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Dynamic Study of Carbon Dioxide Absorption 

Using Promoted Absorbent in Bubble Column 

Reactor 

Abstract-The most common process to remove carbon dioxide from natural gas 

and the flue gasses is absorption into suitable solvents. Absorption of carbon 

dioxide are studied experimentally in this work using bubble column reactor 

(glass cylindrical (QVF) of 7.5 cm i.d. × 140 cm height), where different types of 

absorbent (30%MEA, 30%K2CO3), promoter types (organic(piperazine)and 

inorganic(amino acids)) and concentrations were examined over a wide range of 

gas flow rate cover homogeneous to transition flow regime at ambient 

temperature and atmospheric pressure. The results showed that the dissolved gas 

undergoes a pseudo-first order reaction, and the optimum superficial velocity of 

gas given a higher conversion and rate of reaction at Ug=0.025 m/sec, at this 

velocity the reaction rate of monoethanolamine with carbon dioxide (94.1% 

conversion and RA = 7.75*10
-3

 Kmol/m
3
.sec) is higher than reaction rate of 

potassium carbonate with carbon dioxide(29.3% conversion and RA = 2.73*10
-3

 

Kmol/m
3
.sec). Furthermore, the addition of promoters to the 30%K2CO3 

absorbents enhanced the reaction between potassium carbonate with carbon 

dioxide and increased the reaction rate when increasing the concentration of 

promoters to the critical concentration. The results show that the piperazine is a 

better promoter from other types of the amino acid promoter used was 52.1% 

increase in carbonate conversion with carbon dioxide. 

Keywords- Absorption, Carbon Dioxide Capture. Promoted Potassium 

Carbonate, Organic Promoter, Amino Acid.   
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1. Introduction 

Carbon dioxide removal technologies are crucial 

in the field of purification as for natural gas and 

power plants that are operated using petroleum-

derived fuels. The most commonly used routes 

for capturing the carbon dioxide gas involve 

oxyfuel, post-combustion and pre-combustion 

[1]. In the case of post-combustion, the carbon 

dioxide produced by combustion is removed from 

the combustion’s flue gas. While in the case of 

pre-combustion, the carbon dioxide gas is 

required to be removed ahead of combustion as in 

gasification processes [2-4]. The main idea 

behind carbon dioxide capture processes is to 

achieve an industrial benefit from the carbon 

dioxide that is produced by power plants or that is 

present in natural gas, which is currently 

considered as a problem since a large number of 

the remaining natural gas reservoirs are expected 

to contain about 87% carbon dioxide [6]. The 

process of capturing carbon dioxide from natural 

gas or from the power plant’s combustion gas is 

difficult and expensive due to the requirements of 

high pressure and temperature. Carbon dioxide 

can be removed and captured through varies 

processes which may depend on adsorption [7], 

absorption [8-9], membrane technology or 

cryogenic [10]. Chemical absorption is the most 

widely used approach for carbon dioxide capture 

due to its high absorption capacity. Removal of 

CO2 by absorption requires the use of an amine-

based solvent like MEA, which is the industrially 

preferred choice for its high rate of reaction [11-

12]. However, this solvent is not ideal where in 

addition to its degradable nature, high amount of 

energy will be required for its regeneration thus 

other solvents like ammonia and K2CO3 solution 

were used for efficient CO2 capture where the 

K2CO3 is advantageous for its lower toxicity and 

volatility and its resistance to degradation [8,13]. 

K2CO3 is commonly used in a process that is 

operated at a temperature that exceeds 100
o
C 

using the pressure swing method [8]. Such route 

is expected to be more economically feasible 

since it will lead to preserving energy by avoiding 

the operation at high temperatures and pressures 

as in the purification of natural gas and pre-

combustion CO2 capture. In addition, K2CO3 is 
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reported to have a lower heat of absorption than 

that of MEA, which leads to a reduction of the 

efficiency penalty from 20 to 30 % for MEA to 

about 13.1% for K2CO3. On the other hand, using 

K2CO3 instead of MEA will render the absorption 

rate [8, 11-13]. 

 

2. Theory 

I. Reaction Mechanism  

The use of K2CO3 instead of MEA as an 

absorbent in CO2 capture absorption process will 

lead to a slower reaction kinetics, which is 

considered as the main obstacle, especially under 

post-combustion conditions: low temperature and 

low CO2 partial pressure. 

The absorption of carbon dioxide in a potassium 

carbonate aqueous solution, slower reaction 

kinetics that is considered as the main obstacle, 

especially under post-combustion conditions. 

CO2 absorption with K2CO3, the reactions can be 

described as follows [4]:- 

 
      ⇔                                                              (1) 

             
 ⇔           

                              (2) 

        
        

 ⇔        
  

                             

                                                                                                          

              ⇔                                    (4) 

                
 ⇔         

  

                                                          

                                                                       
 

Studies showed that at a temperature of about 

378K, an enhancement in the mass transfer of the 

absorption could be achieved through chemical 

reactions Eqs. (2) and (4). Major improvement in 

the absorption rate is not possible by elevating 

temperature alone since the chemical reactions 

are not fast enough at 378k.In the reaction regime 

Eqs. (1)–(5) for CO2 absorption into potassium 

carbonate solutions, Eq. (2) is fast but not fast 

enough to be treated as instantaneous. When the 

pH of the absorbent is greater than 9, Eq.(4)is 

negligible in comparison with Eq.(2, hence the 

rate-limiting step of the absorption process is Eq. 

(2). Since Eq. (2) is not quite fast, the absorption 

kinetics is slow.  

 

II. Rate promoters for K2CO3 solutions 

CO2 absorption kinetics are relatively slow in 

potassium carbonate solutions, in such cases 

higher absorption efficiencies can be achieved by 

increasing the length of the absorber, which will 

lead to an increment in the capital and operation 

costs thus more attention was given to the use of 

promoters which may be the proper solution to 

the previously discussed challenges [4,14-16]. A 

range of promoters [8,13,15-16] has been studied 

in potassium carbonate absorbents for 

accelerating carbon dioxide absorption, including 

inorganic promoters such as arsenic acid [17] and 

boric acid [18] organic promoters such as MEA 

and DEA [19-23] and amino acid salts[9,24-26] 

and enzymatic promoters such as carbonic 

anhydrase[27-28] . Of these, amino acid salts 

have attracted the most attention as they are 

environmentally benign, with low evaporation 

and have the potential to be either rate promoters 

or individual absorbents [8,9,13,24-25]. A variety 

of amino acid salts has been studied to investigate 

the possibility of their use with K2CO3absorbent 

as promoters; a comparison of these results is 

difficult to conduct due to the variation in 

equipment and operation conditions from one 

study to another. In addition the reaction kinetic 

type and regime with containing those amino 

acids as promoters were not sufficiently studied. 

In this paper, recent progress on different 

promoters is presented and suggestions for future 

improvements are given, where the reaction 

kinetic and parameters affected on the 

performance of bubble column for CO2 

absorption in un-promoted potassium carbonate 

and monoethanolamine are studied. In addition, 

promoters types (Alanine, Arginine, Glycine, 

Taurine, Lysine, Proline, Serine and Piperazine) 

and concentrations were examined.  

  

3. Experimental work 

I.  Experimental apparatus 

The bubble column (glass cylindrical (QVF) of 

7.5 cm i.d. × 140 cm height) apparatus used in the 

experiment is shown in Figure 1; this device 

consists of: a reactor in which the reaction 

between carbon dioxide and absorbent takes place 

sparger for gas distributor and placed between the 

column and distributor chamber which has a drain 

at the bottom and gas inlet at the side, air 

compressor, CO2 cylinder, air and CO2 

rotameters, one way valves, gate and needle 

valves and degassed line. Experiments of carbon 

dioxide capture by absorption from gaseous 

mixture (10% carbon dioxide + 90%  air) have 

been carried out by aqueous solution of un-

promoted 30% monoethanolamine and 30% 

potassium carbonate(K2CO3) as absorbent 

promoted with various amino acid salts (AAS) 

over a wide range of gas flow rate, cover 

homogeneous to transition flow regime, promoter 

types and concentrations are shown in Table 1. 

The time used for each experiment was (5400 s), 

and the sample withdrawn in each run was 
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analyzed for each (600 s). Gas (mixture carbon 

dioxide + air) flow rate was computed by using 

two separate calibrated rotameters. In all 

experiments, the volume of the aqueous solution 

has been stabilized and equal to (1liter above the 

sparger) and all experiments were perforated at 

ambient temperature and atmospheric pressure. 

 

III. Physcio - Chemical Properties 

• Diffusion coefficient of carbon dioxide in 

aqueous solutions can be determined by CO2-N2O 

analogy and modified stokes Einsten relation [29-

30] as follows: 
D

o
CO2-water = 2.35×10

-6 
exp(-2119/T)                          (6)  

D
o
N2O-water = 5.07×10

-6 
exp(-2371/T)                          (7) 

(DN2O. ɳ
0.8

)Solution = (D
o

N2O-water. ɳ
0.8

) water                     (8)  

DCO2 = (DN2O/D
o

N2O-water) × D
o
CO2-water                        (9) 

            ɳ = µ /ρ                                                                  

(10) 

• The solubility of carbon dioxide in the liquid 

phase was calculated using Henry's law, and then 

the concentration of free carbon dioxide at the 

interface is calculated, as follows [29-30]: 
C

*
 = PAi/H                                                               (11) 

Log (H/H
O
) = KMEA × M                                         (12) 

Log [H
O
]

-1
 =-4.3856 + (867.4932/T)                      (13) 

• Liquid side mass transfer coefficient in the 

absence of reaction for bubble column can be 

calculated from [31] as follow:- 
  
 = 0.5 (DCO2 / dv) (ɳ / DCO2)

0.5 (g.dv
3/ ɳ2)0.25 (g.dv

2.ρ /σ)0.375   

                                                                                                       (14) 

dv=26 (DCO2 
2.g. ρ / σ)-0.5 ( g. DC

3 / ɳ2 )-0.21 ( ug / (g.DC)0.5 )-0.2 

DC 

                                                                                                                                         (15) 

4. Reaction Kinetic Type and Regime 

I. Reaction Kinetic Type  
Carbone dioxide undergoes a second-order 

reaction with hydroxyl ions, OH
-
 , and the 

absorption of carbon dioxide in to         and 

MEA solution conforms to the model just 

described ; in this case so,, the absorption rate is 

given by Eq.(16)[29]  :-  
2

2

*

2

o

LBABOC kCkDaCN
o
                         (16) 

   = OHk rate constant for           system 

and   =     rate constathe nt for         

system. 

If the carbon dioxide absorption into a thin film is 

occurring according to a pseudo-first-order 

regime in which the concentration of         and 

MEA is not depleted across the film, so that the 

absorption rate can be described as follows [29]: 

oBABOC CkDaCN 2

*

2
                            (17) 

Where:- 

CBo = Concentration of liquid reactant (B) in the 

bulk (K2CO3, MEM) 

DAB = Diffusion coefficient of CO2 in 

     solution or Diffusion coefficient of CO2 in 

   solution 

The certain conditions of the reaction kinetic type 

must satisfy the following condition [29]: - 

 (DCO2 CO. K) 
0.5 
˂ 

 

 
   

  (1+ (CO/Z. C
*
)               (18) 

  

II. Reaction Regime 

Hatta number (Ha) can be calculated as following 

[29]: 

Hatta number = (  .     
.   

     
 )

0.5
 /  

       (19) 

 

 
 

 

 

 

 

 

Figure 1: Schematic diagram of the experimental 

apparatus 

Table 1: Variables used in the experiment 

Type of Absorbent Superficial Gas Velocity and  

Gas Flow Rate  

30% K2CO3 

(promoted and un-

promoted) 

30% MEA       (un-

promoted) 

Gas 

velocity 

(m/s) 

Flow rate 

CO2 

(L/min) 

Flow 

rate air 

(L/min) 

0.014 0.36 3.6 

0.019 0.5 5 

Promoter 0.025 0.65 6.5 

Amino acid 

(Alanine, Arginine, 

Glycine, Taurine, 

Lysine, Proline, 

Serine) +Piperazine 

0.03 0.79 7.9 

0.035 0.92 9.2 

 

Table 2a: The reaction kinetic regime between 30%un-promoted K2CO3 - CO2 

1. Compressor (max press=5 bar), 2. Air Rotameter, 3 and 7 

One Way Valve, 4. CO2 Cylinder, 5.Press. cont. Valve, 6. 

Gas rotameter, 8 and 13 Gate Valve, 9. Distributer, 10. 

Absorption Column, 11. Degassed Line, 12. Electro Fan(max 

R.P.M=2800), 14. Needle Valve, 15, 16 and 17 connecting 

line (inside dia.0.6 cm    
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Table 2b: The reaction kinetic regime between 30%MEA and CO2 

 

 

 

 

 

 

 

 

 

5. Results and Discussion 

I. Reaction Kinetic Type 

From Table 2, it can be noticed the results of 

Equation (18) , which indicates that the reaction 

kinetics of carbon dioxide with 30% promoted 

and un-promoted potassium carbonate  and 30% 

MEA solutions undergoes a pseudo-first-order 

reaction (i.e. where the concentration of the 

reactant in the neighborhood of the surface is 

very little different from that in the bulk of the 

liquid, and the dissolved gas undergoes as a 

pseudo-first-order reaction) [29]. It is worth 

noting that, in general, if the reaction between 

dissolved carbon dioxide and a reagent in solution 

is irreversible, then no matter what type of 

kinetics the reaction follows, the limiting rate of 

absorption when the reaction is intrinsically fast 

enough, or /   
  is small enough. This is because, 

in the limit, the reaction can only proceed as fast 

as the reactants can diffuse to the reaction zone 

and the nature of the reaction proceeding there is 

then irrelevant, providing it destroys carbon 

dioxide and the reactant ―instantaneously‖ and 

irreversibly. This would occur, for instance, if a 

sufficiently powerful catalyst and promoter were 

added in sufficient concentration to alkali 

carbonate solution [29]. The finding of Barifcani 

et al. [22] confirm our results. 

 

II. Reaction Regime 

Figure 2 shows the results of Hatta number of 

CO2 absorption into un-promoted and promoted 

K2CO3, from Hatta number, can compare the 

reaction rate in a liquid film to the diffusion rate 

of gas. It is noteworthy the reaction undergoes a 

pseudo-first order, so from this condition, 

Enhancement factor(E) ≈ Hatta number (Ha) 

[77] . From Figure 2 clarifies that all the results 

for Hatta number <0.02, this case indicates that 

the reactions occur only in the main body of 

liquid. Therefore, it was noted that after the 

addition of piperazine to the solution of (30% 

K2CO3), Ha increased, because piperazine 

accelerated the arrival of CO2 to the main body of 

the solution, which enhanced the reaction 

between gas and solution.  

 

III. Effect of Operating Variables 

a. Influence of superficial gas velocity 

Figures 3 and 4 give the indication of superficial 

gas velocity on the absorption of carbon dioxide 

in un-promoted 30%(K2CO3, MEA) solution. It 

can be noticed that the high carbonate and MEA 

conversion were obtained at (Ug= 0.025 m/s, 

Vg= 1.1×10
-4

 m
3
/s), The superficial gas velocity 

cover approximately homogeneous to transition 

flow regime in present work the behavior of 

velocity, high absorption rate was obtained up to 

Ug= 0.025 m/s  (homogeneous flow regime). This 

is attributed to the fact that in the homogeneous 

flow regime give the smaller bubbles with lower 

rising velocity lead to form large residence time 

and consequently higher gas holdup and mass 

transfer. This increase in the gas holdup and mass 

transfer have been found to be proportional in 

lower superficial gas velocity up to a point then it 

will become less pronounced in higher superficial 

gas velocity (transition regime). This is attributed 

to the formation of large bubble which led to 

lower gas holdup. The present trends are in 

accordance with the findings of [33]. 

Furthermore, monoethanolamine gave % 

conversion in the absorption of carbon dioxide 

higher than of potassium carbonate solution. As 

Ug 

 (m/sec) 

Vg 

(m
3
/sec) 

  KOH 

(m
3
/kmole.sec) 

  
 

 

(m/sec) 

(DCO2.  CO (K2CO3).  

KOH)
0.5 

(m/sec) 

 

 
   

 ( 1+( CO (K2CO3)/Z. CO2
*
 ) 

(m/sec) 

0.014 6.0×10
-5

 8322.14 1.042 7.1×10
-3

 7.81 

0.019 8.3×10
-5

 8322.14 1.004 7.1×10
-3

 7.53 

0.025 1.1×10
-4

 8322.14 0.983 7.1×10
-3

 7.37 

0.03 1.3×10
-4

 8322.14 0.961 7.1×10
-3

 7.20 

0.035 1.5×10
-4

 8322.14 0.947 7.1×10
-3

 7.10 

Ug 

 (m/sec) 

Vg 

(m
3
/sec) 

 KDEA 

(m
3
/kmole.sec) 

  
  

(m/sec) 

 (DCO2.  CO (DEA).       

KDEA)
0.5

 (m/sec)  

 

 
   

 ( 1+( CO (DEA)/Z.  CO2
*
 ) 

(m/sec) 

0.014 6.0×10
-5

  576.10 1.042 1.6×10
-3

 4.86 

0.019 8.3×10
-5

  576.10 1.004 1.6×10
-3

 4.68 

0.025 1.1×10
-4

  576.10 0.983 1.6×10
-3

 4.60 

0.03 1.3×10
-4

  576.10 0.961 1.6×10
-3

 4.48 

0.035 1.5×10
-4

  576.10 0.947 1.6×10
-3

 4.40 
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the absorption rate of CO2 in monoethanolamine 

solution reached RA=7.92×10
-3

 (kmol/m
3
.s), 

which was greater than potassium carbonate by 

1.9 times. This is attributed to the zwitterion 

mechanism was found that the reaction of CO2 

into MEA involves the formation of zwitterion 

complex (R2NH2COO) and subsequent 

deprotonation of zwitterions to produce 

carbamate (R2NHCOO), followed carbamate 

reversion by hydrolysis reaction. These results are 

in agreement with the previous findings of [34-

35]. 

 

b. Effect of absorbent type (K2CO3, MEA) on CO2 

absorption 

 Figures 5 and 6 show the effect of absorbent type 

(K2CO3, MEA) on CO2 conversion at superficial 

gas velocity Ug= 0.025 m/s and gas flow rate 

Vg= 1.1×10
-4

 m
3
/s. As can be seen in these 

figures, the highest % conversion was obtained 

from absorption with 30%MEA and reached 

(94.1%) through (5400 s) because of formation 

zwitterion and subsequent deprotonation of 

zwitterions to produce carbamate and followed by 

carbamate reversion to bicarbonate by hydrolysis 

reaction. For un-promoted 30%K2CO3 were 

(29.3%) conversion reached through (5400 s) 

which the lower % conversion about (64.8%) 

than MEA absorbent. This result agrees with [36-

38]. In the reaction regime, the reactions occur 

only in the main body of liquid (Eqs. (1)–(5)) for 

CO2 absorption into K2CO3 solutions, Eq. (2) is 

fast but not fast enough to be treated as 

instantaneous. The pH of the absorbent is greater 

than 9, Eq.(4)is negligible in comparison with 

Eq.(2), hence the rate-limiting step of the 

absorption process is Eq. (2). Since Eq. (2) is not 

quite fast, the absorption kinetics is slow. The 

present trends are in accordance with the findings 

of [12, 14, 16 and 21-24]. 

 

c. Promoter effect on the absorption rate of 

carbon dioxide  

Figures 7 to 11 illustrate 30% K2CO3 conversion 

for CO2 absorption promoted with different types 

and concentration of amino acid salts and 

piperazine. Figures 7 to 9 illustrate that the 

piperazine continued to increase the % 

conversion of potassium carbonate by increasing 

the concentration and reached to (17.7)%  at 0.5 

kmol/m
3
 piperazine concentration, unlike of 

amino acid salts promoters which gave constant 

effectiveness by increasing the concentration of 

amino acid from 0.05 to 0.5 kmol/m
3
. As an 

increase in the concentration of promoter above 

the critical concentration up to 0.25 kmol/m
3
 for 

Glycine, Taurine, Lysine, and 0.5 kmol/m
3
 for 

Proline, Serine, it could precipitate during CO2 

absorption. The precipitate could cause a pore 

blocking of distributor and that leads to a 

decrease in the solubility of CO2, this result 

agrees with finding [24-25, 41]. Figure 10 and 

Table 3 show the carbonate conversion in 

prompted and un-promoted 30% K2CO3 with 

piperazine (promoter), and the results compared 

with the monoethanolamine conversion. The 

results indicated that the monoethanolamine 

conversion reached during 5400 sec (94.1%) 

which is higher than the un-promoted carbonate 

conversion (29.3%). In addition, the results 

exhibited that the conversion increased with 

increasing the concentration of piperazine added 

to potassium carbonate. 

From Table 3, it can be noticed that (64.8%) 

increase in conversion when used MEA absorbent 

as compared with the un-promoted K2CO3. While 

after the addition of piperazine promoter from 

(0.05 to 1 kmol/m
3
) the rate increased of 

conversion from 20.7 to 52.8%. Figure 11, shows 

the absorption rate of CO2 when adding (0.05 to 1 

kmol/m
3
) of piperazine to K2CO3 which increased 

up to (7.67×10-3) kmol/m
3
.ses at 1 kmol/m

3
 

piperazine. This increase in absorption rate of gas 

is obtained after adding piperazine to K2CO3 

because piperazine increased the mass transfer of 

gas by rapidly absorbing CO2 near the gas-liquid 

interface, where the CO2 concentration is high 

and then penetrates into the solution. This result 

agrees with the work of [39]. 

Among the amino acid salts examined, Alanine, 

Arginine showed the fastest promoting effect in 

the carbonate conversion up to 0.25 kmol/m
3
 

concentration where carbonate conversion 

reached 62.5% and 60.7% respectively while 

piperazine up to 1 kmol/m
3
 concentration where 

carbonate conversion reached 82.1%. This could 

be attributed to the reaction order between CO2 

and the amino acids. The reaction order between 

Alanine, Arginine and carbon dioxide is between 

1.22 and 2, but for the reaction between 

piperazine and CO2, the reaction order has been 

reported to be second-order. This means that as 

the concentration of amino acids increases, the 

reaction rate between Alanine, Arginine, 

piperazine and CO2 increases with concentration 

to the power of 1.22−2. The present trends are in 

accordance with the findings of [40-42]. 

 

 

 

 

 

 
Table 3: Comparison between reaction (MEA, 
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K2CO3) with CO2 during 5400 s. 

Con. of 

piperazine 

added 

(kmol/m
3
) 

%React 

of K2CO3 

%React 

of MEA 

% increase 

in 

conversion 

0 29.3% 94.1% - 

0.05 50% - 20.7% 

0.25 64.3% - 35% 

0.5 74.3% - 45% 

1.0 82.1% - 52.8% 

 

Figure 2: Hatta number of reaction between CO2 

with 30% (K2CO3, MEA) before and after adding 

Piperizine 

 

 
Figure 3: Absorption rate of CO2 in 

monoethanolamine solution. 

 

 
          Figure 4: Absorption rate of CO2 in potassium 

carbonate solution. 

 

 

 Figure 5: Reaction rate of un-promoted 30% 

(K2CO3 and MEA) solution with CO2.  

 
Figure 6: Concentration of Zwitterion 

(R2NH2COO) Kmol/m3 

 

 
Figure 7: Rate of reaction between K2CO3 and 

CO2 after adding 0.05 kmol/m
3
 of                                                                                                                                                                                 

different type of promoters 

 
Figure 8: Rate of reaction between K2CO3 and 

CO2 after adding 0.25 kmol/m
3
 of                                                                                                                                                                                  

different type of promoters 
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Figure 9: Rate of reaction between K2CO3 and 

CO2 after adding 0.5 kmol/m3 of                                                                                                                                                                                  

different type of promoters 

 
Figure 10: Rate of reaction between K2CO3 and 

CO2 after adding different concentrations of 

Piperazine (PZ) and compared with MEA  

 
Figure 11: Absorption rate of CO2 in K2CO3 before 

and after adding Piperazine (PZ) and compared 

with MEA  

6. Conclusions 
The main points concluded from the current study 

are:   

1. The absorbent type has affected the carbon 

dioxide absorption because each absorbent has a 

different mechanism of reaction with gas from the 

other. The results showed that monoethanolamine 

gave a higher reaction and MEA conversion from 

K2CO3 absorbents.  

2. Gas velocity has an effect on the absorption 

of carbon dioxide in a bubble column reactor 

when the velocity of the gas increased, the 

absorption rate of gas increased up to Ug = 0.025 

m/s which gives a higher conversion, 

3. The promoters are added to the carbonate 

absorbent, which enhanced the absorption of CO2 

by using potassium carbonate, and increased the 

reaction rate when increasing the concentration of 

promoters to the critical concentration. 

4. Piperazine gave a high reaction rate of carbon 

dioxide with a solution and carbonate conversion 

as compared with amino acids salts.  

5. The dissolved gas of carbon dioxide 

undergoes a pseudo-first order reaction, from this 

E≈Ha, all the results showed that Ha < 0.02, 

indicating that the reactions occur only in the 

main body of liquid. 
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Abbreviations 

Ala Alanine 

Arg Arginine 

Gly Glycine 

Lys Lysine 

Pro , Proline 

PZ Piperazine 

Tau Taurine 

Ser Serine 

 
Nomenclature 

A :Interfacial area  (m
2
/m

3
)   

CO(DEA) :Initial concentration of 

Diethanolamine(kmol/m
3
) 

  

CO 

(K2CO3) 

:Initial concentration of potassium 

carbonate(kmol/m
3
) 

  

C
*
 :Concentration at 

interface(kmole/m
3
) 

  

CO2
*
 :Concentration of carbon dioxide 

at interface(kmole/m
3
) 

  

DC :Diameter of column(m)   

DCO2 :Diffusion coefficient of CO2 in 

solution(m
2
/s) 

  

D
o

CO2-

water 

:Diffusion coefficient of CO2 in 

pure water(m
2
/s) 

  

D
o

N2O-

water 

: Diffusion coefficient of N2O in 

pure water(m
2
/s) 

  

DN2O :Diffusion coefficient of N2O in 

solution(m
2
/s) 

  

dv :Mean bubble diameter (m)   

E :Enhancement factor(-)   
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G :Acceleration due to gravity (m/s
2
)   

Ha :Hatta number(-)   

H :Henry's constant (atm.m
3
/kmol)   

H
0
 :Henry's constant in pure 

water(atm.m
3
/kmol) 

  

KAM :Reaction rate constant between 

CO2 and NH3(m
3
/kmole.s) 

  

  
  :Liquid side mass transfer 

coefficient  (m/s) 

 

  

KMEA : Reaction rate constant between 

CO2 and MEA(m
3
/kmole.s) 

  

KOH : Reaction rate constant between 

CO2 and K2CO3(m
3
/kmole.s) 

  

N Absorption rate of 

CO2(kmol/m
3
.h) 

  

M :Molarity of solution(kmol/m
3
)   

PAi : Partial pressure of the gas at the 

bulk(atm) 

  

RA Absorption rate of 

CO2(kmol/m
3
.h) 

  

% 

RK2CO3 

:% React of K2CO3 with CO2(-)   

% 

RMEA 

:% React of MEA with CO2(-)   

T :Temperature(k)   

 Ug :Velocity of gas(m/s)   

Vg :Volumetric gas flow rate(m
3
/s)   

Z : Number of moles reactant with 

each mole of gas(-) 
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