharmonic curve is the start point of 

interpretation. The zero location comes exactly with the 

maxima of the Gradient where this place is perfect to 

define the contact location. The distance between the 
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two zero locations on the Biharmonic curve determine 

the width of the prism. The distance between the zeros 

on the internal part of the Biharmonic curve and the 

maxima on the Laplacian curve defines the depth to the 

top of the model. The amplitude of the Biharmonic 

maxima works as an indication key for density contrast 

(see later). The same approaches have been done for all 

prismatic models and give the same result regardless of 

their differences in dimensions, depths and density 

contracts. Figure (5 and 6) show examples of prisms 

with dimensions 10x20 and 20x20 km, top depths are 3 

and 4 km with density contrasts 0.3 and 0.4 g/cc 

respectively. 

 

 
Fig. 3. 3D and 2D representations for prismatic 

case with dimension 10x10 km, top depth 2 km,   

bottom depth 12 km,  and density contrast 0.2 g/cc.  

A profile taken across the middle  part of each map 

(Gravity, Gradient, Laplacian and Biharmonic) and 

the result shown   in Fig. 4 . 

 
Fig. 4. Represents the profiles taken across the center 

of prisms maps shown in Fig. 3. 

 
Fig. 5. Represents the profiles taken across the center 

of prism with dimension10x20km,top 

depth 3 km, bottom depth 13 km and density contrasts 

0.3 g/cc. 
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Fig. 6. Represents the profiles taken across the center 

of prism with dimension20x20km,top depth 4 km, 

bottom depth 14 km and density contrasts 0.4 g/cc. 

 

Return back to figure (3), its clear that the 

Biharmonic Operator map has two zero closed contours. 

The internal one circumscribes four protrusions (one for 

each corner of the prismatic model) and has square 

shape with dimension exactly 10x10 km. This 

dimension of the internal zero contour defines the exact 

location of the prism. This characteristic of the internal 

zero contour for all 27 cases have been tested and gave 

the same result. The zero internal contour of the 

Biharmonic Operator map has an excellent denote to 

define the boundary of the models and the exact 

dimension could be measured directly. Figure (7) is an 

example of such process for different prisms.  

Another remark is that the Biharmonic map has a 

protrusion along each corner of the anomaly. If the 

anomalies body has no corner such as sphere, the 

Biharmonic map will has Mexican hat shape (6), See 

figure (1). 
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Fig. 7. Illustrates the Gravity and 

Biharmonic maps for prisms have 

dimension 10x10, 10x20, 

            20x20 km with different depths 

and density contrasts. The dimension of 

the causative  

            model could be calculated directly 

from the Biharmonic maps. 

 

Density Contrast  

To find the relation between the Biharmonic 

Operator map and density contrast with depth, a bar 

chart diagram is plotted in figure (8) for the 27 cases 

used in test. The maximum amplitude of the protrusion 

in the Biharmonic map is plotted against density 

contrast and depth. It is clear from the chart that the 

Biharmonic amplitude has the same shape for prisms 

with dimension 10x10, 10x20 and 20x20 km. That is 

mean; the dimension of the prism has no effect. The 

difference in depth dramatically affect on the 

Biharmonic amplitude. Figure (8) can be used to define 

the density contrast if the depth to the top of the model 

is known in the way described above. For depth to the 

top 4km; the amplitude of the Biharmonic map never 

exceed 0.2; for 3km top depth it is between 0.2-0.6 and 

for 2km top depth it is more than 0.6.  
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Applying this procedure to our first tested prism 

(compared to sphere shown in figure 1), figure (9) 

present the result for the depth of the prism. 

 

 
Fig. 8. A bar chart diagram is plotted for the 27 cases 

used in test. The maximum amplitude  of the protrusion 

in the Biharmonic map is plotted against density 

contrast and depth. It is clear from the chart that the 

Biharmonc amplitude has the same shape for prisms 

with dimension 10x10, 10x20 and 20x20 km. That is 

mean; the dimension of the  prism has no effect.  

 

 
Fig. 9. Represents the profiles taken across the center of 

compared prism in Fig.(1) with dimension 10x10 km, 

top depth 5 km, bottom depth 15 km and density 

contrast 0.2g/cc. 

 

COMPLICATING THE TEST 

Trying to test the procedure on complicated models, 

a case for two contact prisms with different dimensions 

(10x10 km and 10x20 km), but have the same top depth 

(2 km) and density contrast (0.2 g/cc). Figure (10) 

shows 2D and 3D representations for this model. The 

Biharmonic 2D and 3D give perfect boundary 

dimension of the two prisms. Six protrusions define the 

six corner of the model where it esteemed as one body. 

Three profiles are taken across the model to estimate the 

depth. Two are taken across each prism and the third is 

taken vertically on both of them (See Fig. 10). Figure 

(11) illustrates these profiles and the procedure for 

estimate depth is correctly specified. 
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Fig. 10. Shows 2D and 3D representations of a 

complicated model. A case for two contact prisms with 

different dimensions (10x10 km and 10x20 km), but have 

the same top depth (2 km) and density contrast (0.2 g/cc). 

 
Fig. 11. a) Profile 1 

 
Fig. 11. b) Profile 2 

 

(a) Gravity Field.
(b) Gradient.
(c) Laplacian.
(d) Biharmonic.
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Fig. 11. c) Profile 3 

 
Fig. 11. (a, b and c) Illustrates three profiles taken across 

two prisms shown in figure (10). The procedure for 

estimating depth is correctly specified for this model. 

 

Second example has been taken using two prisms 

with (10x10 km and 10x20 km dimension, density 

contrast 0.2 g/cc but with different depths to the top (2 

km and 4 km). Figure (12) illustrates 2D and 3D 

representations of the calculated gravity and it's 

Differential Operator. The Biharmonic map (2D and 

3D) is clearly defining the difference in amplitude due 

to its difference in depth. The horizontal profiles (1 and 

2) have no problem in depth estimation, see figure (13). 

While with profile 3, the depth should be estimated 

from outside part of the profile. The contact between the 

two prisms could be defined directly from the zero point 

of the Biharmonic profile in its middle part. Attracting 

attention is for the difference in the amplitude of the 

Biharmonic values. 

 

 
Fig. 12. Shows 2D and 3D representations of the second 

complicated model. A case for two contact prisms with 

different dimensions (10x10 km and 10x20 km), density 

contrast (0.2g/cc) but with different depths to the top (2 km 

and 4km).    
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Fig. 13. Profile 3 of the second example (Figure 12), the 

depth should be estimated from outsid part of the profile. 

The contact between the two prisms could be defined 

directly from the zero point of the Biharmonic profile in its 

middle part. Attracting attention is for the difference in the 

amplitude of the Biharmonic values. 

  

Third example has been taken using two prisms 

with (10x10 km and 10x20 km dimension, 2 km depth 

to the top of the two prisms but with different density 

contrasts 0.2 g/cc and 0.4 g/cc. Figure (14) illustrate 2D 

and 3D representations of the calculated gravity and it's 

Differential Operator. The Biharmonic maps (2D and 

3D) are clearly have less difference in amplitude due its 

same depth but the difference is in density contrast. 

Again, the horizontal profiles (1 and 2) have no problem 

in depth estimation, see figure (15). While with profile 

3, the depth should be estimated from outside part of the 

profile. The contact between the two prisms could be 

defined directly from the zero point of the Biharmonic 

profile in its middle part. 

 
 

Fig. 14. Shows 2D and 3D representations of the third 

complicated model. A case for  two contact prisms with 

different dimensions (10x10 km and 10x20 km),  depth to 

the top (2 km), but with different density contrasts (0.2 

and 0.4) g/cc. 

 

  
Fig. 15. Profile 3 of the third example (Figure 14), the 

depth should be estimated  from outside part of the 

profile. The contact between the two prisms could be 

defined directly from the zero point of the Biharmonic 

profile in its middle part.  
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SMALL TARGET 

In potential fields' survey, the observed data 

comprise the sum of the effects produced by all 

underground sources. The targets are often small-scale 

structures buried at shallow or deep depths. The 

response of these targets is superimposed in a regional 

field or other targets which arises from underground or 

neighboring sources that are usually larger in size and/or 

buried deeper. Trying to test the procedure on more 

complicated models, a case for three prisms with 

different dimension, top depth, and density contrast are 

taken as follow: 

 

Prism 1 

  

Dimension: 10x20 km 

Depth to top: 2 km 

Depth to bottom:12 km 

Density Contrast:0.3 g/cc  

Prism 2 

  

Dimension: 10x10 km 

Depth to top: 4 km 

Depth to bottom:14 km 

Density Contrast:0.2 g/cc  

Prism 3 

  

Dimension: 10x20 km 

Depth to top: 2 km 

Depth to bottom:12 km 

Density Contrast:0.4 g/cc  

 

Figure (16) shows 2D and 3D representations for 

this model. From the gravity map in figure (16, a), it's 

very difficult to recognize the small prism in the middle 

part due to the effect of surrounding two prisms that 

have larger size and density contrast. This is a case 

where juxtapose small body cannot be clearly 

distinguished on the basis of anomaly data. 

The 3x3 second derivative Laplacian filter with 

coefficient mentioned at the theoretical back ground 

could resolve these anomalies. The Laplacian filter 

produces a curvature map in which inflection points in 

the original data are located at the zero contours Figure 

(17). These procedures are widely used in image 

processing technique. (As mentioned in the theoretical 

back ground, that the Laplacian Operator is equal to 

inverse second derivative operator (figure (17)) prove 

this remark). But, the Biharmonic Operator could also 

resolve the anomaly for prism no. 2 and determine its 

boundary accurately.  With no doubt, its depth 

calculation will be less accurate due to the effect of 

direct contact of prisms 1 and 2. Also, the depth for 

prism 1 and 2 should be calculated from the outer part 

of the anomalies to reduce its effect.  

Seeing figure (18) for profile 3 graphs, it is clear 

that the gravity profile could not be able to resolve the 

middle prism due to its smallest size, deeper depth and 

lowest density contrast, in spite of that the Differential 

Operator plays a new important rule for estimating 

depth, boundary location and density contrast. 

  

 
Fig. 16. Shows 2D and 3D representations of the small 

target case. The parameters of the model are mentioned in 

the text of the paper. 
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Fig. 17. 2D and 3D representations of the Laplacian 2nd 

Derivative 3x3 Filter which is the   inverse of the Laplacian 

Differential Operator. 

 

 
  Fig. 18. Graphs for profile 3  along the three prisms shown 

in figure (16):   

1) Dimension: 10x20km,Top Depth: 2 km, Bottom Depth: 

12 km and D.C.: 0.3 g/cc.   

2) Dimension: 10x10km,Top Depth: 4 km, Bottom Depth: 

14 km and D.C.: 0.2 g/cc.                

3) Dimension: 10x20km,Top Depth: 2 km, Bottom Depth: 

12 km and D.C.: 0.4 g/cc. The gravity profile has no 

indication for the small middle target, while the  Differential 

Operator graphs have better result. 
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FIELD EXAMPLE 

It is very hard to find a typical example for three 

dimensional prismatic bodies; also, most authors avoid 

dealing with three dimensional cases. Most of them took 

a profile across the center of an anomaly and applied 

simplified interpretation tools to get reasonable results. 

These are due to difficulties in finding typical field 

example for prismatic body hypothesis. For that the 

field example is taken for Salt Diapir in the Gulf Coast 

basin area and interpreted using the assumption of 

vertical cylinder (15, page 221 Figure 3.40). The 

Bouguer gravity map of this example is given in Figure 

(19). The interpreter in (15) took a profile across the 

middle 

 part of the anomaly and used the assumption of 

vertical cylinder. The depth to the top is found to be 7.3 

kft, radius is 3.85 kft and density contrast is -0.3 

gm/cm3. The interpretation was not supported by any 

drilling test and this interpretation is only a hypothetical 

case to attempt some quantitative estimation even it has 

less confidence to the results (15). But, when looking to 

the residual map (Fig. 19 b) it is obvious that the 

anomaly has elongated shape and the assumption of 

prism interpretation is more suitable. Also, there is a 

low gradient in the upper part of the anomaly and 

suggested another small body, for that different type of 

analytical process has been applied to prove this 

assumption. 

 
Fig. 19. Salt Diapir example anomaly is chosen as a field 

example (15, page 221Figure 3.40). The interpreter in (15) 

takes a profile across the middle part of the anomaly and uses 

the assumption of vertical cylinder. The depth to the top is 

founded to be 7.3 kft, radius is 3.85 kft and density contrast is 

-0.3 gm/cm3 (15). 

 

The Differential Operators are very sensitive 

because they are dealing with derivatives of different 

degrees, where the high frequency signals will amplified 

greatly due to this 
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process. The different in data gradient also affects 

the result. White noise data form small error in 

digitization of the original data also amplified by 

derivatives of different degrees. All these facts must be 

taken in consideration and a type of smoothing should 

be applied to the data to enhance the signal-to-noise 

ratio. Many authors discussed these effects especially 

for method that use derivatives in depth estimation. 

Pašteka et al. (16) presented most up-to-date summery 

for this problem and suggested a type of regularized 

filter to damp the amplification of the high frequency 

content in the processed signal.  

For that, smoothing the input data is mandatory to 

get reasonable result. Figure (20 a) gives a smooth 

digitized gravity field for the case study area. Figure (20 

b, c and d) is the output of Gradient, Laplacian and 

Biharmonic Operators. The Gradient map clearly shows 

that the middle part of the anomaly has highest gradient 

with some elongation shape. But, another high gradient 

could be found easily in the northern part with east-west 

direction. The Laplacian Operator map gives the same 

result. Matrix smooth with 1x1 cell is applied to the 

Biharmonic map Figure (20 d). The zero closed contour 

line for the Biharmonic map shows the exact boundary 

of the diapirs body (Gray area in figure 20 d). The body 

clearly has elongated shape and the upper one with 

small size. 

 (
a)

 

  

(b
) 

 
 

(c
) 

 
 

(d
) 

 
 

Fig. 20.   a- 2D and 3D digitized map for the Bouguer gravity 

map of Salt Dome.   

b- 2D and 3D representation for the Gradient Operator.  

c- 2D and 3D representation for the Laplacian Operator.   

d- 2D and 3D representation for the Biharmonic Operator. 

The zero closed contour  (Gray area) define the dimensions of 

salt dome, its boundary and directions.  
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Attempting to emphasize the upper small body, a 

difference of Gaussian (9x9) second derivative with the 

following coefficient (9): 

 

0 0 0 -1 -1 -1 0 0 0 

0 -2 -3 -3 -3 -3 -3 -2 0 

0 -3 -2 -1 -1 -1 -2 -3 0 

-1 -3 -1 9 9 9 -1 -3 -1 

-1 -3 -1 9 19 9 -1 -3 -1 

-1 -3 -1 9 9 9 -1 -3 -1 

0 -3 -2 -1 -1 -1 -2 -3 0 

0 -2 -3 -3 -3 -3 -3 -2 0 

0 0 0 -1 -1 -1 0 0 0 

 

has been applied to the anomaly map depending on 

the concept of convolution and the result shown in 

figure (21). The zero contour line determines the 

boundary of the anomaly. The light gray area within the 

closed zero contour defines the boundary of the 

causative body. The upper part has more realistic 

characterization. 

Modeling profile figure (22) supports the 

assumption for the upper small body (See the vertical 

profile in figure 20a for comparison). The density 

contrast for prism used in the centered model is -0.2 

g/cc while the small body has given -0.1 g/cc. 

Figure (23) illustrates the direct calculation of the 

depth across two transversal profiles through the 

anomaly maxima and one vertical profile is taken across 

the middle part. The calculated depth differs from side 

to side.  

The following table summarized the calculated 

depths:  

 
Fig. 21. Map of Difference of Gaussian 

              second derivative with (9x9)  

              coefficient superimposed by the 

              example map. The light gray area  

              within the closed zero contour define  

              the boundary of the causative body. 

 
Fig. 22. Estimated modeling profile 

         supports the assumption of the 

         upper small body (See the 

         vertical profile in figure 23a for  

         comparison of the gravity profile). 

 

 
Profile Body Left depth Right 
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No. width depth 

1 8.32 kft 4.17 kft 5.46 kft 

2 8.61 kft 5.61 kft 5.75 kft 

3 15.95 kft 6.31 kft ------- 

2nd body 

in profile 

3 

5.46 kft -------- 3.4 kft 

 

For profile 3 the correct depth calculated from the 

left side of the central salt dome, the 2nd body depth is 

calculated from its right side. This is the suitable way 

for depth estimation as mentioned above in the 

complicate tested body.  

The calculated depths are little differing from that 

presented by (15) due to the difference on the depended 

assumption. Also, defining the second body is new. 

P
ro

fi
le

 1
 

 

P
ro

fi
le

 2
 

  
 

P
ro

fi
le

  
3
 

 
Fig. 23. Illustrates the direct depth estimation for 

profile 1, 2 and 3 for the field  

               example case. 

 

CONCLUSION 

For the first time, the Differential Operators are 

operated to the gravity field of prismatic bodies to 

define their characteristic (top depths, dimensions and 

density contracts). The Biharmonic Operator is very 

sensitive to determine the shape and depth where the 

zero closed contour is the key factor for that, its 

amplitude could be used to determine the density 

contrast.  
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طريقة جديدة وفريدة لتحديد خصائص )ابعاد, اعماق وتباين كثافي( لاجسام موشورية ثلاثية الابعاد  
 .  لها الجذبيمعاملات لابلاس والتوافقية المزدوجة لمجا   باستخدام المعاملات التفاضلية للانحدار,

 علي مكي حسين الرحيم 

E.mail: alial_rahim@yahoo.com  

  الخلاصة:
اق وابعاااد استخدمت المعاملات التفاضلية ) الانحدار, لابلاس والتوافقية المزدوجة( لتحديد خصائص الشواذ لاجسام موشورية ثلاثية الابعاد لها اعم

  مباادئي الانحاادار ولاباالاس اسااتخدماو وعشاان  واساا  ضاامن مبااادي. التحل اا  الصااور    تباين كثافي مختلف وماان خاالاا ماالهااا الاااسبي المحسااو  ن  يااا و 
ن تقااا   المااااا الاااسبي ماا  الماااالات التفاضاالية المحسااوعة امناان او تساااعد فااي  سااا  العماام الااش السااغض العلااو  للاجسااام الموشااورية ب اا  ال  اا  عاا 

 اادود   معاماا  التوافقيااة المزدوجااة اعغااش نتااائ  ممتاااي  ,   اا  اعغااي ان لاباا ن ك تااوري ن وعقيمااة  ااف ية   لاخااتلاف فااي ابعاداااا واعمابهااا وتباي هااا ال ثااافي ا
 مااش لمعاماا  لاباالاس المسااافة باا ن ال  تااور الصااف   والقااي  الع  الان االاق الااداخلي ذ  القيمااة الصااف ية احاادد وعصااور  مااابو ة ابعاااد الاجسااام الموشااورية 

القي  الع مش للتوافقية المزدوجة امناان اسااتخدامها لتق ااي  التباااين ال ثااافي   اااسة اااي المحاولااة   تحدد العمم الحقيقي الش السغض العلو  للاجسام الموشورية 
هار الت اكب الصاا     والمخةيااة بتاالاث   الاجسااام الاولش لاستخدام اسة الغ يقة في  سا  خصائص الاس  ,  وللمعام  التوافقي المزدوج   ساسية كب    لاظ

 اا   سااا  العماام الق يبة وال ب    ,  م شااض لاباالاس لحسااا  المشااتقة الثانيااة امن اا  اااااا اظهااار اااسة الت اك ااب الصاا     ول اان معاماا  التوافقيااة المزدوجااة امن
 االا ية   عاماا  التواةيااة المزدوجااة  ساااس جاادا لت  اا  اااسة القاا ا.ات المستخدم لهسة الغ يقة ااب او انوو  ااسرا خاالاا  سااا  ب ا.اتاا  ل ااوو م  المابوط 

 الغ يقة اختب ت علش مثاا لقبة ملحية في  وض سا   الخلي  
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