
P- ISSN  1991-8941   E-ISSN 2706-6703           Journal of University of Anbar for Pure Science (JUAPS)     Open Access                                                     

2007,(1), (1 ) :71-75                              

 

 71 

       ON THE NUMBER AND EQUIVALENT LATIN SQUARES 

MAKARIM A. AL-TURKY 

 Computer College - Univesity of Al-Anbar 
 

 

 

A R T I C L E  I N F O   A B S T R A C T  

Received: 25   /  8  /2006 

Accepted:  1 / 3 /2007 
Available online: 14/06/2012 

DOI: 10.37652/juaps.2007.15428 
 

 We determine the number of Latin rectangles with 11 columns and each 

possible number of rows, In clouding the Latin squares of order11. Also 

answer some questions of Alter by showing that the number of reduced Latin 

squares of order n is divisible by Fi where f is a particular integer close to n
2
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Introduction: 

   A Kxn Latin rectangle is a Kxn matrix with entries 

from {1,2,……n} such that the entries in each row 

and the entries in each column are distinct. 

    A Latin square of order n is an nxn Latin rectangle. 

This essay describes some mathematical structures 

“equivalent “ to Latin squares. 

    A cording to the Handbook of combinatorial 

Design [2] Latin square of order n is equivalent to  

1- the multiplication table (clayey table) of a group on 

n elements. 

2- a single error detecting code of word length 3, with 

n2 words from an n-symbol alphabet. 

     A Latin square is said to be reduced (or 

normalized) if its first row and first column are in 

natural order.  For example the Latin square Latin 

 

  

 

square L is reduced because both its 

first row and its first column are 1,2,3. we can make 

any Latin square reduced by permuting the rows and 

permuting the columns. 
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   If we permute the rows, permute the columns and 

permute the names of the symbols of a Latin square, we 

obtain a new Latin square said to be isotopic to the first L 

and the set of all squares isotopic to L is called an isotopy 

class. In the special case when the same permutation is 

applied to the rows, columns and symbols we say that the 

isotopism is an isomorphism. An isotopism that maps L to 

itself is called an autotopism of L and any autotopism that 

is an isomorphism is called an automotphism . The number 

of isomorphism classes, isotopy classes and main classes 

has been determined by Mchay, Meynert and Myrvold [6] 

 

Producing all possible equivalence Latin squares 

  Isotopism is an equivalence relation, so the set of all 

Latin squares is divided into subsets called isotopy classes, 

such that two squares in the same class are isotopic and 

two squares in different classes are not isotopic. If each 

entry of nxn Latin square is written as a triple (r,c,s), where 

r is row, c is column, and s is the symbol. We obtain aset 

of n2 triples. 

so, we can replace each triple (r,c,s) by (c,r,s) or (c,s,r). 

Altogether there are 6 possibilities giving us 6 Latin square 

are called conjugates of the original square. 

1 2 3 

2 3 1 

3 1 2 
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   two Latin squares are said to be paratopic (main 

class isotopic) if one of them is isotopic to a conjugate 

of the other. 

  Each main class contain up to isotopy classes. 

  For each n the number of Latin square is n!(n-1)! and 

each isotopy class contains upto (n!)3 Latin squares. 

 

2-1  Proposition  

(The number Ln of Latin squares of order n, is given 

by the formula: 

        Ln= n!(n-1)!Ln    ,n≥2  where Ln is the number 

of reduced Latin squares. 

 Proof:  There are Ln reduced Latin squares of order n. 

A reduced Latin square of order n  is one where both 

the first row and first column are ordered 0,1,…,n-1. 

   The columns of each reduced Latin square can be 

inter changed in n! ways, resulting in a Latin square. 

Each square formed from each permutation is unique. 

   After the permutation of the columns, the bottom (n-

1) rows can be permuted in (n-1)! ways, yielding 

Latin squares that are distinct from each other and 

from those obtained by the column permutations. 

  This is because the first row is not permuted Hence, 

the number of Latin squares of order n is given by 

Ln=n! (n-1)! Ln.□ 

 

3- Description of the computations. 

   Let R be a k x n Latin rectangle. We can define an 

associated K-regular bipartite graph G=G (R) thus: V 

(G)= C U S, where C = { c1,c2,….,cn} and  

 S = { s1,s2,….,sn} and  E (G) = {ci.sj│ column i 

contains symbol j}. We will call this graph the 

template of R. Clearly, many Latin rectangles may 

have the same template; for example, every Latin 

square of order n has the complete bipartite graph Kn,n as 

its template. 

   A one – factor of a graph G is a spanning regular 

subgraph of degree one. A one-factorization of G is a 

partition of E(G) into one-factors. Clearly, the rows of a 

Latin rectangle R correspond to the one-factors in a one-

factorization of G(R). For any template G, define N(G) to 

be the number of one-factorizations of G, or equivalently 

the number of normalized Latin squares with template G. 

In forming this count, one-factorizations which differ only 

in  the order of the one-factors are not counted separately. 

The value of N(G) can be found from the following 

recursion. 

        )()( FGNGN F        ……. (1) 

     Where the sum is over one-factors F of G which contain 

some fixed edge of G. The feasibility of this computation 

for n=10 is due to the fact that N (G) is an invariant of the 

isomorphism class of G. thus we need only apply (1) to 

one member of each isomorphism class. The challenge 

with efficiency is that the templates on the right need to be 

identified according to which isomorphism class they 

belong. 

  The two computations differed in the types of 

isomorphism recognized between two templates. In the 

first computation, isomorphism's fixing the sets C and S 

were used, while in the second the exchange of C and S 

was also permitted. In order to apply recursion (1), it is 

necessary to be able to identify G- F from amongst the 

templates for to applay recursion (1), it is  necessary to be 

abe to identify G – F from amongst the templates for 

which, the value of N( )  is already known. in the first 

computation, this was achieved by defining a canonical 

labeling for templates. templates were stored in canonical 

form, and  templates G-F were identified by, converting 

them to canonical form. in the second computation, a 
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combinatorial invariant was devised such that no two 

templates had the same invariant. the invariant had 

tow components. The first component was a quickly-

computed number depending on the distribution of the 

cycles of length 4 in G- F. This proved sufficient to 

identify the great majority of templates uniquely. for 

those not uniquely identified, there was a second 

component formed from a canonical labeling of the 

template, using the first author’s graph isomorphism 

program natuy [11]. The set of nonismorphic template, 

was determined in advance using nautty. 

    The number of distinct templates under the two 

definitions of equivalence for n= 10 and k=1,……..,5 

were 1, 12, 1165, 121790, 601055 for the first 

computation, and 1,12, 725, 62616, 304496 for the 

second computation. 

    When N (G) is known for each template G, the 

number of normalized Latin rectangles can be 

determined. in terms of the second computation, we 

have 

N(G) 

  L(k,n)=2 n k! (n–k)!∑                    …   (2) 

                                    G  |Aut (G)|’ 

where the sum is over all templates of degree k, and 

Aut(G) is the automorphism group of G.  

The reason for (2) is that 2n!k! (n-k)! /|Aut(G)| is the 

number of labellings of G in which the neighbors of c1 

are {s1,…,sk}, and (n-1)! is removed to allow for 

normalization of the first row. In the case of k=n, 

equation (2) simplifies to L(n,n) = N(Kn,n)/ (n-1)!. 

3-1 Theorem: The number of reduced kxn Latin 

rectangles is given by 

 Lk,n=2nk! (n-k)!∑N(G).|Aut(G)| 

 Theorem: The number of reduced Latin squares of 

order n is given by 

  Ln=2nk!(n-)!∑N(G).N(G).|Aut(G)|-1 

Where G is the bipartite complement of G and K is any 

integer in the rang 0≤K≤n 

3-3 Theorem: let G Є G(k,n) for K≥1 let e be an arbitrary 

edge of G Then  

           )()( FGNGN F   

   Where the sum is over all 1-factors F of G that include e. 

4-Some divisibility properties of Ln we have the following 

simple divisibility properties. 

4-1  Theorem: For each integer n≥1  

1. L2n+1 is divisible by gcd (n!(n-1)! 

Ln,(n+1)!) 

2. L2n is divisible by n!. 

Proof: consider L2n+1 first. we define an equivalence 

relation on reduced Latin squares of order 2n+1 such that 

each equivalence class has size either n!(n-1)!Ln or (n+1)!. 

   Let A be the leading principal minor of L=(lij) of order n. 

If A is a (reduced) Latin subsquare, then the squares 

equivalent to L are those obtainable by possibly replacing 

A by another reduced subsquare, permuting the n partial 

rows (li, n+1, li, n+2,…..,l2n+1, j) for 1 ≤ i ≤ n. permuting the 

n-1 partial columns (ln+1, j, ln+2, j,…….l2n+1,j) for 2 ≤ j ≤ n 

Then permuting columns n+1, n+2,….2n+1 to put the first 

row into natural order. these n! (n-1) Ln operations are 

closed under composition and give different reduced Latin 

squares, so each equivalence class has size n! (n-1)! Ln. 

If A is not a Latin subsquare, the squares equivalent to L 

are those obtainable by applying one of the (n+1)! 

isomorphism's in which the underlying permutation fixes 

each of the points 1,2,….n. 

No isomorphism of this form can be an automorphism of a 

square in which A is not a subsquare.  

  See [6,theorem 1]. Hence the squares obtained are 

different and the equivalence class has (n+1)! elements. 
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   The case of L2n is the same except the second 

argument gives n! instead of (n+1)!. 

4-2  Corollary: If n=2p-1 for some prime P, then Ln is 

divisible by 

 [(n-1)/2]!. otherwise, Ln is divisible by [(n+1)/2]!. 

Proof: This follows from table 1 for n≤8.  

   For n ≥ 9, note that m|(m-2)|! for m>4. 

Note that, for n≥ 12, the corollary gives the best 

divisor that can be inferred from table 1 and theorem 

(4.1). 

except that L13 is divisible by 7! and not merely by 6!. 

Alter [1] (see also Mullen [2]) asked whether an 

increasing power of two divides Ln as n increases and 

whether Ln is divisible by 3 for all n≥6. 

Theorem (4.1) answers both these questions in the 

affirmative. 
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Table 1: Reduced Latin rectangles 
1   1      1 

9    1    1 

2    16687 

3    103443808 

4    207624560256 

5    112681643083776 

6    12952605404381184 

7    224382967916691456 

8    377597570964258816 

9    377597570964258816 

2    1     1 

2     1 

3    1     1 

2     1 

3     1 

4    1     1 

2     2 

3     3 

4     4 

5    1     1 

2     11 

3     46 

4     56 

5     56 

10    1    1 

2    148329 

3    8154999232 

4    147174521059584 

5    746988383076286464 

6    870735405591003709440 

7    177144296983054185922560 

8    4292039421591854273003520 

9    7580721483160132811489280 

10   7580721483160132811489280 

6    1    1 

2    53 

3    1064 

4    6552 

5    9408 

6    9408 

10    1 

2    1468457 

3    798030483323 

4    143968880078466048 

5    7533492323047902093312 

6    962995552373292505158778880 

7    240123216475173515502173552640 

8    

68108204357787266780858343751680 

9    

2905990310033882693113989027594240 

10   

5363937773277371298119673540771840 

11   

5363937773277371298119673540771840 

7    1    1 

2    309 

3    35792 

4    1293216 

5    11270400 

6    16942080 

7    16942080 

8    1    1 

2    2119 

3    1673792 

4    420909504 
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5    

27206658048 

6    

335390189568 

7    

535281401856 

8    

535281401856 

 
 

 

 

 

 

 

 لاتينية المتكافئة وإعدادهالالمربعات أ

 مكارم عبدالواحد عبدالجبار  
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 الخلاصة :

.د ددكطقدمدد عدتط دد طعد11تطيأةددندديدد  د ددد  دتط ددم تدتطيحأيتددند تطأددمدأأاددي دتطيية دد ندتطيأتنتددنديدد دد11نحدد  دددد  دتطيلاددألاتيندة أتنتددندتطيأ  نددنديدد د
Alter(دة لإج ةددنددتددضدة ددلدتعلاددرتندددد دلايتددعدددييح ددندتلإددد ت ديدد دتطيية دد ندتطيأتنتددندتط ت لاددتنديدد دتطيأةددند1)دnهددمدم ةتددندطت لاددينديدد ددfiةحتدد ددfهددمدد

n حتحدخ صديغتعدط تيند 2
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