On Dimension Theory by Using N - Open Sets

Enas Ridha Ali Raad Azi

Raad Aziz Hussain

College of Computer science and Mathematics University of AL-Qadisiya Enas8ms@yahoo.com Raad-64@hotmail.com

Abstract

In this paper we discuss new type of dimension theory by using N - open sets. We the concept of *indX*, *IndX*, *dimX*, for a topological space X have been studied. In this work, these concepts will be extended by using N - open sets.

Key words: *indX*, *IndX*, *dimX*,

الخلاصة

1. Introduction

Dimension theory starts with "dimension function" which is a function defined on the class of topological spaces such that d(X) is an integer or ∞ , with the properties that d(X) = d(Y) if X and Y are homeomorphism and $d(R^n) = n$ for each positive integer n. The dimension functions taking topological spaces to the set{-1,0,1,...}. The dimension functions *ind*, *Ind*, *dim*, were investigated by [Pears ,1975]. Actually the dimension functions, S - indX, S - IndX, S - dimX by using S - open sets were studied in [Raad Aziz Hussain AL-Abdulla,1992], also the dimension functions, b - indX, b - IndX, b - dimX, by using b - open sets were studied in [Sama Kadhim Gabar,2010], and the dimension functions, f - indX, f - IndX, f - dimX, by using f - open sets were studied in [Nedaa Hasan Hajee ,2011]. In this paper we recall the definitions of ind, Ind, dim, from [Pears ,1975], then the dimension functions, N - ind, N - Ind, N - dim are introduced by using N - open sets. Finally some relations between them are studied and some results relating these concepts are proved.

2. Preliminaries

In this section, we recall some of the basic definitions.

Definition 2.1[Omari, and Noorani,2009]: A sub set A of a space X is said to be an N - open if for every $p \in A$ there exist an open sub set U_p in X such that $U_p - A$ is a finite set. The complement of an N - open set is said to be N - closed.

Remark 2.2: 1. Every open set is an *N* – open set.

2. Every closed set is an N - closed set.

The converse of (1) and (2) is not true in general as the following example shows:

Let Z be the set of integer numbers and T be indiscrete topology on Z, then $Z - \{2,3\}$ is an N - open set, but its not an open set and $B = \{2,3\}$ is an N - closed set, but not a closed set.

Remark 2.3: The family of all N - open sub set of a space (X, T) is denoted by T^N .

Theorem 2.4[Omari, and Noorani,2009]: Let X be a topological space, then X with the set of all N - open sub set of X is a topological space.

Corollary 2.5[Omari, and Noorani,2009]: Let X be a topological space, then the intersection of an open set and an N - open set is an N - open set.

Remark 2.6[Hamza and Majhool,2011]: Let X be a space and Y be a sub space of X such that $A \subseteq Y$, if A is N - open sub set in X then A is N - open in Y.

Proposition 2.7[Hamza and Majhool,2011]: 1. Let X be a space and Y be an N – open of X, if A is N – open in Y then A is an N – open in X.

2. Let X be a space and Y be a sub set of X if B is an N - open in X then $B \cap Y$ is N - open in Y.

Definition 2.8[Hashmiya Ibrahim Nasser,2012]: A space X is called $NT_1 - space$ if and only if for each $x \neq y$ inX, there exists disjoint N - open sets U and V such that $x \in U, y \notin U$ and $y \in V, x \notin V$.

Remark 2.9: It is clear that every $T_1 - space$ is $NT_1 - space$ but the converse is not true in general, as the following example shows: Let $X = \{1,2,3\}, T = \{X, \emptyset, \{1\}, \{2\}, \{1,2\}\}$, the N - open set is $\{X, \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$, It is clear to see that X is $NT_1 - space$ but is not $T_1 - space$.

Proposition 2.10[Hashmiya Ibrahim Nasser,2012]: Let X be a topological space, and then X is $NT_1 - space$ if and only if $\{p\}$ is N - closed set for each $p \in X$.

Definition 2.11[Hashmiya Ibrahim Nasser,2012]: A space X is called N - Hausdorff if and only if any two distinct points of X has disjoint an N - open neighborhoods.

Remark 2.12: Every *Hausdorff* space is N - Hausdorff. But the convers is not true in general.

Definition 2.13: A space X is said to be N - regular space if and only if for each $p \in X$ and C closed sub set such that $p \notin C$, there exist disjoint N - open sets U, V in X such that $p \in U, C \subseteq V$.

Definition 2.14: A space X is said to be $N^* - regular$ space if and only if for each $p \in X$ and C N - closed sub set such that $p \notin C$, there exist disjoint *open* sets U, V in X such that U open set, V is an N - open set and $p \in U, C \subseteq V$.

Remark 2.15: 1. Every regular space is N - regular space but the convers is not true.

2. Every $N^* - regular$ space is N - regular space but the convers is not true.

As the following example shows: let $X = \{1,2,3\}, T = \{X, \emptyset, \{1\}, \{2\}, \{1,2\}\}$, the *N* – open set is $\{X, \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$, It is clear to see that *X* is *N* – *regular* space, but *X* is not regular since $\{2,3\}$ is closed set, $1 \notin \{2,3\}$ and there exist no disjoint two open set *U*, *V* such that $1 \in U, \{2,3\} \subseteq V$. Also *X* is not N^* – *regular*, since $\{1,2\}$ is *N* – *closed* set and $3 \notin \{1,2\}$, but there exist no disjoint open set *U* and *N* – *open* set *V* such that $3 \in U, \{1,2\} \subseteq V$.

Definition 2.16: A space X is said to be N - normal space if and only if for every disjoint closed sets C_1, C_2 there exist disjoint N - open sets V_1, V_2 such that $C_1 \subset V_1, C_2 \subset V_2$.

Definition 2.17: A space X is said to be $N^* - normal$ space if and only if for every disjoint N - closed sets C_1, C_2 there exist disjoint *open* sets V_1, V_2 such that $C_1 \subset V_1, C_2 \subset V_2$.

Definition 2.18: A space X is said to be $N^{**} - normal$ space if and only if for every disjoint N - closed sets C_1, C_2 there exist disjoint N - open sets V_1, V_2 such that $C_1 \subset V_1, C_2 \subset V_2$.

Remark 2.19: 1. Every normal space is N - normal but the convers is not true.

2. Every $N^* - normal$ space is normal but the convers is not true.

Definition 2.20[N.Burbaki,1989]: A topological space X is said to be compact if every open cover of X has a finite sub cover.

Definition 2.21[S.H.Hamza and F.M.Majhool,2011]: A topological space X is said to be N - compact if every N - open cover of X has a finite sub cover.

Lemma 2.22[Maheshwari, S.N.and Thakur, S.S., 1985]: 1. Every closed sub set of compact is compact.

2. Every N - closed sub set of N - compact is compact.

Definition 2.23: Let X be a set and A a family of sub sets of X, by the order of the family A we mean the largest integer n such that the family A contains n + 1 sets with a non-empty intersection, if no such integer exists, we say that the family A has order ∞ . The order of a family A is denoted by ord A.

Definition 2.24: Let X be a topological space the family β of N – *open* sets is called a N – *base* if and only if for each N – *open* set a union of members of a family β .

Definition 2.25[S.H.Hamza and F.M.Majhool,2011]: Let X be a space and $A \subseteq X$. The intersection of all N – closed sets of X contained in A is called the N – closure of A and is denoted by \overline{A}^{N} .

3. On *ind* by using N - open sets

Definition 3.1: The *N*-small inductive dimension of a space *X*, N - ind X, is defined inductively as follows. A space *X* satisfies N - ind X = -1 if and only if *X* is empty. If *n* is a non-negative integer, then $N - ind X \le n$ means that for each point *p* of *X* and each open set *G* such that $p \in G$ there exists an N - open set *U* such that $p \in U \subset G$ and $N - indb(U) \le n - 1$. We put N - indX = n if it is true that $N - indX \le n$, but it is not true that $N - indX \le n - 1$. If there exists no integer *n* for which $N - indX \le n$ then we put $N - indX = \infty$.

Definition 3.2: The N^* -small inductive dimension of a space X, $N^* - ind X$, is defined inductively as follows. A space X satisfies $N^* - ind X = -1$ if and only if X is empty. If n is a non-negative integer, then $N^* - ind X \le n$ means that for each point p of X and each N - open set G such that $p \in G$ there exists an N - open set U such that $p \in U \subset G$ and $N^* - ind b(U) \le n - 1$. We put $N^* - ind X = n$ if it is true that $N^* - ind X \le n$, but it is not true that $N^* - ind X \le n - 1$. If there exists no integer n for which $N^* - ind X \le n$ then we put $N^* - ind X = \infty$.

Proposition 3.3: Let *X* be a topological space. If *indX* is exists then $N - indX \le indX$.

Proof: By induction on *n*. It is clear n = -1. Suppose that it is true for n - 1. Now suppose that $indX \le n$, to prove $N - indX \le n$, let $p \in X$ and *G* is an open set in *X* such that $p \in G$ since $indX \le n$, then there exists an open set *U* in *X* such that $p \in U \subset G$ and $indb(U) \le n - 1$ and since every open set is N - open set then *U* is an N - open set such that $p \in U \subset G$ and $N - indb(U) \le n - 1$. Hence $N - indX \le n$.

Theorem 3.4: Let X be a topological space, then indX = 0 if and only if N - indX = 0.

Proof: By proposition (3.3). If indX = 0 then $N - indX \le 0$, and since $X \ne \emptyset$ then N - indX = 0.

Now

Let N - indX = 0 and Let $p \in X$ and each open set $G \subset X$ of the point p, since N - indX = 0then there exists an N - open set $U \subset X$ such that $p \in U \subset G$ and $N - indb(U) \le -1$. Then $b(U) = \emptyset$, therefore U is both open and closed, and thus indb(U) = -1. So that $indX \le 0$ and since $X \neq \emptyset$ then indX = 0.

Remark 3.5[A.P.Pears ,1975]: Let X be a topological space with indX = 0 then X is a regular space.

Corollary 3.6: Let X be a topological space, if N - indX = 0 then X is a regular space.

Remark 3.7[A.P.Pears ,1975]: A space X satisfies indX = 0 if and only if it is not empty and has a base for its topology which consists of open and closed sets.

Corollary 3.8: A space X satisfies N - indX = 0 if and only if it is not empty and has a base for its topology which consists of open and closed sets.

Proposition 3.9[A.P.Pears ,1975]: For every sub space A of a space X, we have $indA \le indX$. **Theorem 3.10:** For every sub space A of a space X and A is open, we have

$$N - indA \le N - indX$$

Proof: By induction on *n*. If n = -1 then theorem is true. Suppose that the theorem is true for n - 1.

Now

Suppose that $N - indX \le n$ to prove $N - indA \le n$. Let $p \in A$ and G is an open set in A such that $p \in G$. Since G is open set in A then there exists U is an open set in X such that $G = U \cap A$. Since $p \in A$ and $N - indX \le n$ then there exists an N - open set W in X such that $p \in W \subset U$ and $N - indb(W) \le n - 1$. Let $V = W \cap A$ is N - open in A, by proposition(2.7).

Thus $p \in V = W \cap A \subset U \cap A = G$ to prove $N - indb_A(V) \leq n - 1$ then $N - indA \leq n$.

 $b_A(V) \subseteq b(V) \cap A = (\overline{V} - V^\circ) \cap A \subset (\overline{W} - V^\circ) \cap A = (\overline{W} \cap V^{\circ^{\mathbb{C}}}) \cap A$

 $= \left[\overline{W} \cap \left(W^{\circ^{\mathsf{C}}} \cup A^{\circ^{\mathsf{C}}}\right)\right] \cap A = \left[\left(\overline{W} \cap W^{\circ^{\mathsf{C}}}\right) \cup \left(\overline{W} \cap A^{\circ^{\mathsf{C}}}\right)\right] \cap A$

 $\subset (b(W) \cup A^{\circ^{\mathsf{C}}}) \cap A = (b(W) \cap A) \cup (A^{\circ^{\mathsf{C}}} \cap A) \subset b(W).$

Thus $N - indb_A(V) \leq N - indb(W)$. Since $N - indb(W) \leq n - 1$ then $N - indb_A(V) \leq n - 1$ (By induction). Therefore $N - indA \leq n$.

4. On *Ind* by using N - open sets

Definition 4.1: The *N* -large inductive dimension of a space *X*, *N* - *IndX*, is defined inductively as follows. A space *X* satisfies N - IndX = -1 if and only if *X* is empty. If *n* is a non-negative integer, then $N - IndX \le n$ means that for each closed set *E* and each open set *G* of *X* such that $E \subset G$ there exists an N - open set *U* such that $E \subset U \subset G$ and $N - Indb(U) \le n - 1$. We put N - IndX = n if it is true that $N - IndX \le n$, but it is not true that $N - IndX \le n - 1$. If there exists no integer *n* for which $N - IndX \le n$ then we put $N - IndX = \infty$.

Definition 4.2: The N^* -large inductive dimension of a space X, $N^* - Ind X$, is defined inductively as follows. A space X satisfies $N^* - Ind X = -1$ if and only if X is empty. If n is a non-negative integer, then $N^* - Ind X \le n$ means that for each N - closed set E and each open set G of X such that $E \subset G$ there exists an N - open set U such that $E \subset U \subset G$ and $N^* - Indb(U) \le n - 1$. We put $N^* - IndX = n$ if it is true that $N^* - IndX \le n$, but it is not true that $N^* - IndX \le n - 1$. If there exists no integer n for which $N^* - IndX \le n$ then we put $N^* - IndX = \infty$.

Definition 4.3: The N^{**} -large inductive dimension of a space X, $N^{**} - Ind X$, is defined inductively as follows. A space X satisfies $N^{**} - Ind X = -1$ if and only if X is empty. If n is a non-negative integer, then $N^{**} - Ind X \le n$ means that for each N - closed set E and each N - open set G of X such that $E \subset G$ there exists an N - open set U such that $E \subset U \subset G$ and $N^{**} - Ind b(U) \le n - 1$. We put $N^{**} - Ind X = n$ if it is true that $N^{**} - Ind X \le n$, but it is not true that $N^{**} - Ind X \le n - 1$. If there exists no integer n for which $N^{**} - Ind X \le n$ then we put $N^{**} - Ind X \le \infty$.

Proposition 4.4: Let *X* be a topological space, if *IndX* is exist then $N - IndX \le IndX$.

Proof: By induction on *n*. It is clear n = -1. Suppose that it is true for n - 1. Now suppose that $IndX \le n$, to prove $N - IndX \le n$, let *C* be a *closed* set in *X* and *G* is an open set in *X* such that $C \subset G$ since $IndX \le n$, then there exists an open set *U* in *X* such that $C \subset U \subset G$ and $Indb(U) \le n - 1$ and since every open set is N - open set then *U* is an N - open set such that $C \subset U \subset G$ and $N - Indb(U) \le n - 1$. Hence $N - IndX \le n$.

Proposition 4.5: Let *X* be a topological space then:

1. If $N^{**} - IndX$ is exist then $N^* - IndX \le N^{**} - IndX$.

2. If $N^* - IndX$ is exist then $N - IndX \le N^* - IndX$.

Theorem 4.6: Let X be a topological space, then IndX = 0 if and only if N - IndX = 0.

Proof: By proposition (4.5). If IndX = 0 then $N - IndX \le 0$, and since $X \ne \emptyset$ then N - IndX = 0.

Now

Let N - IndX = 0 and Let F is closed set in X and each open set G in X such that $F \subset U$. Since N - IndX = 0 then there exists an N - open set U in X such that $F \subset U \subset G$ and N - Indb(U) = -1. Then $b(U) = \emptyset$, therefore U is both open and closed, and thus Indb(U) = -1. So that $IndX \le 0$ and since $X \ne \emptyset$ then IndX = 0.

Remark 4.7[A.P.Pears ,1975]: Let X be a topological space with IndX = 0 then X is a normal space.

Corollary 4.8: Let X be a topological space with N - IndX = 0 then X is a normal space. **Proof:** It follows from theorem (4.6).

Remark 4.9[A.P.Pears ,1975]: A space X satisfies IndX = 0 if and only if it is non-empty and has a base for its topology which consist of open and closed sets.

Corollary 4.10: A space X satisfies N - IndX = 0 if and only if it is non-empty and has a base for its topology which consist of open and closed sets.

Proposition 4.11[A.P.Pears ,1975]:Let X be a topological space, if A is a closed sub set of a space X we have $IndA \leq IndX$.

Theorem 4.12: Let *X* be a topological space, if *A* is a closed and open sub set of a space *X*, we have

$$N - IndA \leq N - IndX.$$

Proof: By induction on *n*. If n = -1 then theorem is true. Suppose that the theorem is true for n - 1.

Now

Suppose that $N - IndX \le n$ to prove $N - IndA \le n$. Let *F* is a closed set in *A* and *G* is an open set in *A* such that $F \subset G$. Since *F* is a closed set in *A* and *A* is a closed set in *X* then *F* is a closed set in *X*. Since *G* is open set in *A* then there exists *U* is an open set in *X* such that $G = U \cap A$. Since $F \subset U$ and $N - IndX \le n$ then there exists an N - open set *W* in *X* such that $F \subset W \subset U$ and $N - Indb(W) \le n - 1$. Let $V = W \cap A$ is N - open in *A*, by proposition(2.7). Thus $F \subset V = W \cap A \subset U \cap A = G$

$$b_{A}(V) \subseteq b(V) \cap A = (\overline{V} - V^{\circ}) \cap A \subset (\overline{W} - V^{\circ}) \cap A = (\overline{W} \cap V^{\circ^{C}}) \cap A$$
$$= [\overline{W} \cap (W^{\circ^{C}} \cup A^{\circ^{C}})] \cap A = [(\overline{W} \cap W^{\circ^{C}}) \cup (\overline{W} \cap A^{\circ^{C}})] \cap A$$
$$\subset (b(W) \cup A^{\circ^{C}}) \cap A = (b(W) \cap A) \cup (A^{\circ^{C}} \cap A) \subset b(W).$$

 $\overline{b_A(V)}^{b(W)} = \overline{b_A(V)} \cap b(W) = b_A(V) \cap b(W) = b_A(V). \ b_A(V) \text{ is closed set in } A, \text{ since } A \text{ is a closed set in } X \text{ then } b_A(V) \text{ is a closed set in } b(W). \text{ Thus } N - Indb_A(V) \le N - Indb(W).$ Since $N - Indb(W) \le n - 1$ then $N - Indb_A(V) \le n - 1$ (By induction). Therefore $N - indA \le n$.

5. On dim by using N - open sets

Definition 5.1: The N -covering dimension N - dimX of a topological space X is the least integer n such that every finite open covering of X has an N - open refinement of order not

exceeding *n* or is ∞ if there is no such integer. Thus N - dimX = -1 if and only if *X* is empty, and $N - dimX \le n$ if each finite open covering of *X* has N - open refinement of order not exceeding *n*. We have N - dimX = n if it is true that $N - dimX \le n$ but it is not true that $N - dimX \le n - 1$. Finally $N - dimX = \infty$ if for every integer *n* it is false that $N - dimX \le n$. **Definition 5.2:** The N^* -covering dimension $N^* - dimX$ of a topological space *X* is the least integer *n* such that every finite N - open covering of *X* has an N - open refinement of order not exceeding *n* or is ∞ if there is no such integer. Thus $N^* - dimX = -1$ if and only if *X* is empty, and $N^* - dimX \le n$ if each finite N - open covering of *X* has N - open refinement of order not exceeding *n*. We have $N^* - dimX = n$ if it is true that $N^* - dimX \le n$ but it is not true that $N^* - dimX \le n = 1$. Finally $N^* - dimX = n$ if it is true that $N^* - dimX \le n$ but it is not $N^* - dimX \le n = 0$.

Proposition 5.3: Let *X* be a topological space, if *dimX* is exists then

$$N - dimX \le dimX$$

Proof: By induction on *n*. If n = -1 then dimX = -1 and $X = \emptyset$, so that N - dimX = -1. Suppose statement is true for n - 1, now let $dimX \le n$ to prove $N - dimX \le n$. Let $\mathcal{U} = \{U_1, U_2, ..., U_k\}$ be a finite open cover of *X*. Since $dimX \le n$ then \mathcal{U} has N - open

refinement \mathcal{V} of $order \leq n$. Hence $N - dim X \leq n$.

Proposition 5.4: Let X be a topological space, if $N^* - dimX$ is exists then

$$N - dim X \le N^* - dim X$$

Theorem 5.5: Let X be a topological space, if X has a base of sets which are both N - open and N - closed then N - dim X = 0, for a $T_1 - space$ the converse is true.

Proof: Suppose X has a base of sets which are both N - open and N - closed. Let $\{U_i\}_{i=1}^K$ be a finite open cover of X, it has an N - open refinement W, if $w \in W$ then $W \subset U_i$ for some *i*.

Let each *w* in *W* be associated with one of the sets U_i containing it and let V_i be the union of those members of *W* thus associated with U_i . Thus V_i is N - open set and hence $\{V_i\}_{i=1}^K$ forms disjoint N - open refinement of $\{U_i\}_{i=1}^K$ then N - dimX = 0.

Conversely

Suppose X is $T_1 - spacesuch$ that N - dimX = 0. Let $p \in X$ and G be an open set in X such that $p \in G$. Then $\{p\}$ is closed set and $\{G, X - \{p\}\}$ is finite open cover of X so it has an N - open refinement of order 0. Let C_1 be the union of N - open sets in G and C_2 be the union of the N - open sets in $X - \{p\}$. Then $C_1 \cap C_2 = \emptyset$, $C_1 \cup C_2 = X$ and C_1, C_2 are N - open sets and N - closed sets in X. Thus N - closed set in X and hence X has a base of sets which are both N - open and N - closed sets.

Theorem 5.6: Let X be a topological space, if X has N - base of sets which are both N - open and N - closed then $N^* - dimX = 0$, for a $NT_1 - space$ the converse is true.

Proof: Suppose X has N - base of sets which are both N - open and N - closed. Let $\{U_i\}_{i=1}^{K}$ be a finite N - open cover of X, it has an N - open refinement W, if $w \in W$ then $W \subset U_i$ for some *i*. Let each w in W be associated with one of the sets U_i containing it and let V_i be the union of those members of W thus associated with U_i . Thus V_i is N - open set and hence $\{V_i\}_{i=1}^{K}$ forms disjoint N - open refinement of $\{U_i\}_{i=1}^{K}$ then $N^* - dimX = 0$.

Conversely

Suppose X is $NT_1 - space$ such that $N^* - dimX = 0$. Let $p \in X$ and G be an N - open set in X such that $p \in G$. Then $\{p\}$ is closed set and $\{G, X - \{p\}\}$ is finite N - open cover of X.

Since $N^* - \dim X = 0$ then there exists an N - open refinement $\{V, W\}$ of order 0. Such that $V \cap W = \emptyset$, $\bigcup W = X$, $V \subset G$ and $W \subset X - \{p\}$. Then V is N - open and N - closed set in X such that $p \in W^{\mathbb{C}} \in V \subset G$ and hence X has N - base of N - open and N - closed sets. **Remark 5.7**[A.P.Pears ,1975]: Let X be a topological space with $\dim X = 0$ then X is a normal space.

Theorem 5.8: Let X be a topological space with N - dimX = 0 then X is N - normal space.

Proof: Let F_1 and F_2 be disjoint closed sets of X, then $\{X \setminus F_2, X \setminus F_1\}$ is an open covering of X. Since N - dimX = 0 then it has N - open refinement of order 0, hence there exist N - open sets H and G such that $H \cap G = \emptyset$, $\bigcup G = X$, $H \subset X \setminus F_1$ and $G \subset X \setminus F_2$. Thus $F_1 \subseteq H^{\mathbb{C}} = G$, $F_2 \subseteq G^{\mathbb{C}} = H$ and since $H \cap G = \emptyset$ then X is N - normal space.

Theorem 5.9: Let X be a topological space with $N^* - dimX = 0$ then X is $N^{**} - normal$ space.

Proof: Let F_1 and F_2 be disjoint N - closed sets of X, then $\{X \setminus F_2, X \setminus F_1\}$ is an N - open covering of X. Since $N^* - dim X = 0$ then it has N - open refinement of order 0, hence there exist N - open sets H and G such that $H \cap G = \emptyset$, $\bigcup G = X$, $H \subset X \setminus F_1$ and $G \subset X \setminus F_2$. Thus $F_1 \subseteq H^{\mathbb{C}} = G$, $F_2 \subseteq G^{\mathbb{C}} = H$ and since $H \cap G = \emptyset$ then X is $N^{**} - normal space$.

Remark 5.10: Let $X = \{a, b, c\}$, $T = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. In example show that dimX = N - dimX = 0. Since X is the open cover of X and its only refinement of it. Then dimX = 0 and since $N - dimX \le dimX$, $X \ne \emptyset$ then dimX = N - dimX = 0.

Proposition 5.11[A.P.Pears ,1975]: Let X be a topological space, if A is a closed sub set of a space X we have $dimA \le dimX$.

Theorem 5.12: Let X be a topological space, if A is a closed and open sub set of a space X, we have

$N - dimA \le N - dimX$

Proof: Suppose that $N - dimX \le n$ to prove $N - dimA \le n$. Let $\{U_1, U_2, ..., U_k\}$ be an open covering of *A*. Then for each *i*, $U_i = A \cap V_i$, where V_i is open set in *X*.

The finite open covering $\{V_1, V_2, ..., V_k, X \setminus A\}$ of X has an N - open refinement W of order $\leq n$. Let $V = \{w \cap A : w \in W\}$ where $w \cap A$ is an N - open in A by proposition(2.7).

Then V is an N - open refinement of $\{U_1, U_2, \dots, U_k\}$ of order $\leq n$. Thus $N - dimA \leq n$.

Theorem 5.13: Let X be a topological space, if A is a closed and open sub set of a space X, we have

$N^* - dimA \leq N^* - dimX$

Proof: Suppose that $N^* - dimX \le n$ to prove $N^* - dimA \le n$. Let $\{U_1, U_2, ..., U_k\}$ be an N - open covering of A. Then for each $i, U_i = A \cap V_i$, where V_i is N - open set in X.

The finite N - open covering $\{V_1, V_2, ..., V_k, X \setminus A\}$ of X has an N - open refinement W of order $\leq n$. Let $V = \{w \cap A : w \in W\}$ where $w \cap A$ is an N - open in A. Then V is an N - open refinement of $\{U_1, U_2, ..., U_k\}$ of order $\leq n$. Thus $N^* - dimA \leq n$.

6. Relation between the dimensions ind and Ind by using N – open sets

Proposition 6.1: Let *X* be a topological space, if *X* is T_1 – *space* then

 $N - indX \le N - IndX$

Proof: By induction on n. If n = -1 then the statement is true. Suppose that the statement is true for n - 1.

Now

Suppose that $N - IndX \le n$, to prove $N - indX \le n$. Let $p \in X$ and each open set $G \subset X$ of the point p, since X is $T_1 - space$ then $\{p\} \subseteq G$ such that $\{p\}$ is closed set. Since $N - IndX \le n$

then there exists an N - open set V in X such that $p \subset V \subset G$ and $N - Indb(V) \leq n - 1$. Hence $N - indb(V) \le n - 1$ and $p \in V \subset G$. Then $N - indX \le n$. **Proposition 6.2:** Let X be a topological space, if X is NT_1 – space then $N - indX \le N^* - IndX$ **Proof:** By induction on n. If n = -1 then the statement is true. Suppose that the statement is true for n-1. Now Suppose that $N^* - IndX \le n$, to prove $N - indX \le n$. Let $p \in X$ and each open set $G \subset X$ of the point p, since X is $NT_1 - space$ then $\{p\} \subseteq G$ such that $\{p\}$ is N - closed set. Since $N^* - IndX \le n$ then there exists an N - open set V in X such that $p \subset V \subset G$ and $N^* - IndX \le n$ $Indb(V) \leq n-1$. Hence $N - indb(V) \leq n-1$ and $p \in V \subset G$. Then $N - indX \leq n$. **Proposition 6.3:** Let X be a topological space, if X is NT_1 – space then $N^* - indX \le N^{**} - IndX$ **Proof:** By induction on n. If n = -1 then the statement is true. Suppose that the statement is true for *n* − 1. Now Suppose that $N^{**} - IndX \le n$, to prove $N^* - indX \le n$. Let $p \in X$ and each N - open set $G \subset X$ of the point p, since X is $NT_1 - space$ then $\{p\} \subseteq G$ such that $\{p\}$ is N - closed set. Since $N^{**} - IndX \le n$ then there exists an N - open set V in X such that $p \subset V \subset G$ and $N^{**} - Indb(V) \le n - 1$. Hence $N^* - indb(V) \le n - 1$ and $p \in V \subset G$. Then $N^* - indX \le N^* - indX \le N$ n. 🔳 **Proposition 6.4:** Let *X* be a topological space, if *X* is a regular space then $N - indX \le N - IndX$ **Proof:** By induction on n. If n = -1 then the statement is true. Suppose that the statement is true for n-1. Now Suppose that $N - IndX \le n$, to prove $N - indX \le n$. Let $N - IndX \le n$ and let $p \in X$ and each open set $G \subset X$ of the point p, since X is a regular space then there exists an open set V in X such that $p \in V \subset \overline{V} \subset G$. Also.. Since $N - IndX \le n$ and \overline{V} is closed, $\overline{V} \subset G$ then there exists an N - open set U in X such that $\overline{V} \subset U \subset G$ and $N - Indb(U) \leq n - 1$. Hence $N - indb(U) \leq n - 1$ and $p \in U \subset G$

(by induction). Therefore $N - indX \le n$.

Proposition 6.5: Let X be a topological space, if X is a N - regular space then

$$N - indX \le N^* - IndX$$

Proof: By induction on n. If n = -1 then the statement is true. Suppose that the statement is true for n - 1.

Now

Suppose that $N^* - IndX \le n$, to prove $N - indX \le n$. Let $N^* - IndX \le n$ and let $p \in X$ and each open set $G \subset X$ of the point p, since X is N - regular space then there exists an N - open set V in X such that $p \in V \subset \overline{V}^N \subset G$.

Also.. Since $N^* - IndX \le n$ and \overline{V}^N is N - closed, $\overline{V}^N \subset G$ then there exists an N - open set U in X such that $\overline{V}^N \subset U \subset G$ and $N^* - Indb(U) \le n - 1$. Hence $N - indb(U) \le n - 1$ and $p \in U \subset G$ (by induction). Therefore $N - indX \le n$.

Proposition 6.6: Let X be a topological space, if X is a $N^* - regular$ space then $N^* - indX \le N^{**} - IndX$

Proof: By induction on n. If n = -1 then the statement is true. Suppose that the statement is true for n - 1.

Now

Suppose that $N^{**} - IndX \le n$, to prove $N^* - indX \le n$. Let $N^{**} - IndX \le n$ and let $p \in X$ and each N - open set $G \subset X$ of the point p, since X is $N^* - regular$ space then there exists an *open* set V in X such that $p \in V \subset \overline{V}^N \subset G$.

Also.. Since $N^{**} - IndX \leq n$ and \overline{V}^N is -closed, $\overline{V}^N \subset G$ then there exists an N - open set U in X such that $\overline{V}^N \subset U \subset G$ and $N^{**} - Indb(U) \leq n - 1$. Hence $N^* - indb(U) \leq n - 1$ and $p \in U \subset G$ (by induction). Therefore $N^* - indX \leq n$.

Theorem 6.7: Let X be a topological space, if X is a compact space and N - indX = 0 then N - IndX = 0.

Proof: Let X is compact space such that N - indX = 0.

Let *F* be a closed set of *X* and *G* be an open set of *X* such that $F \subset G$.

Since N - indX = 0, for each $p \in F$ there exist an N - open and N - closed sets U_p such that $p \in U_p \subset G$ hence $F \subset \bigcup_{p \in F} U_p \subset G$.

Since F be a closed set in the compact space X, F is compact, hence there exist points p_1, p_2, \ldots, p_k of F such that $F \subset \bigcup_{i=1}^k U_{p_i} \subset G$. Since $\bigcup_{i=1}^k U_{p_i}$ is N - open and N - closed of X. It following that N - IndX = 0.

Theorem 6.8: Let X be a topological space, if X is a N – compact space and N – indX = 0 then $N^* - IndX = 0$.

Proof: Let *X* be N - compact space such that N - indX = 0.

Let *F* be an N – *closed* set of *X* and *G* be an open set of *X* such that $F \subset G$.

Since N - indX = 0, for each $p \in F$ there exist an N - open and N - closed sets U_p such that $p \in U_p \subset G$ hence $F \subset \bigcup_{p \in F} U_p \subset G$.

Since F be an N-closed set in the N-compact spaceX, F is N-compact space, hence there exist points p_1, p_2, \dots, p_k of F such that $F \subset \bigcup_{i=1}^k U_{p_i} \subset G$. Since $\bigcup_{i=1}^k U_{p_i}$ is N-open and N-closed of X. It following that $N^*-IndX = 0$.

Theorem 6.9: Let X be a topological space, if X is a N – compact space and N^* – indX = 0 then N^{**} – IndX = 0.

Proof: Let *X* be N - compact space such that N - indX = 0.

Let *F* be an N – *closed* set of *X* and *G* be an N – *open* set of *X* such that $F \subset G$.

Since N - indX = 0, for each $p \in F$ there exist an N - open and N - closed sets U_p such that $p \in U_p \subset G$ hence $F \subset \bigcup_{p \in F} U_p \subset G$.

Since F be an N-closed set in the N-compact spaceX, F is N-compact space, hence there exist points p_1, p_2, \dots, p_k of F such that $F \subset \bigcup_{i=1}^k U_{p_i} \subset G$. Since $\bigcup_{i=1}^k U_{p_i}$ is N-open and N-closed of X. It following that $N^*-IndX = 0$.

References

AL-Omari, A. and M.S.Md.Noorani, 2009 "New characterizations of compact spaces", proceedings of 5th Asian Mathematical conference, Malaysia.

Atallah Themer AL-Ani, 1974 "On compactification, mapping and dimension theory", Ph.D.Dissertation university of London, Queen Elizabeth college.

- Burbaki, N. 1989 "Elements of Mathematics; General Topology" Springer verlag, Berlin, Hedelberg, New York, London, Paris, Tokyo, 2nd Edition. college of mathematics and computer science.
- Gemignani, M.C. 1967. "Elementary Topology", Reading, Mass: Addison- Wwsley Puplishing Co.Inc. .
- Hamza S.H. and F.M.Majhool, 2011 "On *N proper Action*", M.Sc., thesis university of AL-Qadisiya.
- Hashmiya Ibrahim Nasser, 2012 "On some topological spaces by using N open set" M.Sc. thesis university of AL-Qadisiya, college of mathematics and computer science.
- Maheshwari, S.N.and Thakur,S.S., 1985"On *α compact space*", Bulletin of the Institute of Mathematics, Academia sinica, Vol.13, No.4, Dec. 1985,341-347.
- Navalagi, G.B., 1991 "Definiton Bank in General topology", (54) G.
- Nedaa Hasan Hajee, 2011 "On Dimension Theorey By using Feebly open set", M.Sc. thesis university of AL-Qadisiya, college of mathematics and computer science.
- Pears, A.P. 1975" On Dimension Theory of General Spaces" Cambridge university press.
- Pervin, N.J. 1964 "Foundation of General Topology", Acadmic press, New York.
- Raad Aziz Hussain AL-Abdulla, 1992 "On Dimension Theory", M.Sc. thesis university of Baghdad, college of science.
- Ryzard Engelking, 1989 "General topoplogy", Berlin Heldermann.
- Ryzard Engelking, 1978 "Dimension Theory".

Sama Kadhim Gaber, 2010 "On b-Dimension Theory", M.Sc. thesis university of AL-Qadisiya,