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Abstract

In this paper we discuss new type of dimension theory by using N — open sets. We the concept of
indX, IndX, dimX, for a topological space X have been studied. In this work, these concepts will be extended by
using N — open sets.
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1. Introduction
Dimension theory starts with “dimension function” which is a function defined on the
class of topological spaces such that d(X) is an integer orco, with the properties that d(X) =
d(Y) if X and Y are homeomorphism and d(R™) = n for each positive integer n. The dimension
functions taking topological spaces to the set{—1,0,1,...}. The dimension functions
ind, Ind,dim, were investigated by [Pears ,1975]. Actually the dimension functions,
S —indX,S — IndX,S — dimX by using S — open sets were studied in [Raad Aziz Hussain AL-
Abdulla,1992], also the dimension functions, b — indX,b — IndX,b — dimX, by using b —
open sets were studied in [Sama Kadhim Gabar,2010], and the dimension functions, f —
indX, f — IndX, f — dimX, by using f — open sets were studied in [Nedaa Hasan Hajee ,2011].
In this paper we recall the definitions of ind, Ind, dim, from [Pears ,1975], then the dimension
functions, N — ind, N — Ind, N — dim are introduced by using N — open sets. Finally some
relations between them are studied and some results relating these concepts are proved.
2. Preliminaries
In this section, we recall some of the basic definitions.
Definition 2.1[Omari, and Noorani,2009]: A sub set A of a space X is said to be an
N — open if for every p € A there exist an open sub set U, in X such that U, — A is a finite set.
The complement of an N — open set is said to be N — closed.
Remark 2.2: 1. Every open set is an N — open set.
2. Every closed set is an N — closed set.
The converse of (1) and (2) is not true in general as the following example shows:
Let Z be the set of integer numbers and T be indiscrete topology on Z, then Z — {2,3} is an
N — open set, but its not an open set and B = {2,3} is an N — closed set, but not a closed set.
Remark 2.3: The family of all N — open sub set of a space (X, T) is denoted by TV.
Theorem 2.4[Omari, and Noorani,2009]: Let X be a topological space, then X with the set of
all N — open sub set of X is a topological space.
Corollary 2.5[Omari, and Noorani,2009]: Let X be a topological space, then the intersection of
an open set and an N — open set is an N — open set.
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Remark 2.6|Hamza and Majhool,2011]: Let X be a space and Y be a sub space of X such
thatA € Y,if Ais N — opensubsetin X then Ais N —openinY.

Proposition 2.7[Hamza and Majhool,2011]: 1. Let X be a space and Y be an N — open of X, if
AisN —openinY then Aisan N —open in X.

2. Let X be a space and Y be a sub set of X if B is an N — open in X then BNY is N — open
inY.

Definition 2.8[Hashmiya Ibrahim Nasser,2012]: A space X is called NT; — space if and only
if for each x # y inX, there exists disjoint N —open sets U and V such that x € U,y &
UandyeV,x ¢ V.

Remark 2.9: It is clear that every T; — space is NT; — space but the converse is not true in
general, as the following example shows: Let X ={1,2,3},T = {X, 0,{1},{2}, {1,2}}, the
N — open set is {X, 0,{1},{2},{3},{1,2},{1,3}, {2,3}}, It is clear to see that X is NT; — space
but is not T, — space.

Proposition 2.10[Hashmiya Ibrahim Nasser,2012]: Let X be a topological space, and then X
is NT, — space if and only if {p} is N — closed set for each p € X.

Definition 2.11[Hashmiya Ibrahim Nasser,2012]: A space X is called N — Hausdorff if and
only if any two distinct points of X has disjoint an N — open neighborhoods.

Remark 2.12: Every Hausdorff space is N — Hausdorff. But the convers is not true in
general.

Definition 2.13: A space X is said to be N — regular space if and only if for each p € X and C
closed sub set such thatp & C, there exist disjoint N — open sets U,V in X suchthatp € U,C €
V.

Definition 2.14: A space X is said to be N* — regular space if and only if for each p € X and C
N — closed sub set such thatp & C, there exist disjoint open sets U,V in X such that U open
set, Visan N —opensetand p € U,C S V.

Remark 2.15: 1. Every regular space is N — regular space but the convers is not true.

2. Every N* — regular space is N — regular space but the convers is not true.

As the following example shows: let X = {1,2,3},T = {X, 0,{1},{2}, {1,2}}, the N — open set is
{X, 0,{1},{2},{3},{1,2},{1,3}, {2,3}}, It is clear to see that X is N — regular space, but X is not
regular since {2,3} is closed set, 1 ¢ {2,3} and there exist no disjoint two open set U, V such that
1 €U, {23} cV.Also X is not N* —regular, since {1,2} is N — closed set and 3 & {1,2}, but
there exist no disjoint open set U and N — open set V such that 3 € U,{1,2} € V.

Definition 2.16: A space X is said to be N —normal space if and only if for every disjoint
closed sets C;, C, there exist disjoint N — open sets V;,V, such that C; c V;,C, c V5.

Definition 2.17: A space X is said to be N* — normal space if and only if for every disjoint
N — closed sets Cy, C, there exist disjoint open sets V;, V, such that C; c V;,C, C V.
Definition 2.18: A space X is said to be N** — normal space if and only if for every disjoint
N — closed sets Cy, C, there exist disjoint N — open sets V;, V, such that C; c V;,C, C V,.
Remark 2.19: 1. Every normal space is N — normal but the convers is not true.

2. Every N* — normal space is normal but the convers is not true.

Definition 2.20[N.Burbaki,1989]: A topological space X is said to be compact if every open
cover of X has a finite sub cover.

Definition 2.21[S.H.Hamza and F.M.Majhool,2011]: A topological space X is said to be
N — compact if every N — open cover of X has a finite sub cover.
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Lemma 2.22] Maheshwari, S.N.and Thakur,S.S., 1985]: 1. Every closed sub set of compact is
compact.

2. Every N — closed sub set of N — compact is compact.

Definition 2.23: Let X be a set and A a family of sub sets of X, by the order of the family A we
mean the largest integer n such that the family A contains n+1 sets with a non-empty
intersection, if no such integer exists, we say that the family A has order oo. The order of a family
A is denoted by ord A.

Definition 2.24: Let X be a topological space the family f of N — open sets is called a N —
base if and only if for each N — open set a union of members of a family .

Definition 2.25[S.H.Hamza and F.M.Majhool,2011]: Let X be a space and A € X. The
intersection of all N — closed sets of X contained in A is called the N — closure of A and is
denoted by AN,

3. On ind by using N — open sets

Definition 3.1: The N —small inductive dimension of a spaceX, N —indX, is defined
inductively as follows. A space X satisfies N —indX = —1 if and only if X is empty. [fn is a
non-negative integer, then N — indX < n means that for each point p of X and each open set G
such that p € G there exists an N — open set U such thatp € U € G and N — indb(U) <n — 1.
We put N — indX = n if it is true that N — indX < n, but it is not true that N — indX <n — 1.
If there exists no integer n for which N — indX < n then we put N — indX = oo.

Definition 3.2: The N* —small inductive dimension of a spaceX, N* —indX, is defined
inductively as follows. A space X satisfies N* — indX = —1 if and only if X is empty. [fn is a
non-negative integer, then N* — indX < n means that for each point p of X and each N — open
set G such that p € G there exists an N — open set U such that p € U € G and N* — indb(U) <
n—1. We put N* —indX =n if it is true that N* — indX < n, but it is not true that N* —
indX < n — 1. If there exists no integer n for which N* — indX < n then we put N* — indX =
00,

Proposition 3.3: Let X be a topological space. If indX is exists then N — indX < indX.

Proof: By induction on n. It is clear n = —1. Suppose that it is true for n — 1. Now suppose that
indX <n, toprove N—indX <n, let p € X and G is an open set in X such that p € G since
indX < n , then there exists an open set U in X such that p € U c G and indb(U) <n — 1 and
since every open set is N — open set then U is an N — open set such that p € U € G and
N —indb(U) <n—1.Hence N — indX < n.m

Theorem 3.4: Let X be a topological space, then indX = 0 if and only if N — indX = 0.

Proof: By proposition (3.3). If indX =0 then N —indX <0, and since X # @ then N —
indX = 0.

Now

Let N —indX = 0 and Let p € X and each open set G © X of the point p, since N — indX = 0
then there exists an N — open set U € X such that p € U € G and N — indb(U) < —1. Then
b(U) = @, therefore U is both open and closed, and thus indb(U) = —1. So that indX < 0 and
since X # @ then indX =0.m

Remark 3.5[A.P.Pears ,1975]: Let X be a topological space with indX = 0 then X is a regular
space.

Corollary 3.6: Let X be a topological space, if N — indX = 0 then X is a regular space.

Remark 3.7[A.P.Pears ,1975]: A space X satisfies indX = 0 if and only if it is not empty and
has a base for its topology which consists of open and closed sets.
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Corollary 3.8: A space X satisfies N — indX = 0 if and only if it is not empty and has a base
for its topology which consists of open and closed sets.
Proposition 3.9[A.P.Pears ,1975]: For every sub space A of a space X, we have indA < indX.
Theorem 3.10: For every sub space A of a space X and A is open, we have
N —indA < N — indX

Proof: By induction onn. If n = —1 then theorem is true. Suppose that the theorem is true for
n—1.
Now
Suppose that N —indX < nto prove N — indA < n.Letp € A and G is an open set in A such
that p € G. Since G is open set in A then there exists U is an open set in X such that G = U N A.
Since p € A and N — indX < n then there exists an N — open set W in X suchthatp e W c U
and N —indb(W) <n—1.LetV =W nAis N — open in A, by proposition(2.7).
Thusp € V. =WNA c UNA = G to prove N — indb,(V) <n —1then N —indA < n.
b (V) Sb(VINA= T —VINACW —V)InA=WnV)n4

=W ua)na=[(Wnaw)u(Wna)na

c(bW)uAa)nAa=BW)NA) U (A NA) cbW).
Thus N —indb,(V) < N — indb(W). Since N —indb(W) <n—1 then N —indb,(V) <
n — 1 (By induction). Therefore N — indA < n.m
4. On Ind by using N — open sets
Definition 4.1: The N —large inductive dimension of a spaceX, N — IndX, is defined inductively
as follows. A space X satisfies N — IndX = —1 if and only if X is empty. If n is a non-negative
integer, then N — IndX < n means that for each closed set E and each open set G of X such that
E c G there exists an N — open set U such that E ¢ U c G and N — Indb(U) < n — 1. We put
N — IndX = n if it is true that N — IndX < n, but it is not true that N — IndX < n — 1. If there
exists no integer n for which N — IndX < n then we put N — IndX = oo.
Definition 4.2: The N* —large inductive dimension of a spaceX, N* —IndX, is defined
inductively as follows. A space X satisfies N* — IndX = —1 if and only if X is empty. If n is a
non-negative integer, then N* — IndX < n means that for each N — closed set E and each open
set G of X such that E c G there exists an N — open set U such that E c U c G and N* —
Indb(U) <n—1. Weput N* — IndX = n if it is true that N* — IndX < n, but it is not true that
N* — IndX < n — 1. If there exists no integer n for which N* — IndX < n then we put N* —
IndX = oo.
Definition 4.3: The N** —large inductive dimension of a spaceX, N** — IndX, is defined
inductively as follows. A space X satisfies N** — IndX = —1 ifand only if X is empty. [fnisa
non-negative integer, then N** — IndX < n means that for each N — closed set E and each
N — open set G of X such that E c G there exists an N — open set U such that E ¢ U < G and
N** —Indb(U) <n—1. We put N** — IndX = n if it is true that N** — IndX < n, but it is not
true that N** — IndX < n — 1. If there exists no integer n for which N** — IndX < n then we
put N** — IndX = oo,
Proposition 4.4: Let X be a topological space, if IndX is exist then N — IndX < IndX.
Proof: By induction on n. It is clear n = —1. Suppose that it is true for n — 1. Now suppose that
IndX < n,toprove N —IndX < n,let C bea closed setin X and G is an open set in X such
that C € G since IndX < n , then there exists an open set U in X such that C € U c G and
Indb(U) < n— 1 and since every open set is N — open set then U is an N — open set such that
CcUcGand N —Indb(U) <n—1.Hence N —IndX <n.m
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Proposition 4.5: Let X be a topological space then:

1. If N** — IndX is exist then N* — IndX < N** — IndX.

2. If N* — IndX is exist then N — IndX < N* — IndX.

Theorem 4.6: Let X be a topological space, then IndX = 0 if and only if N — IndX = 0.

Proof: By proposition (4.5). If IndX =0 then N —IndX <0, and since X # @ then N —
IndX = 0.

Now

Let N — IndX = 0 and Let F is closed set in X and each open set G in X such that F < U. Since
N — IndX = 0 then there exists an N —open set U in X such that Fc U c G and N —
Indb(U) = —1. Then b(U) = @, therefore U is both open and closed, and thus Indb(U) = —1.
So that IndX < 0 and since X # @ then IndX = 0.m

Remark 4.7[A.P.Pears ,1975]: Let X be a topological space with IndX = 0 then X is a normal
space.

Corollary 4.8: Let X be a topological space with N — IndX = 0 then X is a normal space.
Proof: It follows from theorem (4.6).

Remark 4.9[A.P.Pears ,1975]: A space X satisfies IndX = 0 if and only if it is non-empty and
has a base for its topology which consist of open and closed sets.

Corollary 4.10: A space X satisfies N — IndX = 0 if and only if it is non-empty and has a base
for its topology which consist of open and closed sets.

Proposition 4.11[A.P.Pears ,1975]:Let X be a topological space, if A is a closed sub set of a
space X we have IndA < IndX.

Theorem 4.12: Let X be a topological space, if A is a closed and open sub set of a space X, we

have
N — IndA < N — IndX.
Proof: By induction onn. If n = —1 then theorem is true. Suppose that the theorem is true for
n—1.
Now

Suppose that N — IndX < nto prove N — IndA < n. Let F is a closed set in 4 and G is an open
set in A such that F € G. Since F is a closed set in A and A is a closed set in X then F is a
closed set in X. Since G is open set in A then there exists U is an open set in X such that G =
UNA. Since F c U and N — IndX < n then there exists an N — open set W in X such that
FcWcUandN—Indb(W)<n-—1.LetV =W nAis N — open in A, by proposition(2.7).
Thus FcV=WNAcUNA=G
b (V) Sb(VNA= T —VINACW —V)InA=WnV)n4
=W ua)na=[(Wnaw)u(Wna)na
c(bW)uAa)na=BW)NA) UL NA) cbW).
b,(MPM) = p, (V)N b(W) = b,(V) nb(W) = by(V). by(V) is closed set in A, since 4 is a
closed set in X then b, (V) is a closed set in b(W). Thus N — Indb,(V) < N — Indb(W).
Since N —Indb(W) <n—1 then N —Indb,(V) <n—1 (By induction). Therefore N —
indA<n.m

5. On dim by using N — open sets
Definition 5.1: The N —covering dimension N — dimX of a topological space X is the least
integer n such that every finite open covering of X has an N — open refinement of order not
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exceeding n or is oo if there is no such integer. Thus N — dimX = —1 if and only if X is empty,
and N — dimX < n if each finite open covering of X has N — open refinement of order not
exceeding n. We have N — dimX = n if it is true thatN — dimX < n but it is not true that N —
dimX <n — 1. Finally N — dimX = oo if for every integer n it is false that N — dimX < n.
Definition 5.2: The N* —covering dimension N* — dimX of a topological space X is the least
integer n such that every finite N — open covering of X has an N — open refinement of order
not exceeding n or is oo if there is no such integer. Thus N* — dimX = —1 if and only if X is
empty, and N* — dimX < n if each finite N — open covering of X has N — open refinement of
order not exceeding n. We have N* — dimX = n if it is true thatN* — dimX < n but it is not
true that N* — dimX < n — 1. Finally N* —dimX = oo if for every integer n it is false that
N* —dimX < n.
Proposition 5.3: Let X be a topological space, if dimX is exists then
N — dimX < dimX

Proof: By induction on n. If n = —1 then dimX = —1 and X = @, so that N — dimX = —1.
Suppose statement is true for n — 1, now let dimX < n to prove N — dimX < n.
Let U = {U,,U,, ..., Uy} be a finite open cover of X. Since dimX < n then U has N — open
refinement V of order < n. Hence N — dimX < n.
Proposition 5.4: Let X be a topological space, if N* — dimX is exists then

N —dimX < N* —dimX

Theorem 5.5: Let X be a topological space, if X has a base of sets which are both N — open and
N — closed then N — dimX = 0, for a T; — space the converse is true.

Proof: Suppose X has a base of sets which are both N — open and N — closed. Let {U;}¥ , be a
finite open cover of X, it has an N — open refinement W, if w € W then W < U; for some i.

Let each w in W be associated with one of the sets U; containing it and let V; be the union of
those members of W thus associated with U;. Thus V; is N — open set and hence {V;}X, forms
disjoint N — open refinement of {U;}, then N — dimX = 0.

Conversely

Suppose X is T; — spacesuch that N — dimX = 0. Let p € X and G be an open set in X such
that p € G. Then {p} is closed set and {G,X — {p}} is finite open cover of X so it has an
N — open refinement of order 0. Let C; be the union of N — open sets in G and C, be the union
of the N — open sets in X —{p}. Then C;, N C, =@, C; U C, = X and C;,C, are N — open sets
and N — closed sets in X. Thus N — closed set in X and hence X has a base of sets which are
both N — open and N — closed sets. m

Theorem 5.6: Let X be a topological space, if X has N — base of sets which are both N — open
and N — closed then N* — dimX = 0, for a NT; — space the converse is true.

Proof: Suppose X has N — base of sets which are both N — open and N — closed. Let {U;}¥
be a finite N — open cover of X, it has an N — open refinement W, if w € W then W c U; for
some . Let each win W be associated with one of the sets U; containing it and let V; be the
union of those members of W thus associated with U;. Thus V; is N — open set and hence
{V,}£, forms disjoint N — open refinement of {U;}<_; then N* — dimX = 0.

Conversely

Suppose X is NT; — space such that N* — dimX = 0. Let p € X and G be an N — open set in X
such that p € G. Then {p} is closed set and {G,X — {p}} is finite N — open cover of X.

600



Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015

Since N* — dimX = 0 then there exists an N — open refinement {V, W} of order 0. Such that
VaW=0,UW=X,VcGandW c X —{p}. ThenV is N — open and N — closed set in
X suchthatp € WC € V c G and hence X has N — base of N —open and N — closed sets. m
Remark 5.7[A.P.Pears ,1975]: Let X be a topological space with dimX = 0 then X is a normal
space.
Theorem 5.8: Let X be a topological space with N — dimX = 0 then X is N — normal space.
Proof: Let F;and F, be disjoint closed sets of X, then {X \ F,, X \ F;} is an open covering of X.
Since N — dimX = 0 then it has N — open refinement of order 0, hence there exist N — open
sets H and G suchthat HNG=0 ,UG=X , Hc X\ F,andG c X\F,. Thus F; S H® =
G,F, € G = H and since HN G = @ then X is N — normal space. m
Theorem 5.9: Let X be a topological space with N* — dimX = 0 then X is N** — normal
space.
Proof: Let Fyand F, be disjoint N — closed sets of X, then {X \ F,,X \ F;} is an N — open
covering of X. Since N* — dimX = 0 then it has N — open refinement of order 0, hence there
exist N —open sets H and G suchthat HNG =0, UG =X ,Hc X\ F, andG c X\ F,.
Thus F; € H = G ,F, € G® = H and since H N G = @ then X is N** — normal space. m
Remark 5.10: Let X = {a,b,c},T = {0,X,{a}, {b},{a, b}}.In example show that dimX = N —
dimX = 0. Since X is the open cover of X and its only refinement of it. Then dimX = 0 and
since N — dimX < dimX ,X # @ thendimX = N — dimX = 0.
Proposition 5.11[A.P.Pears ,1975]: Let X be a topological space, if A is a closed sub set of a
space X we have dimA < dimX.
Theorem 5.12: Let X be a topological space, if A is a closed and open sub set of a space X, we
have

N —dimA < N —dimX
Proof: Suppose that N — dimX < n to prove N —dimA < n. Let {U;,U,, ..., Uy} be an open
covering of A. Then for each i, U; = ANV;, where V; is open set in X.
The finite open covering {V;,V5, ..., Vi, X \ A} of X has an N — open refinement W of order < n.
LetV ={wnA:w € W} where w N A isan N — open in A by proposition(2.7).
Then V is an N — open refinement of {U,, U,, ..., Uy} of order< n. Thus N — dimA < n.m
Theorem 5.13: Let X be a topological space, if A is a closed and open sub set of a space X, we
have

N*—dimA < N* — dimX
Proof: Suppose that N* — dimX <n to prove N* —dimA <n. Let {U;,U,,...,U;} be an
N — open covering of A. Then for each i, U; = ANV;, where V; is N — open set in X.
The finite N — open covering {V;,V,,...,V;, X \ A} of X has an N — open refinement W of
order<n. LetV={wnA:w €W} wherewnAisan N — open in A. Then V is an N — open
refinement of {U;, U,, ..., Uy} of order< n. Thus N* — dimA < n. m
6. Relation between the dimensions ind and Ind by using N — open sets
Proposition 6.1: Let X be a topological space, if X is T; — space then

N —indX < N — IndX

Proof: By induction on n. If n = —1 then the statement is true. Suppose that the statement is true
forn — 1.
Now

Suppose that N — IndX < n, to prove N — indX < n. Let p € X and each open set G € X of the
point p, since X is T; — space then {p} € G such that {p} is closed set. Since N — IndX <n
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then there exists an N —open set V in X such that pcV € G and N — Indb(V) <n —1.
Hence N — indb(V) <n—1landp €V c G.Then N — indX <n.m
Proposition 6.2: Let X be a topological space, if X is NT; — space then

N —indX < N* — IndX

Proof: By induction on n. If n = —1 then the statement is true. Suppose that the statement is true
forn—1.
Now

Suppose that N* — IndX < n, to prove N — indX < n. Let p € X and each open set G c X of
the point p, since X is NT; —space then {p} S G such that {p} is N — closed set. Since
N* —IndX < n then there exists an N —open set V in X such that pcV c G and N* —
Indb(V) <n—1.Hence N —indb(V) <n—1landp €V c G. ThenN — indX <n.m
Proposition 6.3: Let X be a topological space, if X is NT; — space then

N* —indX < N** — IndX

Proof: By induction on n. If n = —1 then the statement is true. Suppose that the statement is true
forn — 1.
Now

Suppose that N** — IndX < n, to prove N* —indX <n. Let p € X and each N — open set
G c X of the point p, since X is NT; — space then {p} S G such that {p} is N — closed set.
Since N** — IndX < n then there exists an N —open set V in X such that pc V c G and
N* —Indb(V) <n—1. Hence N*—indb(V)<n—1 andp €V c G. Then N*—indX <
n.m
Proposition 6.4: Let X be a topological space, if X is a regular space then

N —indX < N — IndX

Proof: By induction on n. If n = —1 then the statement is true. Suppose that the statement is true
forn—1.
Now

Suppose that N — IndX < n, to prove N — indX < n.Let N — IndX < nand let p € X and each
open set G © X of the point p, since X is a regular space then there exists an open set V in X
suchthatp €V c V c G.
Also.. Since N — IndX <n and V is closed, V c G then there exists an N — open set U in X
such that V. ¢ U € G andN — Indb(U) <n—1. Hence N —indb(U)<n—1landp€Uc@G
(by induction). Therefore N — indX <n.m
Proposition 6.5: Let X be a topological space, if X is a N — regular space then

N —indX < N* — IndX

Proof: By induction on n. I[f n = —1 then the statement is true. Suppose that the statement is true
forn — 1.
Now

Suppose that N* — IndX < n, to prove N —indX <n. Let N* —IndX <n and let p € X and
each open set G © X of the point p, since X is N — regular space then there exists an N — open
set V in X such thatp € V c VN c G.
Also.. Since N* — IndX <nand V" is N — closed , VN c G then there exists an N — open set
U in X such that VN ¢ U € G and N* —Indb(U) <n — 1. Hence N —indb(U) <n—1 and
p € U c G (by induction). Therefore N — indX <n.m
Proposition 6.6: Let X be a topological space, if X is a N* — regular space then

N* —indX < N** — IndX

602



Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015

Proof: By induction on n. If n = —1 then the statement is true. Suppose that the statement is true
forn— 1.
Now

Suppose that N** — IndX < n, to prove N* —indX <n.Let N** — IndX <n and let p € X and
each N — open set G c X of the point p, since X is N* — regular space then there exists an
open setV in X suchthatp € V c VN c G.

Also.. Since N** — IndX < n and VN is —closed , VN c G then there exists an N — open set
Uin X such that VN ¢ U € G and N** — Indb(U) <n —1. Hence N* — indb(U) <n — 1 and
p € U c G (by induction). Therefore N* — indX < n.m

Theorem 6.7: Let X be a topological space, if X is a compact space and N — indX = 0 then
N —IndX = 0.

Proof: Let X is compact space such thatN — indX = 0.

Let F be a closed set of X and G be an open set of X such that F c G.

SinceN — indX = 0, for each p € F there exist an N — open and N — closed sets U, such that
p € U, © G henceF © Uper U, C G.

Since F be a closed set in the compact spaceX, F is compact , hence there exist points
P1, P2y -+, P of F such thatF ¢ Uk, Up, © G. Since Uk, Up, is N — open and N — closed of
X. It following that N — IndX = 0. m

Theorem 6.8: Let X be a topological space, if X is a N — compact space and N — indX =0
then N* — IndX = 0.

Proof: Let X be N — compact space such thatN — indX = 0.

Let F be an N — closed set of X and G be an open set of X such that F c G.

SinceN — indX = 0, for each p € F there exist an N — open and N — closed sets U, such that
p € U, © G henceF € Uper U, C G.

Since F be an N — closed set in the N — compact spaceX, F is N — compact space, hence
there exist points py,ps, ....., px of F such thatF c U¥ ; Up, © G. Since Uk, Up, is N — open
and N — closed of X. It following that N* — IndX = 0. m

Theorem 6.9: Let X be a topological space, if X is a N — compact space and N* — indX = 0
then N** — IndX = 0.

Proof: Let X be N — compact space such that N — indX = 0.

Let F be an N — closed set of X and G be an N — open set of X such that F c G.

SinceN — indX = 0, for each p € F there exist an N — open and N — closed sets U, such that
p € U, © G henceF € Uper U, C G.

Since F be an N — closed set in the N — compact spaceX, F is N — compact space, hence
there exist points p;, Py, ....., px of F such thatF c Uk, Up, © G. Since Uk, Up, is N — open
and N — closed of X. It following that N* — IndX = 0. m
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