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Abstract

The lifetime distribution plays an important role in many real life fields such as biostatistics,
reliability and survival analysis, so we try to contribute in finding a new lifetime distribution. We
construct lifetime distribution, the cubic transmuted Weibull distribution, and discuss some of its
statistical properties.
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1. Introduction

We analyze statistically the data of life phenomena under study after modulating
these data. Sometimes the models available do not fit the data of many important and
practical problems. That is, a non-parametric model may be recommended.

(Shaw and Buckley, 2009) used the rank transmutation map RTM , a tool for the
construction of new families of non-Gaussian distributions, to modulate a given base
distribution for modifying the moments, like the skew and kurtosis. They introduced the
quadratic rank transmutation map (QRTM) that was used by
1)  (Merovci, 2013) in presentation the generalized Rayleigh distribution,
and generalized the Lindley by (Merovci ,2013),

2)  (Merovci ; et al., ,2014) in derivation a generalization of the inverse Weibull
distribution and some of its properties,

3) (Mahmoud and Mandouh , 2013) in finding the Transmuted Fréchet Distribution,
some of their properties, and estimation the parameter using maximum likelihood
and Bayesian methods,

4) (Ashour and Eltehiwy, 2013) in introducing the generalization of the exponentiated
Lomax distribution and derivation some of its properties.

5) (Khan and King , 2013) in derivation the three parameter transmuted modified
Weibull distribution , their moments maximum likelihood estimatin methods, and
the order statistics of this distribution,

6) (Elbatal et al., ,2013) in presentation the Transmuted Generalized Linear Exponential
Distribution of four-parameter generalized version exponential distribution and
some properties, and the maximum likelihood estimation.
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7) (Elbatal and Aryal ,2013) in studying the transmuted additive Weibull distribution
and some other distributions their order statistics and maximum likelihood
estimation of its parameters,

8) (Aryal ,2013)in introducing the transmuted log-logistic distribution, and the
moments, quartiles, mean deviations of the transmuted log-logistic distribution, and
maximum likelihood estimators of its parameters.

9) (Elbatal and Elgarhy, 2013) in derivation the transmuted quasi Lindley distribution,
and their moment and moment generating function, and weighted least squares and
the maximum likelihood estimation of its parameters.

10) (Pal and Tiensuwan , 2014) in presentation the beta transmuted Weibull distribution,
and some of its properties,

11) (Afify; et al., 2014) in construction a new generalization of the complementary
Weibull geometric distribution introduced by (Tojeiro et al., 2014) and estimation
the model parameters using the maximum likelihood method,

12) (Khan et al., 2014) in introducing the characteristic transmuted inverse Weibull
distribution to compare it with many other generalizations of the two-parameter of
this distribution , and discussion some of its properties and order statistics.

13) (Ebraheim, 2014) in studying a new generalization of the two parameter Weibull
distribution, and its properties and the maximum likelihood estimation of its
parameters,

14) (Hussian, 2014) in presentation a new generalized version Transmuted
exponentiated gamma distribution and some of its properties. He derived a new
four-parameter generalized version of the transmuted generalized linear exponential
distribution,

14) (Merovcia and Pukab, 2014) in studying the transmuted Pareto distribution using the
quadratic rank transmutation map studied by (Shaw,W.T. and Buckley,l.R. ,2009).

In this paper, we study the a new proposed distributions, cubic transmuted Weibull
distribution CTWD, and discuss the order statistic some of its statistical properties.

2. Main Results
2.1 Definition: A random variable X is said to have a cubic transmuted distribution if
its cumulative distribution function (cdf) is given by

F(x)= (1 + 2) G(x) — 2AG%*(x) + AG3(x),|A] < 1. 1)
And the density function (pdf) is given by
fe) =1+ 1) gx) — 4AG(x) g(x) + 32G6*(x) g(x) (2)

Where G(x) is the cdf of the base distribution, according to the general
formula of the transmuted distribution, (K. Abed AL-Kadeem ,Unpublished
research) which is given as
Flx) = {(1 + A G(x) — 2AG%*(x) + -+ AG™(x), mnisodd

1+ )G — AG*(x)+ - + AG™(x), niseven
Observe thatat A =0, F(x) = G(x)

(3)

Remark 2.2
Now to prove that f(x) in (2) is pdf as follows:
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1) f) =1 + 1) g(x) — 4AG(x) g(x) + 32G%(x) g(x)
Let u = G(x),du = G(x) g(x)dx, then
flx) = fol[(l + ) — 4AG(x) +3AG*(x)] g(x)dx
=14+ A-2A+1
=1
Since that the G(x) = p(X < x) is probability distribution.
1) Now we want to prove that f(x) > 0
IfA <0, and G(x) =1 then f(x) >0 when
AG3(x) — 2AG?(x) > —(1 + ) G(x)
And then, f(x) is also appositive function at 4 < 1,when
(1 + D) G(x) +AG3(x) > 2AG2(x)

2.3 Cubic Transmuted Weibull Distribution
A random variable X is said to be a cubic transmuted Weibull distribution
CTWD ifits cumulative distribution function (cdf) is

Ferwp O a, B, 0) = (1 + 1) (1 - e-axﬁ) —2A(1 — e~ ¥P)2 4 (1 — e=ax)3
=(1- ey |1+ 2672 4)
for x > 0 with the scale and shape parameters «, § > 0, respectively, and A is the

transmuted parameter.
And the pdf is

ferwp (6 @, B, 2) = BaxP~le~ex’ [1 — 20 e~ 4 3,1e‘2“"ﬁ] (5)

The shape of cdf and pdf of CTWD with selected parameter values are shown in
figure 1 and figure 2 respectively.
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Beta=2, Alpha=0.4,Linda=1
— Beta=2.5, Alpha=0.2,Linda=1
Beta=1.5, Alpha=0.3,Linda=1
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Figure 1 The cdf of the CTWD at « = 0.4,0.2,0.3,=2,2.5,1.5,A=1
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figure 1, shows that the function Fqry (.)is increasing with x increasing ,at
different parameters values selected of the «,f, and fixed value A =1, to be
fixed when  Fory(x) = 1atx > 3,

09 T T T T T T T T T
Beta=2, Alpha=0.4,Linda=1
0.8 - Beta=2.5, Alpha=0.2,Linda=1
Beta=1.5, Alpha=0.3,Linda=1
0.7 N

T

0.6~

0.4

0.3

0.2

0.1p

Figure 2 The pdf of the CTWD ata = 0.4,0.2,0.3,4=2,2.5,1.5,A=1
And from figure 2, it is clear that the function f.r, (.) has one or two peaks at
increasing x and at different values of the parameters. It has heavy tail skewed at
the right. It has the shape of Weibull distributionat« = 0.3, = 1.5,4 = 1.

2.4 Special Cases
In the following table there are some cases (sub-models) from CTWD

Table 1 The Cubic Transmuted Weibull distribution and some of its sub-

models
model a |B|r Cumulative distribution
function

WD _1_10 (1 _ e-axﬂ)

RD _ 0 (1 _ e—axz)

ED _ 0 (1 _ e—ax)
CTWD _ | (1 _ e—axﬁ) [1 + Ae—ZaxB]
CTRD 22 ] - e ™)1+ 2em2]
CTED _ |11 (1— e ™1+ e %]
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Where C= Cubic, T= Transmuted, W= Weibull, E = Exponential,R = Rayleigh.
2.5 Reliability Analysis
I. The Reliability Function (RF)
The reliability function (or survival function) of CTWD is defined as
Rerwp (6 a, BA) = e~axf _ )

(6)

ii. The Hazard Rate Function (HF)
The hazard rate function of CTWD is

e—2ax/3 + /18_3“xﬁ

aﬁxﬁ‘l[l —22 e“"xﬁ+3le‘2”‘xﬁ]

herwp (0, B,A) = (7)

1— de—aP 4 Je—2axP

Where herwp(x) is defined as the probability of failure per unit of time, distance
or cycles. Some possible shape of Rerwp(x;a, 8 A) and heryp (x5 @, B,A) with
parameter values selected are shown in figure 3 and figure 4 respectively

15 T T T T T T T C T C
Beta=2, Alpha=0.4,Linda=1
""" Beta=2.5, Alpha=0.2,Linda=1
Beta=1.5, Alpha=0.3,Linda=1
1- \
0.5~
0 -
r r r r r r r r r r

Figure3: The reliability function of the CTWD ata = 0.4,0.2,0.3,8 =
2,2.5,1.5,A=1.
From figure 2, it is shown that the reliability function is decreasing with the
increasing of x and different values of «, 8 and fixed value of A.
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Figure4 The hazard rate function of the CTWD ata = 0.4,0.2,0.3,8 =
2,2.5,1.5,A=1

figure 4, it is shown that the hazard rate function is slowly increasing at increasing
of x and different values of «, 8 and fixed value of A.
Theorem 2.6 The hazard rate function of the cubic transmuted Weibull distribution
has the following special cases:
1. If B =1, then the failure rate is same as the hazard rate function of
CTED(x,a,A)
2. If B =2, then the failure rate is same as the hazard rate function of
CTRD(x;a, 1)
3. If A =0, then the failure rate is same as the hazard rate function of

WD(x; a, B)

4. IfA = 0,8 = 1, then the failure rate is same as the hazard rate function of
ED(x; @)

5. If A = 0,8 = 2, then the failure rate is same as the hazard rate function of
RD(x; a)

Proof
If we substitute the parameters chosen in hazard function (HF) of the CTWD ,
equation (7), we get the following table:

867



Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(25): 2017

Table 2 Hazard rate function for each of the parameters chosen

Parameters Hazard Rate Function
Chosen

— —- —-ax —-2ax
B =1 hCTED (X; a 7\) _ a1 -21e % +3%e ]

1— Ae=®X4 Je—2ax
=2 Zax[l -21 e“"x2+3)le_2“x2]
herrp (X5 0, A) = 1— de—ax?; Jg-2ax?

A=0 hywp (x; &, B) = apxF~?
A=0,p=1 hep(x; ) = «
A=0,=2 hgp(x; @) = 2«

iii.  The Cumulative Hazard Rate Function (CHF)
The cumulative hazard function of CTW D (x; «, B, A), is defined as
=—In [1 - FCTWD(x; a,ﬁ,/l)]
=—In [e‘“xﬁ — Qe2exf 4 /18_3‘”3] 8)
Theorem 2.7 The cumulative hazard rate function of the cubic transmuted Weibull
distribution CTW D (x, a, 3, 1) has the following special cases:
1. When g = 1, the cumulative failure rate is same as the CTED (x, a, 5, 1)
2. When g = 2, the cumulative failure rate is same as the CTRD (x, a, B, 1)
3. When A = 0 the cumulative failure rate is same as the WD (x; a, )
4. When A = 0,8 = 1 the cumulative failure rate is same as the ED (x; a, )
5. When1 = 0,8 = 2 the cumulative failure rate is same as the RD(x; a, )
Proof : Using the cumulative hazard function (CHF) of the CTWD , equation
(8),then we get the special cases as in the following table
Table 3 Cumulative Hazard Function for each of the parameters chosen

Parameters Cumulative Hazard Function
Chosen

ﬂ = 1 HCTED(X,C(,,B,A) = _ln [e_ax_ Ae_zax‘l'
/16_3(”]

ﬁ = 2 HCTRD(x, a,ﬁ,/’{) = — ln [e_axz — Ae_zaxz +
e—3ax2]

r=0 Hyp(x;, ) = —In [e‘“xﬁ] = axP

A=0,8 =1 Hgp(x;a,8) = —In[e ] = ax

A= Orﬁ =2 HRD('X; a,ﬁ) = —ln[e_axz] — axz
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2.8 Mode and maiden:

i. The mode
The mode of a probability distribution is given as

Mode = —afTW(a’;“’ﬁ‘l) =0
In fTW(x a ,8 ﬂ.) In (aﬁxﬁ_le—“xﬁ (1 — 21 e—axﬁ + 3).8_20”6!;))
4 3Ae‘zaxﬁ)

—lna+ln,8+([3—1)lnx—axﬁ+ln(1 —2le

The mode is
22aBxP-1 e'“xﬁ(1+3e'“xﬁ)

oftwaBA) _

dx
By using Newton Raphson Method we get x;,,4. = 0.530861

ii. The Median
The median of a CTW D with shape parameter 8 and scale parameter 1 is
—axP —2axP m
1+ 1
ey (14 2e72)|

B-1) B-1 _
x apx (1-22e-axF 132e-20xF)

> = I fawG)dx = | (1 -
2= (- e (14 Ae~2am”
In % =In (1 — e‘“mﬁ) + In (1 + Ae—2amf
—In2=1In (1 — e‘“mﬁ) + In (1 + Ae‘zamﬁ)
By using Newton Raphson Method we get X,,044in = 0.973485

2.9 Moment and Moment Generated Function

i.Moment

Proposition 1
If X has C TWD with|A] <

E(X™) _—F(l +—)l1 __r+_

, then the rth moment of X about the origin is

9)
And then mean and the variance of CTW D are defined as

E(X) = r(1+—)< i+il)
aﬁ 2B 3P
(10)
2
VX) =% r(1+3)<1— iz+iz)—r2(1+l)2<1—ll+ll>
af B 28 3B B 2B 3B
(11)
Proof
EX") =[x aﬁxﬁ‘le‘“"ﬁ (1 —20e~ @ 4 3/19‘2“"3) dx
1
Id 2
—axf YL h =Y = (E)B , du = afxP~tdx
(24 (04

Letu =

-u © Z _ou 1 ro -3u

I=—Tf0 uﬁe du—2/1—rf0 ubBe du+31—rf0 uPe 3% du
aE ab aE
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Let y = 2u —>u=% ,duzd?yandy1=3u —>u=%,du=
E(X) = & r(1+1)<1 —ir+lr>
P B 2B 3P
Using (9), then when r=1, we get the mean
EX)= & r(1+%)<1—%+%>
ab 28 3P
And we need E(X?) to find the variance
E(X?) =5 ra +§)<1— i_+i_)
abf 28 3B
VX) = E(X?) - [EX)]?

1

dy,
3

r(1+§)<1— iz+iz>—r2(1+%)2<1—
28 3B

Rl >

2
Z T %)
ab 3B
|
Proposition 2
If X has CTWD(a,,4) with|A| < 1 , then the rth central moment of X
about the mean is

—) =57 (T (N N1 AL A

BQX =" = 5.0 () (7 (W T (1+7) [1 2%+3%]

(13)

And then the coefficients of variation CV, skewness CS, kurtosis CK , and of
kurtosis of the CTWD(«, B, A) are respectively as

2
r(1+%)<1— 24 %) - r2(1+%)2 ( 1—11+i1>
2B 3P 2B 3P

CV.=
r(1+%)< 1—11+11>
2B 3B
(14)
3
1"(1+%)(1—%+%>—31"(1+%)<1—i£+iz )F(1+%) (1—%+—1)+4r3(1+ﬁ) <1—il+il> ]
2B 3B 2B 3B 28 3B 28 3B
cS = —
=S r(1+§)<1— iz+i2> - r2(1+3)? <1_L1+L1>
aP 2B 3B 2B 3B
(15)
[r(1+%) Wy —4 F(1+%)w11“(1+%) w2+61"2(1+%)2 w12F(1+%) w; -3 r4(1+%)4 w14]
B [r(1+%) Wy — r2(1+%)2 w12]2
(16)
A A A A A
wy = (1——1"‘ —1>, wy = (1— =+ —z>,w3 = <1——3+—31>,
2B 3B 2B 3P 28 3B
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Proof
EQX =" = f, (= w7 f(x; a, B, 0)dx
:fooo(x -’ aﬁxﬁ—le‘ocxﬁ dx — 21 fooo(x - aﬁxﬁ_le_zaxﬁ dx +
347 (x — T apxPle3ex gy

[N

jeld 2
Letu = ax® JL§xﬁ=§ - x=(§)ﬁ , du = afxPldx
_ o ul _ o u L -2 o ul
= [, (CF —we™Mdu—22[ (C)F —wW" e du+31 [ (5)F -
u)r e—3udu

By using the “Binomial Theorem” we get
1 i o I _ oo I _ o I _ T_j
=2i=0Cj (%)r (=" [fo ub e %du — 2/1f0 uf e “du + 3f0 ub e 2”du]

y

lety =2u —Su=7 2

2

_\'T r.Lr—j_rrlll_ii
oG G- (+,,,)[ Tt

dy;

,du =
3

and y, = 3u —>u=%,du=

Now when r = 2, we get

E(X—p)?® =
2
=izr(1+3)<1—12+12>—r2(1+1)2<1—11+11>
af A 28 3P B 2B 3B
Whenr =3
E(X — )3 = E(x® —3x%u + 3xu? + u?)
1 3 A 2 A A 1 A
=Xir(1+2 (1——+—>—3r 1+2 <1——+—>r(1+—)<1——+
SO g) - gy rarp (13
3
3
ll>+4r3(1+l) (1—11+11> (17)
38 B 28 3B
Whenr = 4
E(XX —w* = E(x* — dux3+6u?x?—4u3x + u*)
1 4 A 1 A A 3 A
=Lir(1+2 1——+—>—4F 1+ (1——+—>r 143 (1——+
5D (-0 5) 0o i-5 0 reD (-3
2
A 1\2 A, A 2 A A
2)+erz(1+2 (1——+—) r(i+2 <1——+—>—3 1+
3)ror () (1-5+3) reeD(-5+3
4
1 A
E)4<1__l+_l>] (18)
2B 3B
Then CV=-
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3
3
I‘(1+%)<1 %+%> 31‘(1+%)<1—% __>F(1+B) <1 ll+ 1) 4r3(1+3) <1—il+il>
_ 23 33 B 3ﬁ ZB SB 26 3B

213
AL A AL A
LE F(1+%)<1——£+—z>— (1+ﬁ)2 _l+_l)
af 28 3B 2B 3B

—_ 4
ck =28 3
[I‘(1+ ) wg 4 T(1+p)w1 (14 )a)2+6l"2(1+ﬁ) 012T(145) wy = 3 M (14 w0y ]

o4

[r(1+ YWy — r2(1+—)2 w; ]
(]

. Moment Generating Function

Proposition 3
If X is a random variable that has the CTWD (x; a, 8,A) with [A| < 1, then
the moment generating function of X is

t

1
_ k <aﬁ> r _i i
M, (£)= Zr=o=p T (1+ﬁ)[1 2%+2%l
(20)
Proof

Mx(t) = f etxfTW(xaB/D dx
(tx)"
f Zr 0 = fTW(xaBA) dx

r!

where e™*= ’rco(t:,)r
—aﬁf Py otr(X):B e~ dx — 2 ap fooo Zfzowe—mxﬁ dx +
3Aaf [, ZrzO#e—Baxﬁ d

yields %

> dx = — (g)%_l du

_ B p_ U — (¥
Letu—ax—>x—a—>x—(a) o

Now compensation values above we get

M(t)—aﬁf Z rr, e % du-—2\ Bf Zro e~2U du +

r!

-3 [k t uB -
3Aa Bfo Zrone 3U du
r
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2.10 Order Statistic:
Let X, ..., X, be denote random samples from a CTWD distribution,
then the pdf of the rth order statistic is given by

ﬁ‘n(x) = #('n—l)' aﬁxﬁ—le—axﬁ (1 — 22 e—axﬁ + 3/16—2ax5) [(1 —

e_“xﬁ) ( 14+ )le_Z“XB)]i_l [1 B [(1 _ e—axﬁ) (1 + Ae—Zaxﬁ)”n—i

_ n! B-1,—axP _ —axh —2axh __—axP
= DD afx ? [1 21 e + 3e ”1 . e +
le-2axF _ Ae—3axﬁ]l_1 [emax” — qe-2ax” 4 Ae-mﬁ]"‘l
(21)

Then the pdfs of the minimum, the maximum and the median are as

1) When i=1we have the pdf of the minimum

fin(2) = napxf~te=x [1 — 226" 4 3pe7205" | [ emaxf — pe2axf 4
Ae—3ax/3]n_1

(22)
2) When i=n we have the pdf of the maximum

fan(x) = nafxf-te-ax’ (1 —22e " 4 3/1e_2“xﬁ) (1 — el 4

Ae—Za’xﬁ _ Ae—Baxﬁ)n_l
(23)
3) Wheni = m + 1we have the pdf of the median

— n! B-1,—-axP _ —axh —2axh _
frain(X) = e aBxF e (1 21 e + 32%e )(1

e—axﬁ + Ae—Zaxﬁ _ /le—3ax3)m ( e—axﬁ _ Ae—Zaxﬁ + Ae—3axﬁ)n
(24)
Theorem 2.11 Let X;,X,,...,X,, are independently identically distributed
ordered random variables from the cubic transmuted Weibull distribution
having the minimum (first) order , the maximum (nth) order and the median
(m + 1), the probability density function have the same as of some distribution
as follows:
1. B =1, the order is same as of CTED (x, a, 1)
2. B =2 ,the orderis same as of CTRD(x, a, 3, 1)
3. A =0 the order is same as of WD(x; a, )
4. 2 = 0,8 = 1 the orderis same as of ED(x; a, )
5.2 = 0,8 = 2 theorder is same as of RD(x; a, B)
Proof:
a) The pdf of the minimum when
1. =1 Is
fin(x) = nae™™[1 — 21 e~ + 31e 2 ][ e~ — Qe 2 4 Qe 3|1
(25)
2. f=21s

-m-1
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fin(®) = 2nax?e ™ [1 — 24 e~ %" + 31 20" |[ e~ — Je~20%" 4

1e=3%]" (26)
3. A=0

fin(x) = napxP-te=ex’ 27)
4. 2 =0, =1is

fin(x) = nae™* (28)
5. 1=0p8 = 2is

fin(x) = 2naxe %" (29)
b) The pdf of the maximum when
1. B=1,s

fan(X) = nae ™™ (1 —21e™* +31e 2*)(1 — e™ ™ + Ae 2% —
Ae—3a’X)n—1 (30)

2. B=2,is
fan(x) = 2naxe™®* (1 —21e~%" +31e720")(1 — =% + le~20¢" —

e3¢ (31)
3. A=0.is
B

(X)) = nafxP~e”
fan () Bxf~te—ax (32)

A=0p=1,s

an(X) = nae”

fan(0) & (33
4.1 =0, = 2,is

on(X) = 2naxe”

(x) = 2naxe " (34)

c) The pdf of the median when
1. f=1,is

fmrin(x) = m ae” (1 —22e ¥ +31e72)(1— e + le 2™ —

AeT3AX)M(@=AX _ }p2aX | jg-3axyn-m-1 (35)
2. B=2,is

fm+1,n(x) mZaxe‘“x (1 — 21 e‘“" + 3/16_2ax )(1 —ax2 +

Ae—ZaxZ _ /16_3‘”) (e—ax _ Ae—Zax + pe~3ax )n m-1 (36)
3. A=0,1is

—axB

frmr1n(X) _maﬁxﬁ lg—ax (37)
4. 2 =0, =1,is

fmr1n(X) = — M geax (38)

m!(n-m-1)!

5 =08 = 2.is
fm+1n(x) —Z(er_axz (39)

m!(n—-m-1)!
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Conclusions
We conclude that

1) The pdf of the CTWD has heavy tail skewed at the right. It has the shape of Weibull
distributionat @« = 0.3, = 1.5,4 = 1.

2) We can obtain W, E, R, CTW, CTE, CTR distributions from cubic transmuted
Weibull distribution at certain assumptions of the parameters «, 3, 4, as in Table 1,for
example A = 0 to get W distribution.

3) If we substitute the parameters chosen in hazard function (HF) of the CTWD ,
equation (7), we get the Table 2 that consists of the HF of CTED,CTRD,ED,WD,RD
respectively, for example herep

4) The cumulative hazard rate function of the cubic transmuted Weibull distribution
TCWD(x,a,(5,1) has the following special cases as in Table3, like
HCEWD(xJ (l,ﬁ,/l) at.B =1

5) The mode, median of CTWD are x,,,4. = 0.530861,

Xmedain = 0.973485, respectively using Newton Raphson Method.

6) The pdf of the order statistics, minimum, maximum, median, of CTWD is the same of

the CTED(x,a,A)when B =1
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