Nidaa F. Hassan

Computer Science Department, University of Technology, Baghdad, Iraq. <u>nidaaalalousi_5@yahoo.com</u>

Rusul N. Abbas

Computer Science Department, University of Technology, Baghdad, Iraq rasulaalkhaffaji@yahoo.com

Received on: 08/12/2015 Accepted on: 23/02/2017

Proposed Video Watermarking Algorithm based on Edge or Corner Regions

Abstract- In this research, a watermark algorithm is proposed to embed a secret message in a digital video. The proposed algorithm exploits edges and corners regions in images, to be hosts for hiding secret bits. Embedding in these regions is consider optimal since these regions featuring with colors variation, so embedding will not effect on uniform distribution of colors, and on transparency requirement. The process of embedding and extracting watermarked massage is implemented by decomposition digital video to several images (frames), then selecting the edges and corners regions to be host locations, Least Significant Bit (LSB) techniques are used to embed watermarked message in images of digital video. Investigations results proved that number of hidden bits in corner region is small in comparison with edges regions, but it is harder to detect. Text message before embedded in video frames is encrypted by Advanced Encryption Algorithm (AES) to increase security and robustness of watermarking process.

Keywords- Video Watermarking, Edge Detection, Corner Detection and Statistical Attacks.

How to cite this article: N.F. Hassan and R.N. Abbas, "Proposed Video Watermarking Algorithm based on Edge or Corner Regions" Engineering and Technology Journal, Vol. 36, Part B, No. 1, pp. 25-32, 2018

1. Introduction

In the recent years, there are many topics became more popular in the security field. one of these topics is watermarking technique which means protecting of data or information, this technique divides in two types :Visible watermarking and Non-visible watermarking, and both types are implemented by : embedding the logo inside video cover, and extracting process which **1**. extracted logo information from the watermarked video [1].

There are also watermarking techniques for audio, video, and text data. Digital watermarking techniques provide high security to digital content by allowing only authorized person to modify or detect [2].

Video watermarking is unlike image watermarking, due to the availability of an extra data that allows information to be more redundantly and reliably to embedding [3].

The goal of research preserves the hidden of secret messages, so that the attacker cannot discover or a doubt the existence of a message. There are some attacks (statistical attacks) that can discover watermark and detect it, this can be considered as the problem of this research. Therefore, an improved algorithm is proposed to avoid these statistical attacks.

2. Video Watermarking

Video watermarking is comparatively a new technology that has been projected to solve the

problem of illegal manipulation and distribution of digital video. Video watermarking embeds data in the video for the purpose of identification, annotation and copyright. In various ways, a number of videos watermarking techniques have been used, in order to obtain a robust watermark and to maintain original video fidelity [4].

3. Edge and Corner Regions

Boundaries are essential in image processing that characterized by edges, since edges commonly take place on the boundary between two different regions in an image. Edge detection allows user to recognize those image features, where there is a more or less intense change in gray level or texture, so edge illustrates the end of one region in the image and the beginning of another [5].

There many methods used for edge detection, the most important methods are: Sobel, Prewitt, Kirsch and Canny; these methods have been presented to identify changes in images [6].

Corners are characterized by being the points that have high curvature and lie in the junction of different brightness regions of images which give them an important local feature in the images, even with a variety of image features, corners are not influenced by illumination and having the property of rotational invariance. Extracting corner from images represents a lot of sensitive information and the most popular corner detectors is Harris corner detection algorithm [7].

https://doi.org/10.30684/etj.36.1B.4 2412-0758/University of Technology-Iraq, Baghdad, Iraq

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

Harris corners detector detect the common points (Interest Points) between the two images, these points (Corners) have a large intensity variations between the directions around [8].

4. Related Review

There are number of researchers has focused on watermarking in video using edge and corner regions, the most recent researches are explained as follow:

Ghosh et al. [9] proposed a novel Watermarking technique whether visible and invisible watermarks are embedded in the video by using Discrete Wavelet transform (DWT) which gives an extraction edge in the copyright protection. The suggested algorithm works properly on gray scale and on video of uncompressed (AVI format) that protected a video from illegal access by embedding watermarks into video, Peak Signal to 2. Noise Ratio (PSNR) is calculated to measure efficiency of this method.

Ling & Zhang [10] proposed a novel semi-fragile watermarking video content authentication based on a hybrid feature, consisting of gray threshold and relative total variation edge feature. The watermark is encrypted and embedded invisibly into the principal diagonal of 8×8 DCT coefficients. At the receiver side, when a part of the watermarked video is tampered, the proposed approach can locate the manipulated areas. The experiment demonstrates that the proposed method can recognize malicious attacks from the common valid alterations. The proposed method is based on hybrid feature, which has higher recall, thus the method is fulfilled the requirements of video tampered areas.

Dutta [11] presented a novel region-based information theoretic approach in corner of image using the concept of region splitting, where corner detection algorithm is performed to only those regions containing more information with more intensity variation, the image is divided into a number of regions which are investigated for intensity significant variations and high information content. Corner detection algorithm is applied later to the reduced portion of the image and to improve computational efficiency by reducing the false positive corners in the image. The performance of the algorithm is heavily liable on the threshold that refers how much variations are allowed in the region containing corners and what is the minimum information content in a region.

Batra and Talwar [4] proposed a hybridwatermarking scheme for digital videos based on Singular Value Decomposition (SVD) and multilevel Discrete Wavelet Transform (DWT), the video frames are distributed into layers (RGB) and DWT sub-band decomposition of host video, for providing copyright protection together with the reliability. This watermarking scheme stands on hybrid model using singular values from watermark image after resizing by using singular values of the wavelet decomposed frame's and also embedding the watermark key with watermarks decomposed orthogonal values in the 4-level decomposition of the selected low energy band of the decomposed band. Experimental results are show that the proposed scheme is able to resist a variety of video processing attacks as well as imperceptibility, mostly in geometrical attacks.

5. The Proposed Watermarking Algorithm

The proposed Algorithm video watermarking consists of two modules, embedding and extracting modules. The following presented these two modules:

I. Embedding Module

In this module, a watermark is embedded into digital video; the host video is uncompressed video file with type AVI video file format, Figure 1 shows the general diagram of the embedding module. The following steps are explained the flow of embedding module:-

1-Apply AES algorithm to encrypt message.

2-Converting encrypted secret message into ASCII codes.

3-Conversion of ASCII codes into binary stream.

4-Open digital video format (AVI)

5-Embedding encrypted watermarked message into frames, the embedding is applied by one of two methods:

a-Embedding is done within selected edges regions using four edge detection methods (Sobel, Prewitt, Kirsch and Canny).

b-Embedding is done within selected corner regions using Harries corner detector.

6-Embedding Message (Add Watermark into Image)

The above steps are described briefly in the following sections:

1-Apply AES Algorithm to Encrypt Message

In this step, the plain text message is encrypted into cipher message by using AES Encryption algorithm. This method is applied to increase the security of embedded watermarked message by using 256-bit key.

Figure 1: Block Diagram of Embedding Module.

2-Converting Encrypted Secret Message into ASCII Codes

Each encrypted character from pervious step is converted to ASCII code, which known as (American Standard Code for Information Interchange) code to be embedded as watermark message in digital video.

3-Conversion of ASCII codes into binary stream

In this step, the encrypted message is converted to binary stream; this stream of bits is embedded in pixels within video frames by using LSB technique.

4-Open digital video format (AVI)

In this step, the AVI video file is opened, where the full path of the file video is specified. Header information of AVI video is read to extract video frames from the video file, and then video frames are extracted into separate bitmap images files. Algorithm (1) illustrates this process.

5-Embedding encrypted watermarked message into frames

In the proposed algorithm, images are used to be host for watermark by exploiting edges regions, so in this step, edge detectors are applied on images (frames) to detect edges by using four different detection methods (Sobel, Prewitt, Kirsch, and Canny). The following are the common edges operators that used in embedding watermarked:

Algorithm (1): Read AVI Video File
Input: VideoFile: (AVI Video file)
Output: Frames: (Video Frames Saved as BMP
images)
Step 1: Read Video Header
VideoHeader ← Read_Header(VideoFile)
Step 2: Create Folder to Save Video Frames
CreateFolder(DestinationFolder)
Step 3: Pass to all Video frames
• { for each frame in the Video}
For $i = 0$ to VideoHeader. frameCount -1
Extract Frame from Video File and Save as BMP
image
• {Automatically give name for each frame
in the video}
BmpFileName = Frame + i + ".bmp"
• {Save frame as BMP Image}
VideoFile. ExportBMP(i, BmpFileName)
Continue for next frame
Next i
Step 4: END

a-Sobel, Prewitt, *Kirsch and Canny Operators* Sobel operator is the simplest method that uses for edge detection. Embedding bits are done by applying the following steps:

1-Selecting video frames

2-Apply Sobel operator to first frame to detect all edges in it. This process is applied to all successive frames.

3- If the frame does not contain edges or fine edges then this frame is skipped or executed. Specify values of 3x3 filters for X axis and Y axis:

$$Sobel_Filter_X = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$
$$Sobel_Filter_Y = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix}$$
(1)

Prewitt operators, is one of edge detection which is used to detect the edges, it from Sobel detector differs by coefficients value. Kirsch operators are similar to the Sobel edge detection algorithm but it differs by number of filters and filter's coefficients value. Canny edge detector is consider as the best method for detecting edge area, where progress multi-stage algorithm to detect a wide range of edges in images from selected edge of the optimal detection. Prewitt, Kirsch and Canny are used as the same as Sobel detector.

b-Proposed Watermarking algorithm based on Corners

Harris Corner Algorithm is designed and implemented since it's an efficient method to detect best corner regions for robust watermarking process and make it difficult to discover message by the statistical attack. Algorithm (2) illustrates Harris Corner Detection Algorithm.

Algorithm	ı (2):Harri	s Corner	Detection
Algorithm	1		
Input: I	mg: (Original	bitmap image	e)
Т	'hreshold: (threshold	value for
selecting of	corner) k: (Ha	irris paramete	r k. Default
value is 0	0.04)		
S	igma: (C	Gaussian	smoothing
parameter	s)		
r: (Non-m	aximum supp	ression param	eters)
Output:	Corner-List:	corners point	s of an
	image)		
Step 1: {	Calculate par	tial difference	es of image
pixels }			
for $(y = 1)$	y < height - 1	; y++)	
for (x	= 1; x < widt	h - 1; x++)	
// Retrieve	e the pixel neig	ghborhood	
a11 = I	mg[x-1,y-1], a	12 = Img[x,y]	-1],
a13 = I	mg[x+1,y-1];		
$a21 = I_1$	mg[x-1,y], /*	* a22 */	
$a23 = I_{1}$	mg[x+1,y];		
$a31 = I_1$	mg[x-1,y+1], a	a32 = Img[x,y]	/+1],
$a33 = I_{1}$	mg[x+1,y+1];		
// Convol	lution with h	orizontal dif	ferentiation
kernel ma	sk		
float h =	= ((a11 + a12 +	- a13) - (a31 -	+ a32 +
	a33)) * 0.1	66666667f;	
// Convo	olution with	vertical dif	ferentiation
kernel ma	sk		
float v =	=((a11 + a21))	+ a31) - (a13	+ a23 +
	a33)) * 0.10	66666667f;	
// save val	ues directly		
Diffx[x,y	y]= h*h; diffy	[x,y]=v*v;	
diffxy[x,	y]=h*v;		
Step 2: {	Smooth the di	ff images }	
// Convolv	ve with Gaussi	ian kernel	
cor	volve(diffx, C	Gaussian_kerr	nel,Sigma);
cor	volve(diffy, C	Gaussian_kerr	nel,Sigma);
cor	volve(diffxy,		
Gaussian_	kernel,Sigma);	
Step 3: {	Compute Hari	ris Corner Ma	p }
for $(y = 0)$; $y < height; y$	r++)	
for (x = 0; x < wid	th; x++)	
	A = diffx[x]	κ,y];	
	B = diffy[x]	<u>,y];</u>	
	C = diffxy	[x,y];	
M = (A *	B - C * C) - (I	x * ((A + B) *	(A + B)));
if(M > th)	reshold) Map	[x,y] = M;	

```
Step 4: { Suppress non-maximum points }
// for each row
       for (y = r; y < height - r; y++)
          // for each column
          for (int x = r; x < width - r; x++)
            currentValue = map[x, x];
            // for each windows' row
 for (i = -r; (currentValue != 0) && (i \le r);
i++)
            // for each windows' pixel
               for (j = -r; j \le r; j++)
   if (map[y + i, x + j] > currentValue)
                £
                    currentValue = 0;
                    break;
// check if this point is really interesting
            if (currentValue != 0)
   cornersList.Add(new Point(x, y));
Step 5: Return (cornerList)
Step 6: END
```

6-Embedding Message (Add Watermark into Image)

Converted watermark message is established as mentioned previously, so as to be embedded into images (frames of video). Before embedding, message's length must estimate.

Therefore, length (*C-bits*) will be hided in the first group of hiding pixels in image afterward secret message (*N-bits*) itself will be hided.

C-bits in this paper is specified to 40 bits, because maximum length of message to be hided consist of 5-decimal digits is assumed.

Thereafter, message (its bits) is hided in next pixels (after its length). Whether length of message bits was larger than number of hiding pixels of the image (video frame), next video frames is used to hide remaining bits of message. Algorithm (3) illustrates the embedding watermark of the image.

Embedding watermark in edges or corners will release sender from sending hiding locations (hiding map) to the receiver to extract secret message. Instead, receiver will use same edges or corners detection method to find hiding map to extract watermark, this increase security of watermarking technique.

	Continue to next byte
Algorithm (3): Embed Watermark into Frame	• // check this is edge pixel or not
	if (EdgeCornerImage.Getpixel(i,j) !=White Color)
(acyor image))	Continue to next color;
EdgeCornerFilterType: (Filter to detect	• Hide 3bits from Binary Message in
edges or corners to hide watermark)	Color(i,j) in Red, Green, Blue
Message (Message to be hided in the	• Put color after Hiding in new Color(i,j)
cover image)	that belong to WatermarkedImage
Output: WaterMarkedImage: (Image that hold	• if (Binary Message is Empty)Goto Step 7
watermark)	• Remove 3 – bits from Binary message
Step 1: Read Image into 2-D array of colors	Next j
Image ← ReadImage(ImageFileName)	Nexti
Step 2: Extract Binary bits of Message that need	Store 7. Determ (Metaples dimense)
to hide it	Step /: Return (Waterkedimage)
BinaryMessage ← Extract_Binary(Message)	Step 8: END
Step 3: Find length of message and hide it in	II Extraction Modulo
image	
MessageLength \leftarrow Length(Message)	In this module, the watermarked secret bits are
Ston 4. Find Dinomy of manage 1 and the statistic	image files the general diagram of extraction
Step 4: Find Binary of message length and hide it	mage files, the general diagram of extraction module as shown in the Figure 2. The following
(Find Dinery of Massage Longth and	steps are explained the flow of this process
• {Find Dinary of Message Length and extended into 40 bits length)	module.
extended into 40-bits length}	1-Open watermarked video file
Bin Messagel ength ←	2-Extract binary stream from host images by
ExtractBinary 40hit(MessageLength)	using one of two methods:
• {Hide 40-bit message length in the first	a-Extraction is done within selected edges using
40-bytes in the image colors}	edge detection methods (Sobel, Prewitt, Kirsch
For $i = 0$ to Image. Width -1	and Canny) are similar used in embedding
For $j = 0$ to Image. Height -1	module.
	b-Extraction is done within selected comer
-if (Bin MessageLength = Empty) Goto Step 5	regions using Harries corner detectors.
- Hide bit from Bin-Message Length in	3-Binary stream of extract message bits is
Color (i,j), Red	A_{-} Apply AES algorithm to decrypt ASCII
- Hide bit from Bin-Message Length in	message
Uida hit from Din Massaga Langth in	To extract message from watermarked-image
- Filde off from Bin-Message Length in Color (i i) Plue	(video frame), firstly edge or corner filter is
- Put Color after Hiding in New Color(i i)	applied to find Hiding Map. Thereafter, extract C-
that belong to watermarkedImage	bits of message length from first 14 pixels of
-Remove 3 – hits from Bin MessageLength	hiding map (40-bits/3 =13.3=14). Find secret
Next i	message length (from these bits) and depends on
Next i	it as the actual message bits length.
	An important note must be mentioned in this step,
Step 5: Find Edges or Corners of the Image	Hiding Map; that extracted from edges or corners
according specified filter to find hiding Map	detectors, in extraction stage may different from
$CImage \leftarrow ClearLSB(Image)$	Hiding map of hiding stage. This is due to values
	was a challenge in this paper because different
EdgeCornerImage ←	hiding man causes incorrect message
ApplyFilter(Image, EdgeCornerFilterType)	To solve this problem Image's LSR-Clearing so
Step 6: Hide Binary Message in Image According	hiding process (changing LSB) will not effect on
Eages Map	extracting hiding map (in extracting process).
For $i = 0$ to Image. Width -1	This clearing LSB process is applied in hiding
FOF $J = 0$ to image. Height -1	and extracting processes. Algorithm (4) illustrates
• II (unis byte belongs to first 40 bytes from	the extraction of the all bits of watermark image.
image colors)	

Step 2: Extract message length from first colors in the image

• {Extract Binary of Message Length from first 40-bits length}

 $Bin_MessageLength \leftarrow ""$ For i = 0 to Image.Width - 1 For j = 0 to Image.Height - 1 -if (Bin MessageLength = 40) Goto Step 3

-Extract bit from Color(i, j).Red

-Extract bit from B Color(i, j). Green -Extract bit from Color(i, j). Blue -Add 3 - bits to Bin_MessageLength Next j

Next i

Step 3: {Find Message Length}

6. Results and Discussion

Evaluation of the proposed watermark in video is accomplished by estimation of distortion measures. Three digital video are evaluated before and after embedding three watermark secret messages.

The Mean Square Error (MSE), Mean Absolute Error (MAE) and Peak to Signal Noise Ratio (PSNR) values are calculated to each frame in video, as shown in Table 1, 2 and 3.

Table 1: Mean So	uare Error (1	MSE) for	video by ı	using blind.	edges and	corner regions.
			, - , -		· ··· ··· ··· ··· ··· ···	

Video Name	Message Size	Classical Watermark	Proposed Watermarked					
1 (unit	Sile	Blind Watermark	Sobel Edge Detection	Prewitt Edge	Kirsch Edge	Canny Edge	Harries Corner	
				Detection	Detection	Detection	Detection	
Superimpose	Msg_3KB	0.07728	0.01177	0.01157	0.01361	0.01018	0.00083	
Test video	Msg_10KB	0.05926	0.03002	0.02991	0.06004	0.03001	0.00064	
Video1	Msg_13KB	0.30574	0.04376	0.02354	0.07632	0.03392	0.00107	

Table 2: Mean Absolute Error (MAE) for video by using blind, edges and corner regions.

Video Name	Message Size	age Classical Proposed Watermarked Watermark						
	Sille	Blind Watermark	Sobel Edge Detection	Prewitt Edge	Kirsch Edge	Canny Edge	nny Harries ge Corner	
				Detection	Detection	Detection	Detection	
Superimpose	Msg_3K	0.07728	0.01177	0.01157	0.01361	0.01018	0.00083	
Test video	Msg_10K	0.05926	0.03002	0.02991	0.06004	0.03001	0.00064	
Video1	Msg_13K	0.30574	0.04376	0.02354	0.07632	0.03392	0.00107	

Table 3: Peak to Signal Noise Ratio (PSNR) for video by using blind, edges and corner regions.

Video Name	Message Size	Classical Watermark	Proposed Watermarked						
	Sille	Blind Sobel Edg Watermark Detection		Prewitt Edge	Kirsch Edge	Canny Edge	Harries Corner		
				Detection	Detection	Detection	Detection		
Superimpose	Msg_3K	59.2498	69.6239	69.0761	68.7715	69.7583	78.9968		
Test video	Msg_10K	60.4031	65.7235	64.3118	60.3461	69.1884	80.0443		
Video1	Msg_13K	53.2771	61.7297	64.9831	59.6863	63.1278	78.5285		

To evaluate the efficient of robustness of the proposed watermark, watermarked video is subjected to three types of attacks (Laplace Formula, RS Analysis and Sample-Pair Analysis). The results of applying these attacks are shown in Table 4, 5 and 6.

Video	Message	Classical	Proposed Watermarked							
Name	Size	Watermark								
		Blind Watermark	Sobel Edge Detection	Prewitt Edge Detection	Kirsch Edge Detection	Canny Edge Detection	Harries Corner Detection			
Superimpose	Msg_3K	437.926	23.0509	22.2711	27.9696	34.0638	1.92505			
Test_video	Msg_10K	622.756	166.27	150.545	249.505	223.521	4.68438			
Video1	Msg_13K	258.215	18.0265	9.41155	52.052	15.1316	1.46601			

Table 5:	The Statistica	al Attack of	f RS Analy	vsis
Table 5.	The Statistica	II MULACK OF	i i i so i sinar	y (31 C

Video	Message Sizo	RS of	Classical Watermark	Proposed Watermarked					
	5120	video	Watermark Blind Watermark	Sobel Edge Detection	Prewitt Edge Detection	Kirsch Edge Detection	Canny Edge Detection	Harries Corner Detection	
Superimpose	Msg_3K	0.01637	0.01669	0.016627	0.01663	0.016628	0.01677	0.01676	
Test_video	Msg_10K	0.01289	0.01322	0.01312	0.01309	0.01317	0.01316	0.01285	
Video1	Msg_13K	0.01481	0.01549	0.01493	0.01485	0.01519	0.01491	0.01479	

Video Name	Message Size	Sample- Pair of	Classical Watermark	Proposed Watermarked					
	5120	Original Video	Watermark Blind Watermark	Sobel Edge Detection	Prewitt Edge Detection	Kirsch Edge Detection	Canny Edge Detection	Harries Corner Detection	
Superimpose Test_video Video1	Msg_3K Msg_10K Msg_13K	0.01236 0.00632 0.00074	0.01274 0.00669 0.00147	0.012688 0.00658 0.00112	0.012684 0.00655 0.00105	0.012683 0.00661 0.00126	0.01282 0.00659 0.00112	0.01290 0.00664 0.00093	

Table 6: The Statistical Attack of Sample-Pair Analysis

The effects of some factors and the performance results of the watermarking in video are discussed below:

1-MSE and MAE results are similar, and this due to their equations which they give the same result if the difference of 0 or 1. LSB embedding lead to the biggest difference between the original image and watermarked image is 1.

2-The values of PSNR (measure the rate of deformation in frames and video) are high, this proves that video with watermark is reserved transparent.

3-The proposed corner-based video watermarking shows that it has lowest distortion. This due to the amount of storing data in each video frame of because number of corners is small compared with edges and whole image.

4-To increase probability of undetectable watermark, corner-based watermark is proposed in this research because corners located in regions of high-color variation and this will make it hard to detect (imperceptible) as shown in the results.

7. Conclusion

The proposed algorithm improve and increase the secrecy of watermark, by embedding in regions where the change in the color is high in order to avoid the attackers, so corners are proposed to be optimal regions to achieve this improvement. Therefore, embedding in the corners is the least discovery than embedding in edges, and embedding in edges is better than blind embedding.

Reference

[1] L. Lakshmipathi and S Srinivasa, "DWT Video Watermarking Based On SVD," International Journal of Embedded & Vlsi System, Vol. 3, pp. 1-5, 2014.

[2] H.B. Abdul Wahab and S.F. Amir, "Efficient Digital Watermark key Generation Using Hexagonal Structure and parametric Lagrange Curve," Eng. & Tech. Journal, Vol. 33, No.2, pp.192-203, 2015.

[3] G. V. Mane and G.G. Chiddarwar, "Review Paper on Video Watermarking Techniques," International Journal of Scientific and Research Publications, Vol. 3, pp. 1-5, 2013.

[4] S. Batra and R. Talwar, "Blind Video Watermarking based on SVD and Multilevel DWT,"

European Journal of Advances in Engineering and Technology, Vol.2, No. 1, pp. 80-85, 2015.

[5] R.M. Kumar and R. Saxena, "Algorithm And Technique On Various Edge Detection: A Survey," Signal & Image Processing An International Journal (SIPIJ) Vol.4, No.3, pp. 65-75, 2013.

[6] S. Dang and J. Sidhu, "Dual level Image watermarking using SVD and Edge detection technique," International Journal of Advanced Research in Computer Engineering & Technology, Vol. 3, No. 11, pp. 3649- 3652, 2014.

[7] J. Chen, L. Zou, J. Zhang and L. Dou, "The Comparison and Application of Corner Detection Algorithms," Journal of Multimedia, Vol. 4, No. 6, pp. 435-441, 2009.

[8] A.A. Kareem and S.S. Abood, "Real-Time Panoramic Video Construction Using Harris Corners Detector," Eng. & Tech. Journal, Vol.33, No.1, pp. 127-140, 2015.

[9] P. Ghosh, R. Ghosh, S. Sinha, U. Mukhopadhyay, D. Kole and A. Chakroborty, "A Novel Digital Watermarking Technique for Video Copyright Protection," Natarajan Meghanathan, et al. (Eds): SIPM, FCST, ITCA, WSE, ACSIT, CS & IT 06, pp. 601–609, 2012.

[10] C. Ling and W. Zhang, "Semi-fragile Watermarking for Video Content Authentication Based on Hybrid Feature," Journal of Computers, Vol. 25, No. 2, pp. 48-57, 2014.

[11] A. Dutta, "Local Information Based Approach to Corner Detection," International Journal of Application or Innovation in Engineering & Management (IJAIEM), Vol. 4, pp. 186-190, 2015.

Author's biography

Assist. Prof. Dr. Nidaa F. Hassan received the M.Sc. and PhD. in Computer Science from University of Technology, Baghdad, Iraq, 1996 and 2005 respectively. She has around 21 years of teaching experience. Her areas of interests are computer security and

image processing.

Rusul Neamah Abbas received the M.Sc. in Computer Science from University of Technology, Baghdad, Iraq, 2016. Her areas interests are systems software, image processing and computer security.