

حسابات DFT لترددات اهتزاز و شدد امتصاص طيف الاشعة تحت الحمراء لجزيئة [6]سايكلاسين (Armchair)

رحاب ماجد كبة

جامعة بغداد - كلية العلوم

معلومات البحث:

تاريخ التسليم: 2010/10/7 تاريخ القبول: 2011/2/14 تاريخ النشر: 14/ 6/ 2012

DOI: 10.37652/juaps. 2011. 15475

الكلمات المفتاحية:

DFT ، ترددات اهتزاز ، شدد امتصاص ، الاشعة تحت الحمراء ، [6] سايكلاسين (Armchair).

الخلاصة:

تم حساب ترددات الاهتزاز وشدد امتصاص طيف الاشعة تحت الحمراء, لجميع الاحداثيات الداخلية لجزيئة [6] سايكلاسين نوع (Armchair) و بعددها (6–3N) و مناقشتها تماثليا و تأصريا وفق نظرية دوال الكثافة (DFT) وباسلوب (B3LYP) وعناصر قاعدة (3116-6). كانت قيم ترددات الاهتزاز المحسوبة قريبة من القيم التجريبية للعدد القليل جدا من قيم ترددات الاهتزاز المستخرجة للانابيب المبنية من هذا النوع من الجزيئات. و عند مقارنة نتائج الحسابات، وجد بأن ترددات الاهتزاز للانماط المتماثلة لحركات المط التأصرية أعلى من تلك غير المتماثلة لاواصر (C-C) والعكس لاواصر (C-C)، و تكون ترددات الاهتزاز غير المتماثلة للحركات الانتثائية (6CC) و (6CC) أعلى من نظائرها المتماثلة. ومكن ترددات الاهتزاز غير المتماثلة للحركات الانتثائية (6CC)

المقدمة

يتعامل علم تقنية النانوتكنولوجي مع الأنظمة والتراكيب التي يقع قطرها في حدود (1-100nm) التي وبسبب قطرها الصغير (اصغر 10000 مرة من قطر الشعرة في جسم الانسان)، تظهر اختلافاً واضحاً عن الانظمة الاخرى في الخواص الكيميائية والفيزيائية والبايولوجية [1].

وقد تمت معرفة تراكيب النانوكاربون متعددة الطبقات (MWCNTs) لاول مرة من قبل العالم(lijima) عام 1991 [2]، الذي بين ان صفيحة الكاربون يمكن ان تتحني لتكوين أنابيب نانوكاربون متعددة الطبقات (MWCNT) باشكال مختلفة. وقد تمت دراسة الخواص الالكترونية لهذه الأنابيب نظريا بطرائق تتعلق بميكانيك الكم وعلى وفق فيزياء المادة، والميكانيك الستاتيكي [8-3].

وكذلك درس العالم (Hamada) ومجموعته الخواص الالكترونية لأنابيب النانوكاربون نظريا وبين اعتماد صفاتها بصورة رئيسة على الأقطار والكيرالية(Chirality) والى مجموعة النقطة [9].

تمت أيضا دراسة علاقة القوة المثالية لأنابيب النانوكاربون بأطوال أواصر (C-C) المتجهة على طول المحور السيني-C) (Caxial في أنابيب النانوكاربون أحادية الطبقة، وبأطوال أواصر (C-C) المتجهة على طول محيط انبوب النانوكاربون -C) (C-C) (شكل -1) (10-11].

وتتكون أنابيب النانوكاربون أحادية الطبقة (Swcnt) المفردة (Single Wall Carbon Nanotube) من حلقات البنزين السداسية متصلة مع بعضها البعض بشكل طوق. و تمتلك ذرات الكربون فيها تهجين من نوع ps2 مشابه لما موجود في صفيحة الكربونية المداسية [12].

أما في ما يتعلق بحسابات ودراسة ترددات الاهتزاز في أنابيب النانو النبيب النانو التشوهات الحاصلة في شكل أنابيب النانو تحصل نتيجة للحركات الاهتزازية على طول المحور السيني لأنبوب النانوكاربون والتي تؤدي الى التغير في الخاصية الالكترونية والميكانيكية لأنبوب النانوكاربون.وقد وجد تجريبياً أن هناك ثلاثة أنماط أساسية من ترددات الاهتزاز لأنابيب النانوكاربون أحادية الطبقة التي لها التأثير المباشر في خواصها التوصيلية، هي: أنماط الاهتزاز التنفسية (breathing modes)، وأنماط الانبعاج (puckering)، وأنماط انحناء الجزيئة مع وعكس عقرب الساعة

^{*} Corresponding author at: Baghdad University - College of

ORCID: https://orcid.org/0000-0001-5859-6212 .Mobil:777777 E-mail address:

(clock & anticlock wise). وأنبتت الدراسات أن قيم ترددات الأنماط الاهتزازية الفعالة في طيف الأشعة تحت الحمراء تعتمد على الأقطار، والكيرالية، ونوع الأنبوب، وطول الأنبوب، مع الأخذ بعين الاعتبار التماثل لأنابيب النانوكاربون [14]. وتعد هذه الدراسات بصمات اصبع لطيف امتصاص الأشعة تحت الحمراء، والهدف منها تقسير وفهم الصفات المميزة لأنابيب النانو كاربون ومنها استقرارها، وتوصيلها الكهربائي العالي [17-15].

كما تمت دراسة تأثير التشوهات والعيوب الناتجة من الحركة الاهتزازية في الخواص الالكترونية لأنابيب النانوكاربون (CNTs) في معهد بحوث ماكس بلاك للحالة الصلبة، وذلك باستخدام تقنية المسح الميكروسكوبي الأنبوبي. وبينت الدراسات أيضا أن التشوهات الحاصلة من جراء الاهتزاز عند بعض أنماط الحركة الاهتزازية قد تقلل بدورها من قابلية التوصيل الحراري والالكتروني للأنبوب [18]. تتكون جزيئة من قابلية التوصيل الحراري والالكتروني للأنبوب [18]. تتكون جزيئة حساب الشكل الهندسي التوازني لها وفق طريقة الحساب التامة لنظرية دوال الكثافة (DFT) وباسلوب (D3LYP/6-311G), وجد امتلاكها للتماثل (D6d) [19] وفق الشكل الهندسي التوازني لها (شكل-3). و تبعا لهذا التماثل، تم حساب حرارة التكوين والاحداثيات الهندسية الداخلية (اطوال و زوايا التاصر) وبعض الخواص الفيزيائية عند الشكل الهندسي المتوازن (شكل 4), (جدول -1).

ويلاحظ في (جدول-1) أن أقصر الاواصر تعود الى الاواصر المحيطية كالاصرة (C1-C2) الثنائية وبالتالي فانها أقوى الاواصر وثوابت القوى لتردداتها هي الاكبر، تليها أطوال ألاواصر المحورية كالاصرة (C1-C6) المقترنة، ثم الاواصر المحيطية الداخلية كالاصرة (C7-C8) المنفردة والتي هي أطول ألاواصر وأضعفها وثوابت القوى لتردداتها هي الاقل وينسجم هذا مع قيم ترددات اهتزاز المط لهذه الاواصر جدول (2).

تصنيف ترددات الاهتزاز

تمتلك جزيئة [6] سايكلاسين نوع Fundamental) نمطأ ً اهتزازياً من الترددات الاساسية (vibrations) وبعدد (3N-6). تم استخراج العدد الكلي للاصناف التماثلية غير القابلة للاختزال مع استخراج الاصناف التماثلية غير القابلة للاختزال 3N= 3 ×72= 216 = Ftot.

9A1+ 9A2+ 9B1+ 9B2+ 18E1+ 18E2+ 18E3+ 18E4+18E5

هناك ثلاث من هذه الدرجات دورانية Frotation هناك ثلاث من هذه الدرجات دورانية التحالية (E5 (Ry, xR), A2 وثلاث اخرى انتقالية (E1 (yT,xT), B2 (zT)] يصبح عدد درجات الحرية الاهتزازية الكامساوياً الى:

 Γ vib = Γ tot.- (Γ rot. + Γ tran.) = 3N-6 Γ vib = 216- 6 = 210 Γ vib= 9A1+ 8A2+ 9B1+ 8B2+ 17E1+ 18E2+ 18E3 + 18E4+ 17E5

وتتضمن ترددات الاهتزاز 79 نمطاً فعالاً في طيف رامان [18E2] و 17E5 و 9A1], و 43 نمطاً فعالاً في طيف الاشعة تحت الحمراء [(Ty,Tx) 18E1, (Tz) 7B2 تم تصنيفها على النحو الاتي:

ترددات مط الاصرة CH

وعددها 24 نمطاً اهتزازياً بقدر عدد اواصر (C-H)، وتتراوح القيم العددية المحسوبة لتردداتها بين (3046–3083) سم-1، وبالتدقيق في (جدول-2) يمكن ملاحظة أن أعلى شدة للانماط الفعالة في طيف الاشعة تحت الحمراء هي 93.009 كم/ مول وتعود للنمط (v61(B2) عند التردد 3082 سم-1. كما ويمكن ملاحظة العلاقة الاتدة:

 $vsym \; (CH \; str.) \; (3083 \; cm-1) \; > \\ v1 \; (A1) \\ vasym \; \; (CH \; \; str.) \; \; (3046 \; \; cm-1) \\ v10 \; (B1)$

ترددات مط اواصر (C-C) الحلقية

و تتراوح القيم العددية المحسوبة لتردداتها بين (1315-1635) سم-1، وبالتدقيق في (جدول-2) يمكن ملاحظة أن أعلى شدة للانماط الفعالة في طيف الاشعة تحت الحمراء هي 21.624 كم/ مول وتعود للنمط (23(E1) عند التردد 1635 سم-1 كما و يمكن ملاحظة العلاقات الاتية:

vsym (C=C str.) (1634 cm-1) < v2 (A1) vasym C=C str.) (1635 cm-1) v23 (E1) circum. vsym (C--C str.) (1406 cm-1) < v3 (A1) vasym (C--C str.) (1596 cm-1) v11 (B1)axial

vsym (C-C str.) (1334 cm-1) < v4 (A1) vasym (C-C str.) (1379 cm-1) v79 (E2) circum.

ترددات مط اواصر الحلقية . CCC)str

لاتتمركز متجهات ازاحات المط فيها عند ذرات كاربون اواصر محددة، وتتراوح قيم تردداتها للانماط الفعالة في طيف الاشعة تحت الحمراء بين (حدول-1302) مم-1، وبالتدقيق في (حدول-2) يمكن ملاحظة أن أعلى شدة 66.010 كم/ مول وتعود للنمط (E1) E10 عند التردد E11 مراء .

ترددات انحناء الاصرة δCH) CH

نتراوح قيم تردداتها المحسوبة بين (1474-1180) سم-1، وبالتدقيق في (جدول-2) يمكن ملاحظة أن أعلى شدة للانماط الفعالة في طيف v33(E1) للأشعة تحت الحمراء هي 26.290 كم/مول وتعود للنمط v33(E1) عند التردد 1214 سم-1.

- ترددات الانحناء الحلقية (δCCC)

وتتراوح القيم العددية لتردداتها المحسوبة بين (448–1155) سم-1, وبالتدقيق في (جدول-2) يمكن ملاحظة أن أعلى شدة للانماط الفعالة في طيف الاشعة تحت الحمراء 36.256 كم/ مول وتعود للنمط 45 $\sqrt{2}$ عند التردد 543 سم-1.

ترددات انحناء الاصرة VCH

وتتراوح القيم العددية لتردداتها المحسوبة بين (706-993) سم-1، وبالتدقيق في (جدول-2) يمكن ملاحظة أن أعلى شدة للانماط الفعالة في طيف الاشعة تحت الحمراء 144.421 كم/ مول، وتعود للنمط (E1) 939 عند التردد 822 سم-1.

ترددات الانحناء الحلقية (YCCC)

وتتراوح الترددات الاهتزازية المحسوبة بين (187-865) سم-1, وبالتدقيق في (جدول-2) يمكن ملاحظة أن أعلى شدة للانماط الفعالة في طيف الاشعة تحت الحمراء 74.202 كم/ مول ، وتعود للنمط (E1) v37 عند التردد 865 سم-1 .

ولا يوجد في الأدبيات مايشير إلى التصنيف التماثلي والتكافؤي التام لترددات الاهتزاز و بعدد 3N-6 سواء للجزيئات المنفردة المحسوبة لأمثال هذه الجزيئة أو للانابيب التي وحدة بنائها هذه الجزيئة وفق طريقة (DFT) [20] ، رغم كل ما ورد عن أهمية دراسة الحركات الاهتزازية وتصنيفها وطبيعتها في هذه الانابيب، لذا قمنا بهذه الدراسة و تعد حساباتنا تنبؤية تامة.

ويوضح جدول (2) ترددات وشدد امتصاص الاشعة تحت الحمراء بعدد 6-3N (متضمنة الاصناف الفعالة في طيف الاشعة تحت الحمراء (شدة الامتصاص لها (0.0 **))، والاصناف غير الفعالة في طيف الاشعة تحت الحمراء (شدة الامتصاص لها (0.0 **)، مع التصنيف التكافؤي و التماثلي لها وبدقة وفق نظرية المجموعة، مع تعيين جميع ألانماط الاهتزازية العائدة للحركات الانبعاجية و التنفسية والانحنائية باتجاه وعكس اتجاه عقرب الساعة، و التي تعود اليها التشوهات الحاصلة في أنابيب النانوكاربون من جراء الاهتزاز، و وفق هيرزبرك لتسلسل الانماط التماثلية [21].

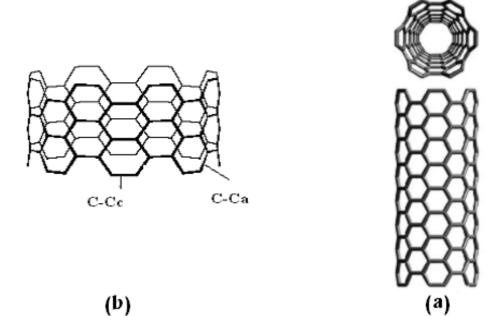
ويبين (شكل -4) الاشكال البيانية الواصفة لبعض أنماط الحركة الاهتزازية لجزيئة [6] سايكلاسين (Armchair)، كما تم حسابها وفق طريقة الحساب DFT ، وتصنيفها اعتمادا على الحركات الواصفة لها باستخدام برنامج Gaussian 03.

وعند مقارنة ترددات الاهتزاز لهذه الجزيئة مع الترددات المناظرة لها في جزيئة الفينانثرين الاروماتية المسطحة Planar والتي تم حسابها بنفس طريقة واسلوب وعناصر قاعدة الحساب (B3LYP/6-311G) (جدول-3)، يلاحظ أن قيم ترددات الاهتزاز لجزيئة السايكلاسين أوطأ مما هي في جزيئة الفينانثرين، يشير هذا الى أن ثوابت القوى لترددات هذه الجزيئة أقل والى أن الاواصر العائدة لها اضعف مما هي عليه في جزيئةالفينانثرين والى كون جزيئة السايكلاسين اقل استقرارا يؤكده حرارة التكوين المحسوبة لها $\Delta H = 297.97$ الفينانثرين ($\Delta H = 297.97$)، وفق نفس طريقة الفينانثرين ($\Delta H = 297.97$)، وفق نفس طريقة المينانثرين ($\Delta H = 54.864$ kcal/mol)، وفق نفس طريقة الحساب، و يعزى ذلك الى الشد الحلقي لمتسبب عند لف الحلقات الروماتية بغرض تكوين الطوق الحلقي لجزيئة السايكلاسين.وأخيرا تمت دراسة توزيع الشحنة الالكترونية على ذرات هذه الجزيئة حيث وجد تمركزها بصورة رئيسة عند ذرات الهايدروجين (ذات الشحنات المالبة) و عند ذرات الهايدروجين (ذات الشحنات المالبة)

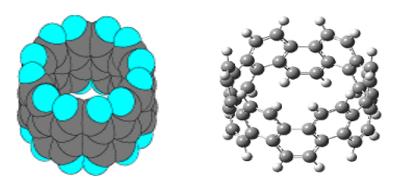
- 8- Iijima S, Brabec C, Maiti A, and Bernholc J. (1996). Structural flexibility of carbon nanotubes. Journal of Chemical Physics; 104(5): 2089–92.
- 9- Hamada, N., Sawada, S. & Oshiyama, (1992). ANew one-dimensional conductors: graphitic microtubules. Phys. Rev. Lett.; 68: 1579–1581.
- 10- Budyka M.F., Zyubina T.S., Ryabenko A.G., Lin S. H. And Mebel A.H. (2005). Bond Lengths and diameters of armchair single wall carbon nanotubes. Chem. Phys. Lett. :407: 266-271.
- 11- Imtani A.N. and Jinal V.K. (2006). Bond Lengths of Single-Walled Carbon Nanotubes. Dept. of Phys., Panjab University, Changdigrah-160014, India:1-11.
- 12-a- Brown T.L.L., Bursten B.E., Lemay H.E., (1999). Chemistry: The Central Science, 8th edition, Prentice-Hall. :b- Carroll, D. L. et al. (1997). Electronic structure and localized states at carbon nanotube tips. Phys. Rev. Lett.; 78: 2811–2814.
- 13- Saito, R., Fujita, M., Dresselhaus, G. and Dresselhaus, M. S. (1992). Electronic structure of graphene tubules based on C60. Phys. Rev. B 46, 1804–1811.
- 14- Collins PG, Avouris P. (2000). Nanotubes for electronics. Scientific American; 283(6): 62–9.
- 15- Ramani K.A. and Chadl H. (2006). Infrared spectroscopy of SWCNTs. J. phys.chem.; B. 110 (25): 12388-12393.
- 16- U. Kuhlman, H. Jantoljak, N. Pfander, P. Bernier, C. Journet and C. Thomsen, Chem. Phys. Lett. 294, 237-240, (1998).
- 17- Science direct-surface science Reports; (2005). Electronic and vibrational properties of chemically modified (SWCNTs), Article Tool book, Maxplank-Institutfuer, Germany, vol. 58, Issues 4, p. 1-5, August.
- 18- Vitali L., Bughard M., Schneider M.A., LeiLiu Y.Wu., Jayanthi C. and Kem K. (2004). Photon Spectromicroscopy of Carbon Nanostructures with Atomic Resolution. Phys. Rev. Lett.; 93:136103.
- 19- Davidson G. (1990). Introduction to group theory for Chemists. Applied Science Publishers Ltd. London, Elsevier Publishing Comp. Ltd.
- 20- Andzelm J.W. Labanowski and J.K. (1991). Density Functional Methods in Chemistry, Springer-Verlag, NewYork.
- 21- Herzberg G. (1971). Molecular Spectra and Molecular Structure, Infrared and Raman spectra of

في حين تتضائل عند ذرات الكاربون البعيدة عن الحواف الخارجية للجزيئة.

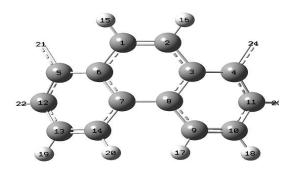
ويتضح هذا في الشكل (5) حيث يلاحظ ان الشحنة الالكترونية على ذرات الكاربون عند حافة الطوق النانوكاربوني اكبر -) (0.132 للجزيئة وهذه اكبر سالبية من الشحنات على ذرات الكاربون الداخلية المساوية الى (0.027).


وتتوافق هذه النتائج مع أطوال الاواصر (جدول-1) فالاقصر هي التي تتمركز عندها الشحنة الالكترونية بدرجة أكبر وهي التي ترددات الاهتزاز لها أكبر (جدول-2).

وتتوافق هذه النتائج أيضا مع مااشير اليه في الادبيات حول طبيعة توزيع الشحنة الالكترونية في أنابيب النانوكاربون المتشاكلة من امثال هذه الجزيئات، ومن أن الشحنات الالكترونية تتنقل ميكانيكياً في انابيب النانوكاربون بين الاغلفة الخارجية من انبوب الى اخر -5,23] ومع النتائج التي تم الحصول عليها عند حساب توزيع الشحنة الالكترونية لجزيئات سايكلاسين (Mono rings) بأنواع اخرى Zig وكلاسين (Chiral وZag) باستخدام حسابات ميكانيك الكم شبه التجريبية (Chiral وCMINDO/3)


المصادر

- 1-Meyyappan M. and Srivastava D. (2000). Cabon nanotube, Nasa Ames, Research center, Article. :16-18.
- 2- Ijima S. (1991). Helical microtubules of graphitic carbon. Nature; 354: 56–58.
- 3- Zettl A. and Cummings J. (2003). Electro mechanical properties of MWCNT. Department of phys.Univ. Calefornia, Ca.; 94: 720, U.S.A.
- 4- Xie S, Li W, Pan Z, Chang B, Sun L. (2000). Mechanical and physical properties on carbon nanotube. Journal of Physics and Chemistry of Solids; 61(7): 1153–1158.
- 5- Krcmar M., Saslow W.M. and Zangwill A. (2003). Electrostatic of Conducting Nanocylinder. J. Appl. phys.; 93: 3495-3500.
- 6- Ruoff RS, Lorents DC. (1995). Mechanical and thermal-properties of carbon nanotubes. Carbon; 33(7): 925–30.
- 7- Gulseren O., Yildirim T. and Ciraci S. (2002). Systematic ab initio study of curvature effects in carbon nanotubes. J. Phys. Rev.; B 65: 153405.


- 24- Zhang, Z. & Lieber, C. M. (1993). Nanotube structure and electronic properties probed by STM. Appl. Phys.Lett.;62:2972–2974.
- 25- Al-Ani H. N. (2009). Theoretical study of vibration modes for Cyclacene and Collarene molecules. M.Sc. Thesis, College of Science, University of Baghdad.
- Polyatomic Molecules, Van Nostrand Co, New York.
- 22- Lewars E. (2003) COMPUTATIONAL CHEMISTRY "Introduction to the Theory and Applications of Molecular and Quantum Mechanics".,Chemistry Department, Trent University, Peterborough, Ontario, Canada.
- 23- Odom T.W., Huang J., Kim P. and Lieber C.M. (2000). Structure and electronic properties of CNT. J. Phy. Chem.;104: 2794-2809,

(شكل -1): (a) انبوب نانوكاربون احادي الطبقة نوع Armchair، (b) الشكل الهندسي الفراغي لجزيئة [6]سايكلاسين نوع (شكل -1): (C-Cc) المتجهه على طول محيط (Armchair، تتوضح فيه اواصر (C-Cc) المتجهه على طول محيط الجزيئة.

(شكل-2): جزيئة [6] سايكلاسين نوع (Armchair) كما تم حسابها وفق طريقة الحساب DFT.

(شكل-3): مقطع الاواصر والزوايا المتكرر وفق تماثل الشكل الهندسي الفراغي التوازني (D6d) لجزيئة [6]سايكلاسين نوع (شكل-1).

(جدول-1): اطوال وزوايا التآصر لجزيئة [6] سايكلاسين نوع (Armchair) وفق تماثل الشكل الهندسي الفراغي التوازني (D6d)، مع بعض الصفات الفيزياوية.

Bond length (Å) and Bond angles (deg.)	(DFT) B3LYP/ 6-311G				
C_1C_2***	1.366				
C_1C_6*	1.435				
C7C8**	1.452				
C_6C_7*	1.417				
C_1H_{15}	1.080				
C_2H_{16}	1.080				
$< C_2C_1C_6$	120.651				
$< C_2C_1H_{15}$	119.119				
$< C_2C_3C_4$	121.630				
$< C_2C_3C_8$	119.062				
$< C_2C_3C_4$	117.399				
$< C_3C_8C_7$	119.075				
$< C_3C_8C_9$	117.399				
$< C_8 C_9 C_{10}$	120.651				
$< C_8 C_9 H_{17}$	119.866				
Molecular formula	$C_{48}H_{24}$				
Point group	D_{6d}				
m.wt. (gm/mol)	600.718				
ΔH _f (kcal/mol)	297.977				
Length (Å)	5.545				
Diameter (Å)	8.383				
HOMO (eV)	- 8.066				
LUMO (eV)	- 1.257				

^{*:} axial bond., **: Circumference bond.

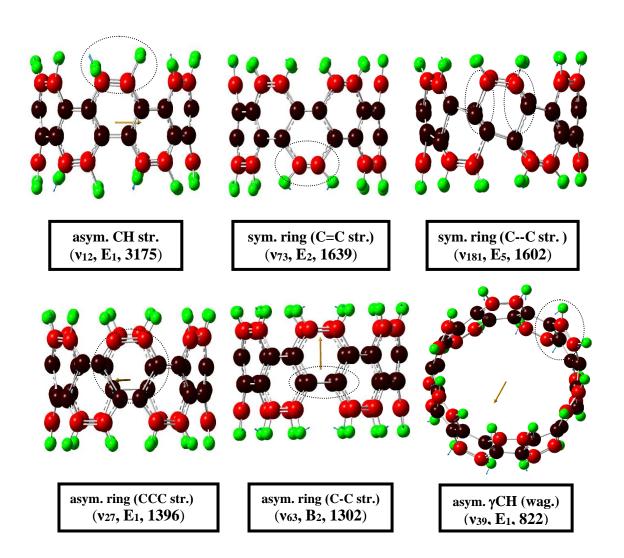
(جدول-2): ترددات الاهتزاز وشدة امتصاص الاشعة تحت الحمراء كما تم حسابها عند الشكل الهندسي التوازني لجزيئة [6] سايكلاسين (Armchair).

Freq. cm ⁻¹	km/mol
A ₁	
v_1 CH str. 3083	0.000
v_2 ring (C=C str.) 1634	0.000
v_3 ring (CC-c str.) 1406	0.000
v_4 ring (C-C str.) + δ CH 1334	0.000
v_5 δ CH (sciss.) 1222	0.000
ν ₆ γCH (wag.) 810	0.000
v_7 $\delta \text{ring } (\delta \text{CCC}) \text{ (elongation)}$ 662	0.000
v_8 γring (γCCC) (breath.) + γCH (wag.) 346	0.000
$ν_9$ γring (γCCC) (breath.) 226	0.000
B ₁	
v_{10} CH str. 3046	0.000
$v_{11} = ring (CC str.)$ 1596	0.000
v_{12} δ CH (rock.) 1474	0.000
v_{13} δ CH (rock.) + δ ring (δ CCC)(clock & anti clockwise) 1154	0.000
v_{14} γ CH (twist.) 963	0.000
v_{15} $\delta ring (\delta CCC)$ 884	0.000
v_{16} $\gamma ring (\gamma CCC) (puckering)$ 635	0.000
v_{17} $\delta ring (\delta CCC) (clock & anticlockwise)$ 448	0.000
v_{18} yring (yCCC) (puckering) 398	0.000
E ₁	
ν ₁₉ CH str. 3080	42.581
v_{20} CH str. 3080	42.581
ν ₂₁ CH str. 3048	9.982
ν ₂₂ CH str. 3048	9.982
v_{23} ring (C=C str.) 1635	21.624
v_{24} ring (C=C str.) 1635	21.624
v_{25} δ CH (rock.) 1495	13.437
v_{26} δ CH (rock.) 1495	13.437
ν ₂₇ ring (CCC str.) 1396	5.348
v_{28} ring (CCC str.) 1396	5.348
v_{29} ring (CCC str.)+ δ CH (sciss.) 1359	7.345
v_{30} ring (CCC str.)+ δ CH (sciss.) 1359	7.345
v_{31} δ CH (rock .) + δ ring (δ CCC) 1266	4.175
v_{32} δ CH (rock.) + δ ring (δ CCC) 1266	4.175
v_{33} δ CH (sciss.) 1214	26.290
v_{34} δ CH (sciss.) 1214	26.290
v_{35} γ (CH) (twist.) 976	20.347
v_{36} γ (CH) (twist.) 976	20.347
v_{37} $\gamma ring (CCC) + \gamma CH (wag.)$ 865	74.202
v_{38} $\gamma ring (CCC) + \gamma CH (wag.)$ 865	74.202

	T T		I
V39	γ CH (wag .) + γ ring (CCC)	822	144.421
v_{40}	γ CH (wag .) + γ ring (γ CCC)	822	144.421
V41	γ CH (wag .) + γ ring (γ CCC)	763	16.591
v_{42}	γ CH (wag .) + γ ring (γ CCC)	763	16.591
V43	δring (δCCC) (elongation)	635	2.142
V44	δring (δCCC) (elongation)	635	2.142
V45	δ ring (δ CCC) + δ CH (\mathbf{rock} .)	543	36.256
V ₄₆	δ ring (δ CCC) + δ CH (rock .)	543	36.256
V47	γ ring (γ CCC) + γ (CH) (twist .)	425	20.585
ν ₄₈	γ ring (γ CCC) + γ (CH) (twist .)	425	20.585
ν ₄₉	γring (γCCC) (puckering)	347	22.994
ν ₅₀	γring (γCCC) (puckering)	347	22.994
V ₅₁	γring (γCCC) (puckering)	250	10.749
V ₅₂	γring (γCCC) (puckering)	250	10.749
A ₂	fing (feee) (puckering)		100715
	CH str.	3046	0.000
V53	$\delta CH (\mathbf{rock.}) + \delta ring (\delta CCC)$	1487	0.000
V54	δCH (rock.)	1275	0.000
V55	γCH (twist.)	968	0.000
ν ₅₆	γCH (twist.) δring (δCCC) (clock & anti clock wise)	850	0.000
ν ₅₇			
ν ₅₈	γring (γCCC) (puckering)	792 552	0.000
ν ₅₉	δring (δCCC)		0.000
ν ₆₀	γring (γCCC) (puckering)	372	0.000
\mathbf{B}_2			
	CH	2002	102.000
V ₆₁	CH str.	3082	193.009
	ring (C=C str.)	1530	10.436
V ₆₁	ring (C=C str.) ring (CCC str.)+ δCH (sciss.)	1530 1302	10.436 66.010
V ₆₁	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.)	1530 1302 1195	10.436 66.010 0.528
V ₆₁ V ₆₂ V ₆₃	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.)	1530 1302 1195 1009	10.436 66.010 0.528 0.078
V61 V62 V63 V64	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.)	1530 1302 1195 1009 803	10.436 66.010 0.528 0.078 0.018
V61 V62 V63 V64 V65	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.) γring (γCCC) (breath.)+ γCH (wag.)	1530 1302 1195 1009 803 530	10.436 66.010 0.528 0.078 0.018 2.968
V61 V62 V63 V64 V65 V66 V67	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.)	1530 1302 1195 1009 803	10.436 66.010 0.528 0.078 0.018
V61 V62 V63 V64 V65 V66 V67	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.) γring (γCCC) (breath.)+ γCH (wag.) γring (γCCC) (breath.)	1530 1302 1195 1009 803 530 184	10.436 66.010 0.528 0.078 0.018 2.968 0.027
V61 V62 V63 V64 V65 V66 V67	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.) γring (γCCC) (breath.)+ γCH (wag.) γring (γCCC) (breath.)	1530 1302 1195 1009 803 530 184	10.436 66.010 0.528 0.078 0.018 2.968 0.027
V61 V62 V63 V64 V65 V66 V67 V68 E 2	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.) γring (γCCC) (breath.)+ γCH (wag.) γring (γCCC) (breath.) CH str. CH str.	1530 1302 1195 1009 803 530 184 3074	10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000
V61 V62 V63 V64 V65 V66 V67 V68 E 2	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.) γring (γCCC) (breath.)+ γCH (wag.) γring (γCCC) (breath.) CH str. CH str. CH str.	1530 1302 1195 1009 803 530 184 3074 3074 3055	10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000
V61 V62 V63 V64 V65 V66 V67 V68 E2 V69	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.) γring (γCCC) (breath.)+ γCH (wag.) γring (γCCC) (breath.) CH str. CH str.	1530 1302 1195 1009 803 530 184 3074 3074 3055 3055	10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000
V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.) γring (γCCC) (breath.)+ γCH (wag.) γring (γCCC) (breath.) CH str. CH str. CH str. CH str. ring (C=C str.)	1530 1302 1195 1009 803 530 184 3074 3074 3075 3055 3055	10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000
V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70 V71	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.) γring (γCCC) (breath.)+ γCH (wag.) γring (γCCC) (breath.) CH str. CH str. CH str. CH str. ring (C=C str.) ring (C=C str.)	1530 1302 1195 1009 803 530 184 3074 3074 3055 3055 1639 1639	10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000
V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70 V71 V72	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.) γring (γCCC) (breath.)+ γCH (wag.) γring (γCCC) (breath.) CH str. CH str. CH str. CH str. ring (C=C str.)	1530 1302 1195 1009 803 530 184 3074 3074 3075 3055 3055	10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000
V61 V62 V63 V64 V65 V66 V67 V68 E 2 V69 V70 V71 V72 V73	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.) γring (γCCC) (breath.)+ γCH (wag.) γring (γCCC) (breath.) CH str. CH str. CH str. CH str. ring (C=C str.) ring (C=C str.)	1530 1302 1195 1009 803 530 184 3074 3074 3055 3055 1639 1639	10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000 0.000 0.000
V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70 V71 V72 V73 V74	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.) γring (γCCC) (breath.)+ γCH (wag.) γring (γCCC) (breath.) CH str. CH str. CH str. CH str. ring (C=C str.) ring (C=C str.) ring (C-C str.) + δCH	1530 1302 1195 1009 803 530 184 3074 3074 3055 3055 1639 1639 1515	10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000
V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70 V71 V72 V73 V74 V75	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.) γring (γCCC) (breath.)+ γCH (wag.) γring (γCCC) (breath.) CH str. CH str. CH str. CH str. ring (C=C str.) ring (C=C str.) ring (C-C str.) + δCH ring (C-C str.) + δCH	1530 1302 1195 1009 803 530 184 3074 3074 3055 3055 1639 1639 1515 1515	10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70 V71 V72 V73 V74 V75 V76	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.) γring (γCCC) (breath.)+ γCH (wag.) γring (γCCC) (breath.) CH str. CH str. CH str. ring (C=C str.) ring (C=C str.) ring (C-C str.) + δCH ring (C-C str.) + δCH ring (C-C str.) + δCH	1530 1302 1195 1009 803 530 184 3074 3074 3055 3055 1639 1639 1515 1515 1397	10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70 V71 V72 V73 V74 V75 V76	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.) γring (γCCC) (breath.)+ γCH (wag.) γring (γCCC) (breath.) CH str. CH str. CH str. CH str. ring (C=C str.) ring (C=C str.) ring (C-C str.) + δCH	1530 1302 1195 1009 803 530 184 3074 3074 3055 3055 1639 1639 1515 1515 1397 1397	10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
V61 V62 V63 V64 V65 V66 V67 V68 E2 V70 V71 V72 V73 V74 V75 V76 V77	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.) γring (γCCC) (breath.)+ γCH (wag.) γring (γCCC) (breath.) CH str. CH str. CH str. ring (C=C str.) ring (C=C str.) ring (C-C str.) + δCH	1530 1302 1195 1009 803 530 184 3074 3074 3055 3055 1639 1639 1515 1515 1397 1397 1379	10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
V61 V62 V63 V64 V65 V66 V67 V68 E2 V69 V70 V71 V72 V73 V74 V75 V76 V77 V78	ring (C=C str.) ring (CCC str.)+ δCH (sciss.) ring (CCC str.)+ δCH (sciss.) δring (δCCC) + δCH (sciss.) γCH (wag.) γring (γCCC) (breath.)+ γCH (wag.) γring (γCCC) (breath.) CH str. CH str. CH str. ring (C=C str.) ring (C=C str.) ring (C-C str.) + δCH	1530 1302 1195 1009 803 530 184 3074 3074 3074 3055 3055 1639 1639 1515 1515 1397 1397 1379	10.436 66.010 0.528 0.078 0.018 2.968 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ν ₈₃	δCH (sciss.)	1199	0.000
V ₈₄	δCH (sciss.)	1199	0.000
V85	γCH (twist.)	991	0.000
ν ₈₆	γCH (twist.)	991	0.000
ν ₈₇	δring (δCCC)	885	0.000
ν ₈₈	δring (δCCC)	885	0.000
V89	γ CH (wag .) + γ ring (γ CCC)	828	0.000
ν ₉₀	γ CH (wag .) + γ ring (γ CCC)	828	0.000
V91	γ CH (twist .) + γ ring (γ CCC)	731	0.000
ν ₉₂	γCH (twist .) + γring (γCCC)	731	0.000
V ₉₃	γring (γCCC) (puckering)	595	0.000
V ₉₄	γring (γCCC) (puckering)	595	0.000
V ₉₅	γring (γCCC) (puckering)	560	0.000
V ₉₆	γring (γCCC) (puckering)	560	0.000
V97	γring (γCCC) (puckering)	460	0.000
V98	γring (γCCC) (puckering)	460	0.000
V 99	γring (γCCC) (puckering)	439	0.000
ν ₁₀₀	γring (γCCC) (puckering)	439	0.000
ν ₁₀₁	γring (γCCC) (puckering)	194	0.000
V ₁₀₂	γring (γCCC) (puckering)	194	0.000
ν ₁₀₃	γring (γCCC) (breathing)	43	0.000
V ₁₀₄ E ₃	γring (γCCC) (breathing)	43	0.000
V ₁₀₅	CH str.	3067	0.000
V ₁₀₅	CH str.	3067	0.000
V ₁₀₇	CH str.	3061	0.000
ν ₁₀₈	CH str.	3061	0.000
V ₁₀₉	ring (C=C str.)	1630	0.000
ν ₁₁₀	ring (C=C str.)	1630	0.000
ν ₁₁₁	ring (CC-C str.) + δ CH (rock.)	1541	0.000
V ₁₁₂	ring (CC-C str.) + δ CH (rock.)	1541	0.000
ν ₁₁₃	ring (CC str.) + δ CH (rock.)	1416	0.000
ν_{114}	ring (CC str.) + δ CH (rock.)	1416	0.000
ν ₁₁₅	δ CH (rock .) + ring (CC str .)	1259	0.000
ν ₁₁₆	δ CH (rock .) + ring (CC str .)	1259	0.000
ν_{117}	δ CH (sciss.) + ring (CC str.)	1258	0.000
ν ₁₁₈	δ CH (sciss.) + ring (CC str.)	1258	0.000
ν ₁₁₉	δCH (sciss.)	1180	0.000
V ₁₂₀	δCH (sciss.)	1180	0.000
V121	γCH (twist.)	999	0.000
V ₁₂₂	γCH (twist.)	999	0.000
V ₁₂₃	δring (δCCC)	909	0.000
V124	δring (δCCC)	909	0.000
ν ₁₂₅	γCH (wag.) + γring (γCCC)	828	0.000
V126	γCH (wag.) + γring (γCCC)	828	0.000
V127	γ CH (wag.) + γ ring (γ CCC)	706	0.000
ν_{128}	γ CH (wag .) + γ ring (γ CCC)	706	0.000

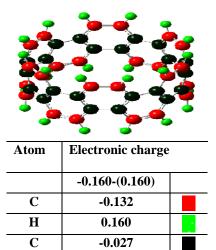
_		.	T
ν_{129}	γ ring (γ CCC) + γ CH (wag .)	689	0.000
ν_{130}	γ ring (γ CCC) + γ CH (wag .)	689	0.000
V ₁₃₁	γring (γCCC) (puckering)	564	0.000
ν_{132}	γring (γCCC) (puckering)	564	0.000
V ₁₃₃	γring (γCCC) (puckering)	500	0.000
V134	γring (γCCC) (puckering)	500	0.000
V ₁₃₅	γring (γCCC) (puckering)	362	0.000
V ₁₃₆	γring (γCCC) (puckering)	362	0.000
V ₁₃₇	γring (γCCC) (puckering)	149	0.000
ν_{138}	γring (γCCC) (puckering)	149	0.000
ν_{139}	γring (γCCC) (puckering)	100	0.000
ν_{140}	γring (γCCC) (puckering)	100	0.000
E ₄			
V ₁₄₁	CH str.	3074	0.000
V ₁₄₂	CH str.	3074	0.000
V ₁₄₃	CH str.	3055	0.000
V ₁₄₄	CH str.	3055	0.000
V ₁₄₅	ring (C=C str.)	1614	0.000
ν_{146}	ring (C=C str.)	1614	0.000
ν_{147}	ring (CC str.)+ δCH (rock.)	1557	0.000
ν_{148}	ring (CC str.)+ δCH (rock.)	1557	0.000
V ₁₄₉	ring (CC str.)+ δCH (rock.)	1430	0.000
V ₁₅₀	ring (CC str.)+ δCH (rock.)	1430	0.000
V ₁₅₁	ring (C-C str.)+ δCH	1315	0.000
V ₁₅₂	ring (C-C str.)+ δCH	1315	0.000
V ₁₅₃	δCH (sciss.)	1251	0.000
ν_{154}	δCH (sciss.)	1251	0.000
V ₁₅₅	$\delta \text{ring (CCC)} + \delta \text{CH}$	1167	0.000
V ₁₅₆	δring (CCC) + δCH	1167	0.000
V ₁₅₇	γCH (twist.)	992	0.000
V ₁₅₈	γCH (twist.)	992	0.000
V ₁₅₉	$\delta \text{ring (CCC)} + \delta \text{CH (rock.)}$	947	0.000
ν ₁₆₀	δ ring (CCC) + δ CH (rock.)	947	0.000
ν ₁₆₁	γCH (wag.)	823	0.000
ν ₁₆₂	γCH (wag.)	823	0.000
ν ₁₆₃	yring (γCCC)	804	0.000
ν ₁₆₄	yring (γCCC)	804	0.000
ν ₁₆₅	$ \gamma \text{ring } (\gamma \text{CCC}) + \gamma \text{CH } (\mathbf{wag.}) $	660	0.000
ν ₁₆₆	$ \gamma \text{ring } (\gamma \text{CCC}) + \gamma \text{CH } (\mathbf{wag.}) $	660	0.000
ν ₁₆₇	$ \gamma \text{ring } (\gamma \text{CCC}) + \gamma \text{CH } (\text{wag.}) $	566	0.000
ν ₁₆₈	$ \gamma \text{ring } (\gamma \text{CCC}) + \gamma \text{CH } (\text{wag.}) $ $ \delta \text{ring } (\delta \text{CCC}) (\text{elargetian}) $	566	0.000
ν ₁₆₉	$\delta \text{ring } (\delta CCC) \text{ (elongation)}$ $\delta \text{ring } (\delta CCC) \text{ (elongation)}$	506	0.000
ν ₁₇₀	δring (δCCC) (elongation)	506	0.000
ν ₁₇₁	yring (γCCC) (puckering)	280	0.000
V ₁₇₂	yring (γCCC) (puckering)	280	0.000
ν ₁₇₃	yring (γCCC) (puckering)	204	0.000
v_{174}	γring (γCCC) (puckering)	204	0.000


(JUAPS) مجلة جامعة الإنبار للعلوم 2011 (5), (1) :25-37

V ₁₇₅	γring (γCCC) (puckering)	62	0.000
ν ₁₇₆	γring (γCCC) (puckering)	62	0.000
E 5			
ν177	CH str.	3080	0.000
ν ₁₇₈	CH str.	3080	0.000
V179	CH str.	3048	0.000
ν ₁₈₀	CH str.	3048	0.000
ν ₁₈₁	ring (C=C str.)	1602	0.000
ν ₁₈₂	ring (C=C str.)	1602	0.000
ν ₁₈₃	ring (C=C str.)	1544	0.000
ν ₁₈₄	ring (C=C str.)	1544	0.000
V ₁₈₅	ring (CCC str.) + δ CH	1456	0.000
ν ₁₈₆	ring (CCC str.) + δ CH	1456	0.000
V187	δ CH (sciss.) + ring (CCC str.)	1292	0.000
ν ₁₈₈	δ ring (δ CCC) + δ CH (sciss.)	1292	0.000
V189	δ CH (sciss.) + ring (CCC str.)	1229	0.000
V190	δ CH (sciss.) + ring (CCC str.)	1229	0.000
V191	δring (δCCC)	1155	0.000
ν_{192}	δring (δCCC)	1155	0.000
ν ₁₉₃	γCH (twist .)	989	0.000
ν_{194}	γCH (twist .)	989	0.000
V ₁₉₅	γCH (twist .)	972	0.000
V ₁₉₆	γCH (twist .)	972	0.000
V ₁₉₇	δ ring (δ CCC) (elongation)	867	0.000
ν_{198}	δ ring (δ CCC) (elongation)	867	0.000
V199	γCH (wag .)	810	0.000
V ₂₀₀	γCH (wag .)	810	0.000
V201	γ ring (γ C=C) (puck.) + γ CH (twist .)	615	0.000
V202	γ ring (γ C=C) (puck.) + γ CH (twist .)	615	0.000
V ₂₀₃	γ ring (γ C-C) + γ CH (wag .)	584	0.000
V204	γ ring (γ C-C) + γ CH (wag .)	584	0.000
V205	δring (δCCC)(clock & anticlockwise)	471	0.000
V ₂₀₆	δring (δCCC) (clock & anticlockwise)	471	0.000
V ₂₀₇	γring (γCCC) (puckering)	336	0.000
v_{208}	γring (γCCC) (puckering)	336	0.000
V ₂₀₉	γ ring (γ C=C) (puckering)	187	0.000
ν_{210}	γ ring (γ C=C) (puckering)	187	0.000

Scaling factors: 0.96 (CH str.) for all DFT (B3LYP/6-311G) frequencies, [22].

(breath.): ring breathing mode بالتنفسية, (puck.): ring puckering mode. (kiss.): CH rocking mode. (kiss.): CH scissoring mode. (kiss.): CH twisting mode. (hibrary), (wag.): CH wagging mode. التأرجحية


 $[\]gamma$: Out of plane of the molecule., δ : In- plane of the molecule.

شكل (4): الاشكال البيانية الواصفة لبعض أنماط الحركة الاهتزازية لجزيئة [6] سايكلاسين (Armchair)، كما تم حسابها وفق طريقة الحساب DFT و باستخدام برنامج Gaussian 3.

(جدول-3): مقارنة ترددات الاهتزاز (cm-1) لجزيئة [6] سايكلاسين Armchair مع ترددات الاهتزاز المناظرة في جزيئة الفينانثرين المسطحة Planar.

Molecule	C-H sym.	C-H asym.	CCa sym.	CCa asym.	CCc sym.	CCc asym.	δCH sym.	δCH asym	γCH sym.	γCH asym.
[6] Cyclacene armchair D _{6d}	3067 A _{1g}	3055 B _{1g}	1531 A _{1g}	1457 B _{1u}		1411 B _{1g}	1222 A ₁	1274 B _{2g}	956 A _{1g}	936 E _{1g}
Phenanthrene (C _{2v})	3209 A ₁	3198 B ₂	1644 A ₁	1656 B ₁	1662 A ₁		1341 A ₁	1328 B ₂	1005 A ₂	1021 B ₁

DFT CALCULATED FOR VIBRATION FREQUENCIES AND IR ABSORPTION INTENSITIES OF [6] CYCLACENE (ARMCHAIR) MOLECULE

REHAB M. KUBBA

ABSTRACT.:

The (3N-6) vibration frequencies and IR-absorption intensities of [6] Cyclacene (Armchair) (D6d) molecule were calculated applying Density Functional Theory (DFT) of the type (B3LYP) and a Gaussian basis (6-311G) method. Comparison of the results showed that for the C-H stretching vibrations, the sym. mode shows higher frequency values than the asym. The reverse was found for C-C stretching vibrations., and the following relations hold:

```
sym.CH str. > vasym. CH str. and, in general :vsym CC str. < vasym. CC str. v C=C str. (circum.) > v C--C str. (axial.) > v C-C str. (circum.)
```

where's:vsym (C=C str.) < vasym (C=C str.) Circumference , vsym (C--C str.) < vasym (C--C str.) axial , vsym (C-C str.) < vasym (C-C str.) Circumference

Assignment and determined with accurately, were done for all modes of vibration related to puckering, breathing and clock-anticlock bending vibrations.

Also calculations and studying the distribution of charge density on the atoms of the molecule. The results agree with the others in the literature, and with the physical properties and conductivity of tubes constructed from similar molecules.