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Abstract

In this paper, we considers the order statistics from negative binomial distribution .which have moment of
all positive orders.
We take as example for x5to find the mean and variance. We define aformula for B . The incomplete beta
function of Negative binomial distribution is ;g (i, M), But The incomplete beta function of binomial
distribution is Ip( (i, M — i + 1).

The purpose of this paper is to study the distribution of x; and R = x; — x; (x;,%; ,{ > j) . The results are
obtained here can be compared to those for a continuous variate.
Keywords :Order Statistics, Negative Binomial, Joint Distribution, Mean, Variance.
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1. Introduction
Let x; (i =0,1,2,..., M) be the number of successes in N independent trials from
anegative binomial distribution with p as the probability of success in each trial .
Let x; be arranged in order to give
X SXp S S xS S Xy

The discrete variable x; or x(; take values 1,2, ... (i=1.2,..,M).
Table are provided giving the cumulative distribution and the expected value and the
variance of x(qy and x, . joint distribution of x(;) and xj (i < j) is obtained .
The distribution of Xj — X; (j > 1) is also derived .Given observations, we can see that there

are i (M — i + 1) different and mutually exclusive cases of the type i- 1- k observations
below x;,

(k + m + 1) observations  of x; and n — i — m observations above x; , with respective
probabilities P(x; —1),p(x;) and 1 — P(x;),

(k=012,..i—1 and m=0,1,2,...,M —i).

2.Literature Review

The negative binomial distribution (NBD) is one of the most useful probability
distributions and has been successfully employed to model a variety of natural phenomena. It
has been used to construct useful models in many substantive fields: in accident statistics
(Greenwood and Yule(1920) , Arbous and Kerrich(1951), Weber( 1971)) . in birth-death
processes (Furry,1937) ; Kendall 1949) .in psychology (Sichel, 1951).

The first work in actuarial literature that has come to my attention involving the negative
binomial was by Keffer in 1929 in connection with a group life experience rating plan. He
developed the theory in relationship to the relative dispersion of loss ratios about their true
mean.
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A. L. Bailey first utilized the negative binomial in the Proceedings of the Casualty
Actuarial Society in 1950. The distribution resulting from
repeated trials of this experiment will be in thc form of a negative binomial distribution . This
model is suggested by the mathematical development of Feller (1957) .

Creel and Loomis (1990, 1991) estimated truncated and untruncated Poisson and negative
binomial models for California deer hunting and derived welfare measures from these models
see (Miaou, 1994; ; Hadi et al., 1995; Shankar et al.(1995) Poch and Mannering, (1996).

In addition, zero-inflated Poisson and zeroinflated negative binomial models were also
employed to analyze accident frequencies by Shankar et al. (1997) . also employed to analyze
accident frequencies by Lee and Mannering (2002) and Lee ef al. (2002) .

In biology (Anscombe(1950); Bliss and Fisher (1953); Anderson (1965); Boswell and
Patil ( 1970); Elliot (1977) . In ecology (Martin and Katti (1965); Binn (1986); White and
Bennetle ( 1996)). in entomology (Wilson and Room( 1983) . In epidemiology (Byers et al.
(2003) . in information sciences (Bookstein( 1997) . In meterology (Sakamato ( 1972) .

In addition, many other physical and biological applications have been described by
( Biggeri (1998) and Eke et al. (2001) .
3. Moment of order statistics

Gupta ,S.Shanti .and S. Panchspakesan(1967) "Department of Statistics Division of
Mathematical Sciences Mimeograph Series No. 120"

Nb() = P = PNsp ) = () P =pV

N=xx+1,.. ,x>0
Where Nb(x) probability density function of Negative binomial distribution.
N

B(s) = ZP(x).

B(p,q) = (F(P)I;(Q))/(F(P +9)

1
fua‘l (1 —u)b~1du.
0

bb(@b) =57

Let p;(x) be the probability that the ith order statistic x ;) is equal to
x and let P;(x) = p{x(i) < x}bethec.d.f.of X(i) -
i1 M—i

pi(x) =

k=0 m=0

M! (B(x — DY p)}+™ {1 — B
(—-1-K)!'k+m+D!'M—-i—m)!

(3.1)

Where B(x — 1) = 0 for x = 0. This can be rewritten as
B(x)

Pi(x)=i<ﬂl./1) fw"‘l(l—w)”"ldw (3.2)

B(x—1)

= Il—B(x)(i:M) - 11_B(x_1)(i,M).

Further
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B(x)

pi(x) = l<1\:1> f 01— )" dw = Li_pey (i, M) (3.3)

0
N-1

E(xp) = Y [1-p@] (G4
x=0

N-1

B2 = zz [1-pCoOl+ ) [1-pCO]  (35)

x=0
var(x;) = E(x%) — [E(x(i))]z (3.6)

Example
let ( xg, X1, X5, X3) be order statistic , i=3 ,p = q = i , X3 = 3 , find the mean and

veriance of x3 ?when M =3,N = 4,Z =2.
where w = ZP(x;) + (x; — 1)

== ()
v~ =r= ()} -3

, 111
W=LrgTaT 2

B(x)

P(x) = L(AL/I) f w' (1 —w)" do

0
X
Bx) = Zpi(l —-p) T ,i=0,123

BO)=0,5(1) =2, B2) =2, B(3) = ¢

=) (4 € -2
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4-1
()= [1-P]
= [1=P(O] +[L = P(DI+ [1 = @]+ [1 = Py(3)]

1o ig o (-2 16 () )

64+52+74 190

64 64
N-1 N-1
E( %) =2) x[1=P@]+ ) [1-P)]
x=0 x=0
& 13 49 75 52498475 225
295[1—133(95)]:o.[1]+1.[a+§+a e

x=0

225 190 640

E(2®)=2"3+4r =4

var (x3) = E(x2(3)) — [E(x3)]?

_ 640 36100 4860
T 64 4096 4096

4 . Joint distribution of x; and x;) ,i <j
BIGGERI, A. (1998 ), FISHER,R.A. (1941), Gupta ,S.Shanti .and S. Panchspakesan(1967)

Let p; ;(x,y)(i < j) be the probability that X is equal to x and x(j) is equal to y and let
pi,j(x:y) = p(x(i) XX S y). Ifx>y,
Py (%, y) =p(x < y)

B(y)

:]<1;/1>f U1 —-wMdu) (4.1)

0

By repeated application of the results

P
Z <n +:: B 1>pn(k —-p)f= B(Cj,n) f u% (1 —uw)" tdu
0

S=a
and
d 1 1 ‘
n+s—
n _ s — b _ n—-1
Z( < )p (k—p) B(b+1,n)fu (1—w)" du
s= 0

478



Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(23): 2015

Where 0 < p < 1 and p < k ; we obtain

pi,j(x!y)
y by 1 . ” 1 B(x) B i1
i— _ - _ i—
ﬂ(-” N SV I = ] fd”f @ (v-o)
vr B(y) 0

1 - dw (4.2)
w=2zP(x;))+P(x;—1) v:P(x]-)—yP(x]-)

we get the relation

M! 1 B(x) 4 j—i—1 M-1
(i—l)!(j—i—l)!(M—j)!fB(x) dv [, 0T (v - 0) A - v)M e (4.3)

M B(x) M B(x)
=i<i> f u“l(l—u)M‘ldu—i<i> f w1 —wMtdu
0 0

=1L_pe) (L M) — I1_piy)(j, M) (4.4)
N N
E(xwx(j)) = z Z xy pi,j(x,y)
x= Oy
N N-1
ZX pl](x X)+Z Z xypl](x y) (45)
x=0 x=0 y=x+1

SO

cov(x ), x(j)) = Z xZp; (%) + Z Z xy pi,j (%, ¥)

x 0y=x+1

—{Z 1- pl(x)]}{z [1-p@]) .6)

5. Distribution of Y;; = X;y — Xy (j > )
BIGGERI, A. (1998 ), FISHER,R.A. (1941), Gupta ,S.Shanti .and S. Panchspakesan(1967)
Y, j represents a generalized range and can take values 0,1,.....,N .for r =0,
P(Yl] = r) =
= 5(1 DIG-i- 1)'(M ! ff @IV — )T (1 =YY dvde (5.1

Where A is the region given by

V=W
B(k)2w=B(k—-1)
B(k+r)=zv=B(k+r—1)
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This can be rewritten as

p{Y,; =1}
N B(k) B(k)
z M! f f =10y — )J=i=1(1 — P)M-1g 0 (5.2)
dw w' —w — v, r= .
—DG—i—1DI(M-1)! ’
(-G —i—DI( ) J
= < N-r B(k) B(k+r)
M! f '_1(V )j—i—l(l V)M—ld >0 )
dw w' —-w — v,r
—DIG—i—-1D!'(M -1 ’
k=0 (i NG -1 I ) B(k-1) B(k+r-1)
\ (5.3)

SO

N N-r
M!
E(Y,;) = ;r RZO G-DIG—i—1)!'M-1)! G4

B(k) B(k+7)

dw f WtV —w) 1A - V)Mdy  (5.5)
B(k-1)  B(kir—1)

But we also know that

E(Y;) = E(X(p) —E(Xw)

N-1 M B(x) N—-1 M B(x)
=Zi< ) f wi‘l(l—a))M‘ldw—Zj< ) f w11 —w)Mdw
l ]
x=0 0 x=0 0
N-1
= Z [l-pay (& M) — [Li_py G M| (5.6)
x=0

(5.5) and (5.6) lead to the relation

N n-r M
; RZOT (-DG—i-D!M-D!

B(k) B(k+7)

dw f WYV —w)/ Tt =V)M-1gy
B(k-1)  B(kir—-1)

N-1
= sy @M = [ G D] (57)
x=0
6. Conclusions
A .Since P(N) =1,
N N-1
EG) = ) xpx () =N= ) Px(x)
xi:() xi:0
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where P * (x;) is defined by
pi(x) = l(l\:l) ff(x)a)i‘l(l — )" dw = L_p (i, M)

Hence, we have

N-1
EG) = ) {1-p+(x)

xi=0
For the variance of x; , we have
N N-1
E(x;?) = Z x2p* (x) =N%— z (2x; + DP * (x;)
Xi=0 xi=0
That is,
N-1
G =2 ) {1 =P x (2} + ECx)
Xi=0

Hence, the variance of x;, is
N-1

Ve =2 ) xill = Px ()} + EG{L - ()
Xi=0
B . The incomplete beta function of Negative binomial distribution is
I _p (i, M)
But
The incomplete beta function of binomial distribution is
Ipy (LM —i+1)
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