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Article’s Information Abstract

The main purpose of this work is to create a type of topological spaces
namely "almost star a-Hurewicz spaces" and study its properties, and
besides, the concepts of a-compact space, a-Hurewicz space, star a-
Hurewicz space and strongly star a-Hurewicz space. Many properties of
a-Hurewicz spaces and almost a-Hurewicz are investigated. This allows
us to provide new examples of explicit descriptions of spaces as well as
some types of a-covering for spaces such as a-compact and a-Lindelof
space and using as a tool to prove important results in topological
spaces. In addition, a certain connection of a-Hurewicz space with the
Hurewicz space and almost a-Hurewicz space was considered. There is a
relationship between the version of the strongly star a-Hurewicz
property and star a-Hurewicz property with star a-compact property
and almost star a-Hurewicz. Some of the examples that make a
distinction between the properties are mentioned and reviewed, showing
that the concepts are not equivalent. Results on the preservation of the
properties of a-Hurewicz and almost-a-Hurewicz spaces are included
such as behavior under subspaces, products, a-irresolute function, and
mappings with other forms of topological spaces.
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1. Introduction

Weak and strong definitions of open sets have been
applied by many authors [1-3]. They have given rise
to new concepts of continuity: Ec-continuous and &-
Be-continuous [4], new types of totally continuous?,
faintly 6-semi-continuous, and faintly &-semi-
continuous functions [6]. The generalization of open
sets has played important role in many works in
concepts like games theory, graph theory and soft
topology [7-9]. Also, the concept of generalization of
topological spaces used certain types of open sets
[10]. Besides, covering properties have been studied
in different forms of open sets [11]. In Topological
spaces (for shortT.s), for a subset A of a spaceX, the
notationscl(A), int(A) stand for the closure and the
interior of A, respectively. The meaning of 7, is the
topology on A inherited from a space X with a
topology T. The notion of a-open sets was introduced
by Njastad [12]; a subset A of a T.s. X is said to be a-
open set, if A C int(cl(int(A))) and a-closed if it is
the complement of an a-open set. Since the concept

of a-open sets has played a role in several significant
places in the study of T.s's, the relevance of the
definition presented 1s evidenced by previous
studies. A T.s . X is said to be a -compact
(respectively, a-Lindelof) space, if for every a-open
cover of X, {Uj:j€]J}, a finite (respectively, a
countable) subcover [13] can be found. A T.s. X is
called a countably o -compact space, if of each
countable set of open a-compact subsets that covers
X it is possible to get a finite subcover [14]. A
Menger and Hurewicz properties are one of the most
important kinds of selection principles. A T.S X has
the Menger (resp .Hurewicz) property, if for every
sequence ((U,),ey of open covers of X there exists
a sequence (V,)ney sSuch that every V, is a finite
subset of U, and the family U{V:VEV,,n€N }is a
cover of X (resp. each x € X belongs to UV, =U{V:V €
V,,n € N } for all but finitely many n). The concept of
a-open set will be used to define a new form of
Hurewicz space. The study in this paper revolves
around a new type of T.s, which generalizes the
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Hurewicz property and as a study close to what was
presented in previous studies about Hurewicz
property. Moreover, " a -Hurewicz property" is
discussed, where some of the main characteristics of
this space were presented. A subset A of a T.s X is
said to be B-open set, if A C cl(int(cl(A))) and B-
closed the complement of B-open set [14]. A subset A
of T.s X, is said to be a semi-open set (shortly s-open)
[15], if A S cl(int(A). A subset A of a T.s X is called
regular open set if A = int(cl(A)), (respectively,
regular closed if A = cl(int (A)). Following a natural
way, the intersection of all a -closed sets of X
containing A is said to be the a-closure of A,
written as cly(A) [12]. The union of all a-open sets
of X contain in A is said to be a-interior of A,
written as inty(A)[12]. The definition of a-closed
subset is equivalent to A = cly(A). The family of a-
open (B-open and s-open, respectively) subsets of X is
denoted by 7% (78 and T°° respectively). It is shown
that each of 7 € 7% and 7% is a topology on X[12].
The collection 7 is not a topology for X because the
intersection of B-open sets is not in general a B-open
set. Take, for instance, (R, 7,), and the intervals (0,
1] and [1, 2]. In the same way of definition cly(A)
and inte(A), the concept of clg(A) (intg(A)), and
clg(A) (intg(A)) was defined, respectively. For any
subset A of X, int(A) S intg(A) € A S clg(A) S
c(A), int(A) € intg(A) € A C clg(A) S cl(A) and
T cT7*c7sc T8 In addition, the properties of a-
Hurewicz as an image or preimage of special types
of continuous mappings are studied. Newly, the
concept of a-covering property have been examined
with a variation, after applying the interior and the
closure operators on a Hurewicz property [16].
Furthermore, different forms have been studied in
case of the sequence of open covers are changed with
generalized open sets [16]. In connection with this
notion, the Menger property is very similar to the
Hurewicz property although, analyzed in locales in
[17], it is a stronger condition,

2. a-Hurewicz Spaces

This section deals with the statement of results
about a -Hurewicz spaces and Dbesides, some
examples of topological spaces are provided to show
the relationships among Hurewicz, a-Hurewicz, -
Hurewicz, s-Hurewicz spaces and another types of
spaces such that a-compact and a-Lindelof spaces.

Definition 2.1. [16] Let X be a T.s and A € X. Then
A has a-Hurewicz property, if V sequence (U,)nen
of a-open covers of A, 3 sequence (V,),ey for any n €
N,where V, is a finite subset of U,, . Also for every

x € A satisfied that x € UV, for all but finitely
many n,. A T. s X is a-Hurewicz space when the set
X is a-Hurewicz.

Example 2.1. Take X = Z* (positive integers) with
Tys (discrete topology). So, Ty =7% and hence
(X, T45) 1s a-Hurewicz space.

The following examples show the relation between a
compact space (respectively, Lindelof Hurewicz, a-
compact, o -Lindelof) and o -Hurewicz with the
following corresponding spaces in (75 and TP
respectively). Some concepts are recalled in
Definition 2.2.

Definition 2.2. A topological space(X ,7) is said to be
(i) semi-Hurewicz[13](resp. B — Hurewicz [18]) if for
every sequence (U,,),cy of semi open (resp. f-open)
cover there is a sequence (V,),ey for any n € N, V, is
a finite subset of U,, and for each x € X for all but
finitely many n, with x € UV,,.

(i) a- Lindelof [18] if for all cover {A; | j € J} of X,
being A; (j €]) a — open sets, there is a countable
sub cover.

Evidently, the following implications are hold:

= a -Hurewicz =

B -Hurewicz = s -Hurewicz

Hurewicz

It is simple to show that every a-compact space is
a-Hurewicz space, but the converse does not
necessarily hold, for instance, let X = Z with T = Ty;s.
Then X is a-Hurewicz space, but it is not a-compact,
since {{x} 1X E X} be a-open cover of X has no a finite
subcover.

Also, every a-Hurewicz space i1s Hurewicz space,
but the converse is not true as the following
example. Let A be a finite subset of an uncountable
set X. Then T = {@,A X} is a topology on X. The
space (X,7) is Hurewicz but it is not an a-Hurewicz
space because the sequence of an a-open cover U, =
{A U {x}:x€ X\ A} for each n € N, because it is not
possible to find a countable subcover of the cover U,,.

It 1s easily established that if Xis a s-Hurewicz
space, then X 1s an a-Hurewicz space, however, the
converse does not necessarily hold. Indeed, let X =
RUg, where g be a countable set and RNgp = @ with
a topology, which is defined by

T ={U < p : UCis a finite subset of }UT;,.
Here, X 1s a a-Hurewicz space, but it i1s not s-

Hurewicz space. Additionally, every B — Hurewicz
space (respectively semi-Hurewicz) is a-Hurewicz
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space but the converse is not true as it happens
considering X=R , with 7 =7,4 (indiscrete
topology). Here, the topological space is a-Hurewicz
(s-Hurewicz respectively), but not is f-Hurewicz.

Moreover, if X is s -Hurewicz (respectively a-
Hurewicz) then it is Hurewicz but, the converse is
not satisfied in the next example. Let X = R, with a
usual metric topology T;,. Here, X is a Hurewicz
space. In the proof is essential the fact of [-n,n] is
compact. Nevertheless, it is not s-Hurewicz space,

since U, = {[r, r + mT_l), r € Z,m € N} is a sequence of
cover of X, ([r, r + mT_l) , 1s s-open and [r,r + 1] is not
s-compact), and it is not possible to find a finite
subfamily of each U, such that R is covered by the
union. As an example of a-Hurewicz (a-Lindelof
respectively) space take the set X = [0, w,], with the
ordinal topology, while if the set X = [0, ;) is taken,
with the ordinal topology, is not a-Hurewicz (is not
o -Lindelof) space. The family {U,=1[0,a):a€
[0,w;)} is an « -open cover of [0,w;) with no
countable subcover.

Gaurav et al. proved in [16] that o -Hurewicz
property is not hereditary property, and study o-
continuity of a-Hurewicz spaces. Thus, the below
example and results can be established.

Example 2.2. Suppose that X = R, define a basis B =
{U:UCSR}; for a topology T on X, with U=
{{r} ; e X\ {0}

0 € U;UF° countable ~
Hurewicz space.
Let us take Y = {{r} : r € X\ {0} } is a subspace of X.
As for any sequence of a-open covers of Y has no
countable subcover, then Y is not a-Hurewicz space.
The following proposition is proved with regular
closed condition, and we do not need the clopen (G.e.,
closed and open) condition as in [16].

It 1s clear that X i1s a -

Proposition 2.1. Let (X,7) be the a-Hurewicz space
andY € X. If Y is a regular closed set of X, thenY
has the a-Hurewicz property.

Proof. Consider Y a regular closed subspace of the a-
Hurewicz space X and (U,),eny @ sequence of a-open
covers of Y. Let ®, = {U: U € U JU{X\Y}, n€EN. As Y
is closed then X\Y is open and so a-open. Hence
(®,)ney 18 a sequence of a-open covers of X. By the a-
Hurewiczness property of X, it is possible to obtain a
sequence (W,) ey With W, is a finite subset of ®, for
each n € N and X = U,ey UW,. Taking for each n,
V,={U:U €W,}, the sequence (V) ey is a finite
subset of U, and each x € Y for all but finitely many

n, with x€ UV,. That is Y has the o -Hurewicz
property. The following theorem states that the a-
Hurewiczness 1s presented under o — irresolute
mapping.

Definition 2.3. [19] Let g:(X,7) — (V,T') be a
function between to topological spaces, then g is «a -
irresolute if the inverse image of a- open is a- open.

Remark 2.1. A subspace of a product of spaces does
not need to be a-Hurewicz and neither is the
product space as the next example shows.

Example 2.3. Consider the Sorgenfrey line S, i.e.,
the set R endowed by the topology provided by the
base B={[x,y):x<y,x,y€R}. Then for any
oblique line with negative slope L ={(r,s) € S X
S:s=ar+b,a <0} endowed by 7J;, the inherited
topology of S$xS. L is not a-Hurewicz because of
T, = Tyis and neither does S X S.

Assume that § X S is a-Hurewicz. The proof is based
on the fact: every a-Hurewicz is a-Lindelof. Let us
take L € § X S. It 1s uncountable, as its cardinal is
the same as the cardinal of R. From a-closedness of
Lin § X §, implies that S X § is not a-Lindelof, which
is contradicts a -Hurewiczness of SxS§
Consequently, L is a-closed by (S x S) \L is a-open in
$xS. Indeed, let L' ={(r,s):s—ar—b >0} and
L"={(r,s):s—ar—b<0}. So, ($xS)\L=L"UL".
Let (r,s) € L*. So, every a-open set contains (r,s)

intersects more than one point with L (since we can
—ar—b+s

write it as [r,r+€) X |[s,s+€). But [r, 2 ) X
[s, _ar;b+s) does not intersect L. If (r,s) € L™, then
the a-nbhd [r, ar;_b) X [s, ar+:+3s) does not intersect

L. The sets L and L™ are both a-open in § X S, hence,
L is a-closed. Now, for every (r,s) € L, each a-nbhd of
(r,s) in S x S (it can be written by [r,r + €) X [s,s +
€), for € > 0) intersects L in just one point, (r,s).
Therefore, the property is proven.

Theorem 2.1. The product of an a-Hurewicz space
and an a-compact space is a-Hurewicz.

Proof: Fix X an a-Hurewicz space and Y an a -
compact space. To show that X XY is a-Hurewicz
space, consider (W,),eny @ sequence of a-open covers
of X X Y. Hence, there exists a-open covers (U,)nen
and (Vy)ney of X and Y, respectively such that W, =
U, X V,. By a-Hurewiczness of X, a sequence (U})pen
can be taken with U; are finite subsets of U, for
each n € N and for each x € X for all but finitely
many n, with x € UUj,. Also, from a-compactness of
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Y, choose a finite subset V, of (V,)pey Which is a-
open covers of Y. Now, consider P, = U, X V;. Hence
for each n € N, B, is a finite subset of W, and for
each (x,y) € XX Y for all but finitely many n, with
(%, ¥) € UR,, which concludes the proof.

Remark 2.2. Recall that in a T.s X and let U be a
collection of subsets of X. If A is a subset of X, then
the star of A with respect to U, denoted by St(A«A),
is the set (U € A : UNA # @}; for A = {x} such that
x € X, St(x<) is written instead of St({x}«A).

Definition 2.4. The space X is called star a -
Hurewicz space, if for any sequence (U,),ey of a-
open covers of X, sequence (V,),ey can be obtained
for any n € N, V, is a finite subset of U, and for each
x € X, x € St(UV, <U,) for all but finitely many n.

As an example of star a-Hurewicz space, take X = Z*
the set of positive integers with Ty, (discrete
topology). So, X is star a-Hurewicz space.

Definition 2.5. The space X is called strongly star a-
Hurewicz space, if for any sequence (U,)ney of a-
open covers of X, a sequence (F,)ney of finite subsets
of X can be obtained, for any n € N, x € X, implies
that x € St(F,<U,) for all but finitely many n .

As an example of strongly star a-Hurewicz space,
take Z* (positive integers) with the topology T =
{fUcX:U=ftheZ":0<h<n;neZ'}JU{B}. Thus,
(X,7) is a strongly star a-Hurewicz space.

Definition 2.6. The space X is called star a-compact
space, if for each a-open covering U of X, a finite set
A S X can be obtained such that St(x, <) = X.

As an example of star a-compact space. Let X = Z*
(positive integers) with Ty. So, X is star a-compact
space. The star a-compactness is not hereditary
property as in the case of the following space. Let X
be an arbitrary infinite set, X, € X. Define a topology
on X as follows: T ={UCcSX:x,&UU{UCSX:
X\U is finite set}. The subsets {x}, x € X\ {x,} are a-
open. If A is an a-open covering of X, there exists
U € A such that xy € U, so U =X\ {Xy,"*", Xp}. Then,
it is enough to take A = {Xq, Xy, ", X,}. Hence, X is
star a-compact space. However, the subspace Y =
X\ {Xo} is not. Fix the a-open cover A = {{x} : x € Y}
of Y which does not have a countable subcover,
therefore Y cannot be star a-compact space. There is
a relation among the different shades ofa-Hurewicz
spaces as contained in the following proposition.

Proposition 2.2. Let X be a T.s. The following
statements are holds:

1. Every a-Hurewicz space is star a-Hurewicz
space.

1. Every strongly star a-Hurewicz space is star a-
Hurewicz space.

ii. Every star a-compact space is star a-Hurewicz
space.

Proof.

i.  Consider X an a-Hurewicz space and. (U,)en
any sequence of a-open covers of X. So, a
sequence (V,)neny can be obtained for any n €
N, V, is a finite subset of U, and for each x € X,
for all but finitely many n, with x € UV,. That
is, UV, NU, # @ for all but finitely many n,
and hence x € St(UV, « U,) for all but finitely
many n. Therefore, X is a star a-Hurewicz
space.

. Let X be a strongly star a-Hurewicz space and
take A a cover of a-open sets of X. For the
constant sequence of open covers (U,)qey »
where for each n, U, =U, W €U there is a
sequence (F,)ney such that for n, St(F,« U,) € U
(respectively, St(UV,«U,) €YU ). That is,
St(F, U,) is a countable subset of X with
St(UF, <) = X. Consequently, St(UV,«U,) is
a countable subset of U such that St(UV, < X)).
Then, there exists a sequence (V,),ey for any
n € N, V, is a finite subset of U, and for each
x €X, x € St(UV, <« U,) for all but finitely many
n. Hence X is star a-Hurewicz space.

1. Suppose that X is star a-compact space and
consider (U,) ey @ sequence of a-open covers
of X. From star a-compactness of X, a finite set
AcX is found such that St(u‘l‘ QI) =X .
Therefore, there is a sequence (V,) ey for any
n €N, V, is a finite subset of U, and for each
x €X, x € St(UV, <« U,) for all but finitely many
n. Hence X star a-Hurewicz space.

3. Almost and Star a-Hurewicz Spaces

In this section, the concept of almost a-Hurewicz
property is introduced and also several examples are
included to point the relationships among Hurewicz,
a -Hurewicz, B -Hurewicz, s -Hurewicz spaces and
another types of spaces such that a-compact and a-
Lindelof spaces.

Definition 3.1. Let X be a T.s. and A € X. Then A
has the almost a-Hurewicz property, if for any
sequence (U,,),en of a-open cover of A, where U, =
{llnj}jejn, where (J,)nen 18 @ sequence of index sets, I,

a finite set, and a sequence (V,)),eny can be obtained
such that:
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i. foranyn €N, thereis, € J,;V, = {clUn )} jer,-
ii. for each x € A, there isny € N; for alln € N, n >
ny implies that there is V € V,, with, x € V.

X 1s called an almost a-Hurewicz space when in the
set X is satisfied the almost a-Hurewicz property. As
almost a -Hurewicz space there are examples such
that the following.

Let X =R, with T = T, (indiscrete topology), then
components of a -open covers whose singleton
elements are transpositions are entirely determined
by an almost a -Hurewicz property. Another
characterization of almost a-Hurewicz space is given
in the next result.

Theorem 3.1. For a space X the condition almost a-
Hurewicz space is equivalent to that for each
sequence (U,),ey of covers of X by regular open
sets, there exists a sequence (V) ey > such that
i. for any neN , there is I, <], ;

{1 e

for each x € A, there is ny € N; for all n € N,
n > ng implies that there is V € V,, with, x € V.

Vo =

1.

Proof: (=) It is obvious, since every regular open set
is open.

(<) Let (U,),eny be a sequence of a — open set
cover of X, such that U, = {Hnj}je]n . Let U}, =
{int (cl(int(Us;)))}jej,» then U, is a regular open cover
of X, by hypothecs a sequence (V,)ney, 1s obtained
such that
for any n € N, there is I, € J,; Vi, = {clUy)}jer,, -
for each x € X, there isny € N such thatne€ N, n >
n, implies that there is V € V, with, x € V.

Since U, o« — open it is followed that cd(uy) =

cl( (Un)), and hence each V, = {cl (lln].)}l-eln.

Theorem 3.2. If X is an a-Hurewicz space, then X is
an almost a-Hurewicz space.

Proof: Fix (U,),ey @ sequence of a-open covers of X,
u, = (lln].)je]n. From a-Hurewiczness of X, a sequence
(W) pnen 1s obtained such that:

(i) Eachw, cu, .

(ii) For all x € X, thereisny € Nfor alln € N, n > n, ,
I, € J,.

By (i), it is possible to write W, = (lln].)]-E]n, where

I, € J,. Let (Vy)nen be a sequence of a-open sets
defined by V, = (dn))jeg, - If € X, then by (ii),
there is ny € N such that:

VneN,>n,, WeW, withxeWw.
Since W e W,, W = lln]. for some j € I,.can be said.

Let V = (cl(Uy)))jey,- Then V € V, and x € V since
W < V. Hence X is almost a-Hurewicz space.

Remark 3.1. The below example indicates that in
general the converse of theorem 4 is false.

Example 3.1. Consider X the KEuclidean plane
endowed with a topology 7PR generated by the base
formed by the following sets:

DR (X0, ¥0) = (Dr(X0,¥0) \ {(x,y) € Dy(X,¥0): x =

%0} U {(X0,¥0)}, where D.(X,y,) is the disk centered
in (Xq,yo) and radius r > 0.

This topology is well known as deleted radius
topology. As X is not an a-Lindelof space, then X does
not verify the a-Hurewicz property.

However, X is almost o -Hurewicz. Indeed, every
DR, (Xq,Vo) 1s an a-open set and cl(DR.(Xq, Vo)) =
c(D.(Xo,¥0)) . Applying that R? with the usual
topology is o-compact it is obtained the almost a-
Hurewicz property.

It is concluded the same with X the Euclidean plane
endowed with a topology 78T generated by the base
formed by the following sets:
BT, (X0,¥0) = {xy):ly = yol < Ix—x%0| <1} U {(X0,y0)}
r > 0. This topology is well known as deleted bow tie
topology. Here, cl (BT.(Xq,V,)) is a compact set in the
Euclidean plane with the usual topology, too.
Let X be a T.s. the following notions were introduced
in:
e Xis a-regular [18], if for any x€X and a
closed subset B € X such that x ¢ B there are two
disjoint open sets H;, H, € X such that x € H; and
cl(BNH,) = B.
X almost a-regular [20], if for any x € X and a
regularly closed subset B < X such that x¢B
there are two disjoint a- open sets H;, H, € X such
that x € H; and cI(BNH,) = B.

Theorem 3.3. If X is an almost a-regular space and
an almost a -Hurewicz space, then X is an a -
Hurewicz space.

Proof: Consider (U,),ey @ sequence of a-open covers
of X. From almost a-regularness of X, there is for
each n an a-open cover (V,)neny Of X such that V; =
{cl(V):V €V,}is a refinement of U,,. By applying
the hypothesis, a sequence (W, :n € N) is found
such that for each n, W, is a finite subset of V, and
U{W, : n € N} is a-open cover of X, where W, =
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{cl(W) : W € W,}. For every n € N and every W €
W,, choose Uy, € U, such that (W) c U, . Put U, =
{cl(V) : Uy, € W,}. Now, it is shown that U{U, : n €
N} is a-open cover of X. Let x € X. There isn € N and
cl(W) € W, such that x € W. So, there is Uy, € U,
such that W < Uy;,. Then, x € Uy,.

Recall that a function f: X — Y is said to be almost a-
continuous, if for each regular open set €Y, f~1(B)
1s an o-open set in X.

Theorem 3.4. If X is an almost a-Hurewicz space, Y
1s any T.s., and f:X — Y is an almost a-continuous
surjection, then Y is an almost a-Hurewicz space.

Proof: By Theorem 3.1 it is sufficient to do the proof
for (U,),eny @ sequence of a-open covers of Y by a-
regular open sets. Assume that U, = {f~1(U): U €
(U nent for each n € N. Thus (U}),ey 1S a sequence
of a-open covers of X, because of fis an almost a-
continuous surjection. From almost a-Hurewiczness
of X, a sequence (V,),ey of X can be found such that
for every ne N, V, is a finite subset of U, and
U{V,:n €N} is a a-open cover of X, where V; =
{cl(V):V eV,}. For each ne€ N and V € V,, choose
U, € U, such that V = ~1(Uy). Let W, = {clUy,): V €
V,}. It is only necessary to prove that U{W, : n € N}
is a cover for X. Now, if y =f(x) €Y, then it is
obtained n € N and V' € V, such that x € V'. Since
V=f"1Q0,) f71(clUy)) is a— closed, f(x)€
f(cl(F1(Uy)) € cl(Wy,).) Hence, y = f(x) € W,.

Definition 3.2. The space X is called almost star a-
Hurewicz space, if for any sequence (U,)yey of -
open covers of X, a sequence (V,) ey can be obtained
for anyn e Nandx € X, x € cl(St(Vn‘ lln)) for all but
finitely many n.

As an example of almost star a-Hurewicz space,
take X =7Z%, with Tjs. Then X is almost star a-
Hurewicz space.

Theorem 3.5. For X a T.s, the condition almost star
a-Hurewicz space is equivalent to that for each
sequence (U, )pey of a-open covers of X by of a-
regular open sets there is a sequence (V,)ney such
that for each n € N, V, is a finite subset of U, and
{Cl(St(Vn‘ un)) :n € N} is a cover of X.

Proof: Suppose the condition is fulfilled, then it is
clear every a-regular open set is a-open. Conversely,
take (U,)ney @ sequence of a-open covers of X. Let
U, = {int(cl(U)) : U e U,}. So, each U} covers X by a-
regular open sets. Certainly, as since U is an a-open
set then each int(cl(W)) is a regular a-open set and

U < int(cl(U)). So, it is possible to find a sequence
(Vnen such that for every ne€ N, V, is a finite
subset of Uj and {cI(St(V,«U})) : n € N} covers X.
Therefore, it is enough to show.

St(U« U,) = St(int(cl))« U,) for each U € U,
Now, since U Cint(cl(¥)) , it 1is obvious that
St(U« U,) € St(int(cl(U))« U,) . Suppose that x€
St(int(cl), U,). Then there exists V € U, such that
x € V and VNint(cl(W) # @. So, it is obtained VNU #
@ which implies x € St(U: U,) . For every Ve€V,,
choose U, €U, such that V =int(Uy). Let W, =
{Uy, : V € V,}. Now, it is proved that cl{USt(W,, U,) :
n € N} is a cover of X. For that, consider x € X. Then
it is possible to find n€N such that x€
c{St(UV,, U} . For every neighborhood V of x,
VNSt(UV,,U,) # @, then there exists U €U, such
that (VNint(clQ)) # B) A (UV,Nint(clQU) = @) # 0
implies  that (@VNU#@)AUV,NU)#0  then
W,N U, # @, so x € cl{USt(W,,U,).

4. Conclusions

Several topics related to the concepts of a-Hurewicz
spaces have been treated. Even though a-Hurewicz
condition 1s stronger than Hurewicz condition, in
most results quite similar techniques for their
proofs work with some adaptations, and thus, a-
covering properties of a-Hurewicz have been
analyzed. The examples provided show that the
property a-Hurewicz property is different from the
Hurewicz property and also from the almost o-
Hurewicz property ( for example see theorems 2.1
and 3.3) As a prospective, these problems for the a-
Menger properties, (considering Menger and almost
Menger properties) could be studied, so far, as the
authors know, they are still open.
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