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 In this paper we study some results concerning the existence of splitting fields 

which are generated by roots of polynomials.  Also we study the roots of cubic 

polynomials.  
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Introduction and preliminaries 

These results are basic to Galois theory consider the 

polynomial ring  XK  over field K  .Let f(x) belong to 

K[X] in the quotient ring K[X]/f(x). We let g(x) 

denotes the coset (g(x)+f(x)). Thus if 
( )  =

=
n

i

i
ixKxg

0 , 

then by the definition of addition and multiplication of 

cosets we have that 
( )  =

=
n

i

i
ixKxg

0 , we considered a 

field K contains in a complex numbers ₵ and a cubic 

polynomial 
( )  XKqpxxxf ++= 3

 .  Also, we 

obtained explicit expression involving extraction of 

square and cubic roots for the three roots 21,  and 

3  of f(x) in  C and we were beginning to study the 

splitting field extension ).,( 321 KE =  .If f(x) 

factors in  XK  either all the roots are in K or exactly 

one of them (say 3 ) is  in K and the other two roots 

of irreducible quadratic polynomial in  XK   In this 

case )( 1KE =  is a field extension of dimension 2 

over K.  Therefore if 1  denotes one of the roots, we 

know that ( ) ( )( )XfXKK /)( 1   is a field extension of 

dimension 3 =deg(f ( over K  .also we have 

EKK  )( 1 , it follows from the multiplicatively of 

dimension that 3 divides the dimension of E over K. 

Definition. [2] 

    A polynomial f(x) belong to K[X] is said to split 

over a field S contains K,if f(x) can be write it  factor 

as product of linear a factors in S[X],such that K is a 

field. 

 
* Corresponding author at: University of Anbar  - College 

of education for pure sciences. E-mail address:  

 

Remark .[1] 

( )( ) E−−= 3221 
,since 

Kqp −−= 232 274
,either K or K(δ) is an extension 

field of dimension 2 over K, since EKK  )(  it 

follows that 2 also divides kdim (E). 

K and kdim (E) =3 or  

K .  and kdim (E) =6. 

Proposition. [  4 ] 

 Let K be a field  .If f(x) is a non-constant 

polynomial in  XK , then there exists a field extension 

F/K such that F contains a root of  f(x)  . 

Now by the following we can show that C is the field 

of complex numbers [ 12 +x  is irreducible in  XR .  

Now, 
   RbaxbaXR += ,

 is a field where 

( )12 ++= xxx
  .Since 12 −=x  , we may call  C the 

field of the complex  numbers.] 

Definition . [5] 

Let K be a field  .A polynomial 
( )  XKxf 

 is said to 

split over a field SK if f(x) can be factored as a 

product of line a factors in S[x]. 

A field S containing K is said to be a splitting field for 

f(x) over K if f(x) splits over S but over no proper 

intermediate field of S/K.For example The field of 

complex numbers C is s splitting field for the 

polynomial 12 +x  over R  .this follows, since 

( )( )ixixx −+=+12

 in C[x], and C/R has no proper 

intermediate field because [C:R]=2  .Now if 

RLC   where L is an intermediate field of C/R, 

then 2=[C:R][ ]L:R] and so either [C:L]]=1 or 

[L:R]=1  .Then either C=L or C=R and note that C is 
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the splitting field of 12 +x over Q since 12 +x  splits 

over Q (L). 

Proposition . [5] 

Let K be a field and f(x) be a polynomial in  XK  of 

degree n     . Let F/K be a field extension  .If  f(x)=c(x-

c1)(x-c2)….(x-cn) in F(x).  then `is a splitting field for 

f(x) over K. 

Also,if we have K a finite field.Then cardinality of K 

is pn for some prime p and some positive integer 

n.Every k belong  to K is a root  of the polynomial 

XPn –X and K is the splitting field of this polynomial 

over prime subfield Zp. 

    Therefore,if  the roots are   known as α1 and α2 then 

The field 
( )3,Q

  for the last example is a splitting 

field for 34 −x over Q. 

   Now we can say that if K be field  and f(x) be 

constant   polynomial over K.  Then there is a  

splitting field for f(x) over K. and  if  E /K 

is a field extension and f(x) be an irreducible 

polynomial in  XK .  If Eba ,  are roots of f(x) then 

( ) ( )bKaK  . 

Also, we can use other concept to obtain splitting field 

by normal extension such that ((if a finite extension E / 

K is normal ,then it is a splitting field over K and f(x) 

bolong to K[X].)). 

Therefore , if E / L and L / K be a finite extensions and 

if E / K is normal then E / L is normal(E /L is splitting 

).Now we can give the following fact about two 

splitting fields[Let ( )  xKxf  .  Any two splitting 

fields for f(x) over K are isomorphic], 

also, let F/K be a field extension and Fba , .  Then a 

and b are called conjugates, if a and b are roots of the 

same irreducible polynomial over K. 

Examples 

1-The field 
( )  QbabaQ += ,:22

 is a splitting field 

of 
 xQx −22

 over Q  

2- A splitting field of  xRx +12

 over R is the field 

C. 

Proposition[2] 

       If  K is field and  xKf   then: 

There exists splitting field of polynomial; f on K. 

Any two splitting fields of f on K are two isomorphism 

fields on K. 

Splitting fields are unique up to isomorphism over K. 

 

Proposition .[3] 

      Let K be subfield of C let 
( )  XKqpxxxf ++= 3

 

an irreducible cubic polynomial and let E denotes the 

splitting field of f(x) in C.  Let ( )( )3221  −−=  

where i  are the roots of f(x).  If K , then kdim

(E)=6 

Proposition. [1] 

         Suppose LK   is any field extension f(x) 

 XK  and 


 is the root of f(x) in L.  If  is an 

automorphism of L leaves F fixed pointwise, then 

)( is also a root of f(x). 

Proof 

If 
( ) =

i
ixfxf

,and since β is one  of the roots that is 

mean f(β)=0 then 
( ) ( ) ( )  === 00 i

i
i

i ff
 

Example 

     Let 
( ) 23 −= xxf

,which is irreducible over Q.  The 

three roots of f in C are 
3 2 , 

3 2
 and 

32 2
, where 

2

3

2

1 −
+=

  is a primitive cube root of  1. 

Finally,to show that the splitting fields always 

exist[for if g is any irreducible factor of f,then K[X]/ 

(g)=K(α) is an extension of K for which g(α)=0,where 

α denotes the image of X.Then g and f are splits off a 

linear factor,induction implies that exists a splitting 

field L for  f. 

Conclusions 

 We gote that a polynomial f(x)  XK  always 

has a splitting field, namely the field generated by its 

roots in a given algabric closure K of K.  Also we can 

apply these roots of any non-constant polynomials by 

Galois theory.We obtained a new result (every normal 

extension is splitting field, and splitting fields are 

unique. let K be a field by a root of polynomials f(x) 

 XK  we mean an element  in an over field of K 

such that ( ) 0=f .  It is easy to see that a non-zero 

polynomial in  XK  of degree n has most n roots. 
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 متعددات الحدود على الحقل المنفصل 
 ماجد محمد عبد 

 الخلاصة

وع قمنا في هذا البحث بدراسة بعض النتائج المتعلقةةة بودةةوح الحقةةف المنذيةةف الةةذ  رتولةةد  ةةع داتةةل دةةذ ر ذتعةةدحا  الحةةد ح    ةةذل  قمنةةا بدراسةةة  ةة         
  احد ذع هذه الجذ ر  هي الجذ ر التكعيبية  

 


