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ABSTRACT

We determine the number of Latin rectangles with 11 columns and each
possible number of rows, In clouding the Latin squares of orderll. Also

answer some questions of Alter by showing that the number of reduced Latin

squares of order n is divisible by Fi where f is a particular integer close to =".

Introduction:

A Kxn Latin rectangle is a Kxn matrix with entries
from {1,2,...... n} such that the entries in each row
and the entries in each column are distinct.

A Latin square of order n is an nxn Latin rectangle.
This essay describes some mathematical structures
“equivalent ““ to Latin squares.

A cording to the Handbook of combinatorial
Design @ Latin square of order n is equivalent to
1- the multiplication table (clayey table) of a group on

n elements.
2- a single error detecting code of word length 3, with
n? words from an n-symbol alphabet.

A Latin square is said to be reduced (or

normalized) if its first row and first column are in

natural order. For example the Latin square Latin
123
231
312

square L is reduced because both its
first row and its first column are 1,2,3. we can make
any Latin square reduced by permuting the rows and

permuting the columns.
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If we permute the rows, permute the columns and
permute the names of the symbols of a Latin square, we
obtain a new Latin square said to be isotopic to the first L
and the set of all squares isotopic to L is called an isotopy
class. In the special case when the same permutation is
applied to the rows, columns and symbols we say that the
isotopism is an isomorphism. An isotopism that maps L to
itself is called an autotopism of L and any autotopism that
is an isomorphism is called an automotphism . The number
of isomorphism classes, isotopy classes and main classes

has been determined by Mchay, Meynert and Myrvold [

Producing all possible equivalence Latin squares
Isotopism is an equivalence relation, so the set of all
Latin squares is divided into subsets called isotopy classes,
such that two squares in the same class are isotopic and
two squares in different classes are not isotopic. If each
entry of nxn Latin square is written as a triple (r,c,s), where
r is row, ¢ is column, and s is the symbol. We obtain aset
of n? triples.
so, we can replace each triple (r,c,s) by (c,r,s) or (c,s,r).
Altogether there are 6 possibilities giving us 6 Latin square

are called conjugates of the original square.
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two Latin squares are said to be paratopic (main
class isotopic) if one of them is isotopic to a conjugate
of the other.

Each main class contain up to isotopy classes.

For each n the number of Latin square is n!(n-1)! and
each isotopy class contains upto (n!)® Latin squares.

2-1 Proposition

(The number Ln of Latin squares of order n, is given

by the formula:
Ln=n!(n-1)!Ln

of reduced Latin squares.

,ni>2 where Ln is the number

Proof: There are Ln reduced Latin squares of order n.
A reduced Latin square of order n is one where both
the first row and first column are ordered 0,1,...,n-1.

The columns of each reduced Latin square can be
inter changed in n! ways, resulting in a Latin square.

Each square formed from each permutation is unique.

After the permutation of the columns, the bottom (n-

1) rows can be permuted in (n-1)! ways, yielding
Latin squares that are distinct from each other and
from those obtained by the column permutations.

This is because the first row is not permuted Hence,
the number of Latin squares of order n is given by
Ln=n!(n-1)! Ln.o

3- Description of the computations.

Let R be a k x n Latin rectangle. We can define an
associated K-regular bipartite graph G=G (R) thus: V
(G)=C U S, where C = { cy,Ca,....,cn} and
S = { s152,....sn} and E (G) = {ci.s;| column i
contains symbol j}. We will call this graph the
template of R. Clearly, many Latin rectangles may

have the same template; for example, every Latin
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square of order n has the complete bipartite graph K, as
its template.

A one — factor of a graph G is a spanning regular
subgraph of degree one. A one-factorization of G is a
partition of E(G) into one-factors. Clearly, the rows of a
Latin rectangle R correspond to the one-factors in a one-
factorization of G(R). For any template G, define N(G) to
be the number of one-factorizations of G, or equivalently
the number of normalized Latin squares with template G.
In forming this count, one-factorizations which differ only
in the order of the one-factors are not counted separately.
The value of N(G) can be found from the following
recursion.

N(G)=2: N(G-F)
Where the sum is over one-factors F of G which contain
some fixed edge of G. The feasibility of this computation
for n=10 is due to the fact that N (G) is an invariant of the
isomorphism class of G. thus we need only apply (1) to
one member of each isomorphism class. The challenge
with efficiency is that the templates on the right need to be
identified according to which isomorphism class they
belong.

The two computations differed in the types of
isomorphism recognized between two templates. In the
first computation, isomorphism's fixing the sets C and S
were used, while in the second the exchange of C and S
was also permitted. In order to apply recursion (1), it is
necessary to be able to identify G- F from amongst the
templates for to applay recursion (1), it is necessary to be
abe to identify G — F from amongst the templates for
which, the value of N( )

computation, this was achieved by defining a canonical

is already known. in the first

labeling for templates. templates were stored in canonical
form, and templates G-F were identified by, converting

them to canonical form. in the second computation, a
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combinatorial invariant was devised such that no two
templates had the same invariant. the invariant had
tow components. The first component was a quickly-
computed number depending on the distribution of the
cycles of length 4 in G- F. This proved sufficient to
identify the great majority of templates uniquely. for
those not uniquely identified, there was a second
component formed from a canonical labeling of the
template, using the first author’s graph isomorphism
program natuy [ The set of nonismorphic template,
was determined in advance using nautty.

The number of distinct templates under the two
definitions of equivalence for n= 10 and k=1,........ )
were 1, 12, 1165, 121790, 601055 for the first
computation, and 1,12, 725, 62616, 304496 for the
second computation.

When N (G) is known for each template G, the
number of normalized Latin rectangles can be
determined. in terms of the second computation, we
have

N(G)
L(k,n)=2 n k! (n—k)!Y —
° |Aut (G)

where the sum is over all templates of degree k, and
Aut(G) is the automorphism group of G.
The reason for (2) is that 2nlk! (n-k)! /|Aut(G)| is the
number of labellings of G in which the neighbors of c;
are {si,...,sx}, and (n-1)! is removed to allow for
normalization of the first row. In the case of k=n,
equation (2) simplifies to L(n,n) = N(Kqn)/ (n-1)!.
3-1 Theorem: The number of reduced kxn Latin
rectangles is given by
Lkn=2nk! (n-k)!>N(G).|Aut(G)|

Theorem: The number of reduced Latin squares of

order n is given by
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L,=2nk!(n-)!>N(G).N(G).|Aut(G)[*
Where G is the bipartite complement of G and K is any
integer in the rang 0<K<n
3-3 Theorem: let G € G(k,n) for K>1 let e be an arbitrary

edge of G Then
N(G)=2- N(G-F)
Where the sum is over all 1-factors F of G that include e.
4-Some divisibility properties of L, we have the following
simple divisibility properties.
4-1 Theorem: For each integer n>1
1. Lo is divisible by gcd (n!(n-1)!
Ly, (n+1)1)
2. Lais divisible by nl.
Proof: consider Lo first. we define an equivalence
relation on reduced Latin squares of order 2n+1 such that
each equivalence class has size either nl(n-1)!L, or (n+1)!.
Let A be the leading principal minor of L=(l;;) of order n.
If A is a (reduced) Latin subsquare, then the squares
equivalent to L are those obtainable by possibly replacing
A by another reduced subsquare, permuting the n partial
rows (li, n+1, i, ne2,......l2n41, j) for 1 <i < n. permuting the
n-1 partial columns (ln+1, j, Ins2, j--..... lons1,j) for 2<j<n
Then permuting columns n+1, n+2,....2n+1 to put the first
row into natural order. these n! (n-1) Ln operations are
closed under composition and give different reduced Latin
squares, so each equivalence class has size n! (n-1)! Ln.
If A is not a Latin subsquare, the squares equivalent to L
are those obtainable by applying one of the (n+1)!
isomorphism's in which the underlying permutation fixes
each of the points 1,2,....Nn.
No isomorphism of this form can be an automorphism of a
square in which A is not a subsquare.
See [6,theorem 1]. Hence the squares obtained are

different and the equivalence class has (n+1)! elements.



P- ISSN 1991-8941 E-ISSN 2706-6703
2007,(1), (1) :71-75

The case of L, is the same except the second
argument gives n! instead of (n+1)!.
4-2 Corollary: If n=2p-1 for some prime P, then L, is
divisible by
[(n-1)/2]!. otherwise, L, is divisible by [(n+1)/2]!.
Proof: This follows from table 1 for n<8.
For n > 9, note that m|(m-2)|! for m>4.
Note that, for n> 12, the corollary gives the best
divisor that can be inferred from table 1 and theorem
(4.2).
except that L3 is divisible by 7! and not merely by 6!.
Alter [1] (see also Mullen [2]) asked whether an
increasing power of two divides L as n increases and
whether L, is divisible by 3 for all n>6.
Theorem (4.1) answers both these questions in the

affirmative.
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Table 1: Reduced Latin rectangles

=y
5 1 2 16687
11 3 103443808
> 4 207624560256
s 5 112681643083776
6 12952605404381184
411 7 224382967916691456
2 2 8 377597570964258816
i i 9 377597570964258816
0 1 1
2 148329
- 3 8154999232
> 4 147174521059584
o 5 746988383076286464
PR 6 870735405591003709440
e o 7 177144296983054185922560
8 4292039421591854273003520
9 7580721483160132811489280
10 7580721483160132811489280
6 1 1
2 53 10 1
3 1064 2 1468457
4 6552 3 798030483323
5 9408 4 143968880078466048
6 9408 5 7533492323047902093312
7 1 1 6 962995552373292505158778880
2 309 7 240123216475173515502173552640
3 35792 8
4 1293216 | 68108204357787266780858343751680
5 11270400 | 9
6 16942080 | 2905990310033882693113989027594240
7 16942080 | 10
8 1 1 5363937773277371298119673540771840
2 2119 11
3 1673792 | 5363937773277371298119673540771840
4 420909504
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27206658048
235390189568
235281401856
235281401856
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