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Abstract: 
Stream cipher systems are widely used in secure sensitive information cryptography, since they are fast and 

lower error propogation. The designing of some of these systems depend on using more than one LFSRs with 

different length and combined function with different feedback polynomials. They are varing in security. This 

paper produces an anaysis about the standards to be considered in designing the LFSRs stream cipher systems 

that concerned in choosing shift registers and their linear complexity. Also it produces a method that is used to 

attack this class of stream cipher systems. 
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1. Introduction     
Stream ciphers are an important class of encryption 

algorithms. They encrypt individual characters of a 

plaintext message one at a time, using an encryption 

transformation which varies with time [4]. By 

contrast, block ciphers tend to simultaneously encrypt 

groups of characters of a plaintext message using a 
fixed encryption transformation [4]. 

 Stream ciphers are generally faster than block 

ciphers in hardware, and have less complex hardware 

circuitry. They are also more appropriate, and in 

some cases mandatory in some telecommunications 

applications, when buffering is limited or when 

characters must be individually processed as they are 

received. Because they have limited or no error 

propagation, stream ciphers may also be 

advantageous in situations where transmission errors 

are highly probable [6].  In section 2 , this paper 
explain the type of stream cipher, in section 3 

introduces a linear complexity, section 4 concentrates 

on linear feedback shift register (LFSR). Section 5 

introduces cryptanalysis of stream cipher with LFSRs. 

2.Types of Stream Ciphers 
Stream ciphers can be either symmetric-key or 

public-key. The focus of this research is symmetric-

key stream ciphers. 

2.1 One Time-Pad Cipher 
Vernam cipher over the binary alphabet is defined by 

C i = m i   Z i        for i = 1, 2, 3 …,      (1) 

                             C, m , Z  € [0,1] 

where m1, m2, m3,…  are the plaintext digits, Z1, Z2, 

Z3,… are the key stream, C1, C2, C3,… are the cipher 

text digits. Decryption is defined by 

m i   =    C i         Z i    for i = 1, 2, 3 …,         (2) 

If the key stream digits are generated independently 
and randomly, the Vernam cipher is called a one-time 

pad, and is unconditionally secure against a cipher 

text-only attack [8].  

Definition of Entropy: Let Y be a random variable 

which takes on a finite set of values y1, y2, … ,yn with 

probability P(Y = yi)=pi,  

where 0 ≤  pi  ≤1 for each i,  1≤ i ≤n, and where ∑ n 
i=1 

pi = 1. The entropy of Y is a mathematical measure of 

the amount of information provided by an 

observation of Y. Equivalently, it is the uncertainty 

about the outcome before an observation of Y. The 

entropy or uncertainty of Y is defined as follows [6]: 

 

H(Y) = ∑ ni=1  pi log (1 ∕  pi).         (3) 

 

Let M, C, and K are random variables respectively 
denoting the plaintext, ciphertext, and secret key, and 

H(Y ) denotes the entropy function. Shannon proved 

that a necessary condition for a symmetric-key 

encryption scheme to be unconditionally secure is 

that H(K) ≥ H(M). That is, the uncertainty of the 

secret key must be at least as great as the uncertainty 

of the plaintext. If the key has bit length Len, and the 

key bits are chosen randomly and independently, the 

H(K) = Len, and Shannon’s necessary condition for 

unconditional security becomes Len  ≥  H(M). The 

one-time pad is unconditionally secure regardless of 
the statistical distribution of the plaintext [6]. An 

obvious drawback of the one-time pad is that the key 

should be as long as the plaintext, which increases the 

difficulty of key management. This motivates the 

design of stream ciphers [7] where the key stream is 

pseudo randomly generated from a smaller secret key, 

with the intent that the key stream appears random to 

a computationally bounded adversary. Such stream 

ciphers do not offer unconditional security (since 

H(K)<< H(M)), but the hope is that they are 

computationally secure [8]. 

Stream ciphers are commonly classified as being 
synchronous or self-synchronous. 

 

2.2  Synchronous Stream Ciphers 

A synchronous stream cipher is one in which the key 

stream is generated independently of the plaintext 

message and of the cipher text [6]. The encryption 

process of a synchronous stream cipher can be 

described by the equations: 

 

                           σi +1  =  f(σi , k)                     (4) 

                       Zi  =  g(σi , k)  (5) 
                       Ci =  h(Zi , mi)  (6) 

 

where σ0 is the initial state and may be determined 

from the key k, f is the next-state function, g is the 
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function which produces the key stream Zi, and h is 

the output function which combines the key stream 

and plaintext mi to produce cipher text Ci. The 

encryption and decryption process are shown in 

Figure 1. 

 

 
Figure 1: Synchronous Stream Cipher. 

 

2.1 Properties of Synchronous Stream Ciphers 

1. Synchronization requirements. In a synchronous 

stream cipher, both the sender and receiver must be 

synchronized using the same key and operating at the 

same position within that key to allow for proper 

decryption. If  synchronization is lost due to cipher 

text digits being inserted or deleted during 

transmission, then decryption fails and can only be 
restored through additional technique for 

resynchronization. 

2. No error propagation. A ciphertext digit that is 

modified (but not deleted) during transmission does 

not affect the decryption of other ciphertext digits. 

3. Active attacks. As a consequence of property(1), 

the insertion, deletion, or replay of ciphertext digits 

by an active adversary causes immediate  loss  of 

synchronization, and hence might possibly be 

detected by the decrypter. As a consequence of 

property (2), an active adversary might possibly be 
able to make changes to selected ciphertext digits, 

and know exactly what affect these changes have on 

the plaintext. 

2.3 Self Synchronizing Stream Ciphers 

A self synchronizing or asynchronous stream cipher 

is one in which the key stream is generated as a 

function of the key and a fixed number of previous 

ciphertext digits[6]. The encryption function of a self 

synchronizing stream cipher can be described by the 
equations: 

 

                      σi = (C i-t, C i-t+1, …, C i-1)              (7) 

                   Zi = g(σi, k) (8) 

                   Ci = h(Zi,mi) (9) 

where σ0 = (C-t,C-t+1, … , C-1) is the (non secret) 

initial state, k is the key, g is the function which 

produces the key stream Zi, and h is the output 

function which combines the key stream and plaintext 

mi, to produce ciphertext Ci. The encryption and 

decryption processes are shown in Figure 2. 

 

 
(a) Encryption.                                                    (b) Decryption. 

Figure 2: Self synchronizing Stream Cipher. 

 

2.3.1 Properties of Self Synchronizing Stream 

Ciphers [4] 

Self synchronization. Self synchronization is possible 

if ciphertext digits are deleted or inserted, because the 

decryption mapping depends only on a fixed number 

of preceding ciphertext characters.  
1. Limited error propagation. Suppose that the state of 

a self synchronization stream cipher depends on t 

previous ciphertext digits. If a single ciphertext digit 

is modified during transmission, then decryption of 

up to t subsequent ciphertext digits may be incorrect, 

after which correct decryption resumes.           

2. Active attacks. property (2) implies that any 

modification of ciphertext digits by an active 

adversary  causes several other ciphertext digits to be 

decrypted incorrectly, thereby improving the 

likelihood of being detected by the decryptor. As a 

consequence of property (1), it is more difficult to 

detect insertion, deletion, or replay of ciphertext 

digits by an active adversary. 
3. Diffusion of plaintext statistics. Since each 

plaintext digit influences the entire following 

ciphertext, the statistical properties of the plaintext 

are dispersed through the ciphertext. Hence, self 

synchronizing stream ciphers may be more resistant 

than synchronous stream ciphers against attacks 

based on plaintext 

4. redundancy. 
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3. Linear Complexity 
The linear complexity of a finite binary sequence Sn, 

denoted L(Sn), is the length of the shortest LFSR that 

generates a sequence having Sn as its first n terms [7]. 

Let S denotes an infinite sequence whose terms are 

S0,S1,S2,  … and Sn denotes a finite sequence of 

length n whose terms are S0,S1, … ,Sn-1. An LFSR is 

said to generate a sequence S if there is some initial 

state for which the output sequence of the LFSR is S. 
Similarly, an LFSR  is said to generate a finite 

sequence Sn
  if there is some initial state for which the 

output sequence of the LFSR has Sn as its first n 

terms [7]. Then the linear complexity of an infinite 

binary sequence S, denoted L(S), is defined as 

follows[ 7]: 

 If S the zero sequence S = 0,0,0, … , then L(S) = 0 ; 

 If no LFSR generates S, then L(S) = ∞ ; 

 Otherwise, L(S) is the length of the shortest LFSR 

that generates S. 

3.1 Properties of Linear complexity [2] 
Let S and a be binary sequences. Then 

 For any n ≥ 1, the linear complexity of the 

subsequence Sn satisfies    0 ≤  L(Sn)  ≤  n.  

 L(Sn) = 0 if and only if Sn is the zero sequence of 

length n. 

 L(Sn) = n if and only if Sn = 0,0,0, …, 1. 

 If S is periodic with period N, then L(S) ≤ N. 

 L(S   a) ≤ L(S) + L(a), where ( S    a)  denotes 

the bitwise XOR of S and a. 

4. Stream Ciphers with LFSRs 
The Linear Feedback Shift Registers (LFSRs) are 

widely used in key stream generators because they 

are well suited for hardware implementation, produce 

sequences with large periods and good statistical 

properties, and are readily analyzed using algebraic 

techniques[1,2]. Unfortunately, the output sequences 

of  LFSRs are also easily predictable as follows. 

Suppose that the output sequence S 
 of an LFSR has linear complexity L. The connection 

polynomial C(D) of an LFSR of length L which 

generates S can be efficiently determined using the 

Berlekamp-Massey algorithm from any short 

subsequence t of S having length at least n = 2L. 

Having determined C(D), the LFSR (L, C(D)) can 

then be initialized with any substring of t having 

length L, and used to generate the remainder of the 

sequence S [7].  

4.1 Use of LFSRs in Key stream Generators 

Since a well designed system should be secure 

against known-plaintext attacks, an LFSR should 

never be used by itself as a keystream generator. 

Nevertheless, LFSRs are desirable because of their 

very low implementation costs. Three general 

methodologies for destroying the linearity properties 
of LFSRs are used [6]:   

 Using a nonlinear combining function on the 

outputs of several LFSRs. 

 Using a nonlinear filtering function on the contents 

of a single LFSR. 

 Using the output of one (or more) LFSRs to control 

the clock of one (or more) other LFSRs. 

4.2 Properties of LFSR-Based Keystream 

Generators 

For essentially all possible secret keys, the output 

sequence of an LFSR-based keystream generator 
should have the following properties [8]: 

 Large period. 

 Large linear complexity. 

 Good statistical properties. 

It is emphasized that these properties are only 

necessary conditions for a keystream generator to be 

considered cryptographically secure. Since 

mathematical proofs of security of such generators 

are not known, such generators can only be deemed 

computationally secure after having withstood 

sufficient public security. 

4.3 Nonlinear Combination Generators 

One general technique for destroy the linearity 

inherent in LFSRs is to use several LFSRs in parallel. 

The keystream is generated as a nonlinear function F 

of the outputs of the component LFSRs, this 

construction is shown in Figure 3. Such keystream 

generators are called nonlinear combination 

generators, and F is called the combining function, it 

is non linear function, [1,6]. 

 

                              

 
Figure 3: A nonlinear combination generator. 
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The function F must satisfy several criteria in order to 

withstood certain particular cryptographic attacks. A 

product of m distinct variables is called an mth order 

product of the variables. Every Boolean function 

F(X1, X2, … , Xn) can be written as a modulo 2 sum 

of distinct mth order products of its variables,  0≤ m ≤ 

n; this expression is called the algebraic normal form 

of F. The nonlinear order of F is the maximum of the 

order of the terms appearing in its algebraic normal 

form[8]. For example, the Boolean function: 
F(X1, X2, X3, X4, X5) =1 + X2 + X3 + X4X5 + X1X3X4X5 

has nonlinear order 4. Note that the maximum 

possible nonlinear order of a Boolean function in n 
variables is n. Suppose that n maximum length 

LFSRs, whose lengths L1, L2, … , Ln are pairwise 

distinct and greater than 2, are combined by a 

nonlinear function F(X1, X2, … , Xn), as in Figure 3, 

which is expressed in algebraic normal form. Then 

the linear complexity of the keystream is  

F(L1, L2, …Ln). For example, the Geffe generator is 

defined by three maximum length LFSRs whose 

length L1,L2,L3 are pairwise relatively prime with 

nonlinear combining function: 

F(X1,X2,X3) = X1X2 + (1+X2)X3 = X1X2 + X2X3 + X3. 

The keystream generated has period (2L1 - 1) . (2L2 - 
1).(2L3 - 1) and linear complexity equal to L= L1L2 + 

L2L3 + L3 [8]. 

5. Cryptanalytic Attack of Stream Ciphers 

With LFSRs 
5.1 Description of the Cryptanalytic Attack 

Suppose that n maximum-length LFSRs R1,R2, … ,Rn 
of lengths L1,L2,…, Ln are employed in a nonlinear 

combination generator.If the connection polynomials 

of the LFSRs and the combining function F are public 

knowledge, then  the number of difference keys of the 

generator is ∏ n
i=1 (2Li - 1). A key consists of the 

initial states of the LFSRs. Suppose that there is a 

correlation between the keystream and the output 

sequence of R1, with correlation probability p> ½ [5] . 

If a sufficiently long segment of the keystream is 

known the initial state of R1 can be deduced by 

counting the number of coincidences between the 

keystream and all possible shifts of the output 
sequence of R1, until this number agrees with the 

correlation probability p. Under these conditions, 

finding the initial state of R1 will take at most (2L1 – 1) 

trials. In the case where there is a correlation between 

the keystream and the output sequences of each of 

R1,R2, … ,Rn, the secret initial state of each LFSR can 

be determined independently in a total of about  ∑ n
i=1 

(2Li – 1) trials; this number is far smaller than the 

total number of different keys [3]. 

5.2 Steps of the Cryptanalytic Attack 

The major steps of the cryptanalytic attack include 

the following: 

1. Create simulation program for the cryptographic 
system under attack. 

2.  Compute the correlation probability between the 

keystream and each of the LFSRs, and in some cases 

we compute the correlation between the cipher stream 

and each of the LFSRs. In the Tow cases we fix the 

threshold values for the correlation. 

3.  The statistical properties of plaintext, ciphertext, 

keystream, LFSRs, and combining function must be 

computed and saved in separated files. 

4. Initialize LFSRi with initial values and run the 

simulation program, count the number of 
coincidences between the keystream and all possible 

shifts of the sequence generated by LFSRi. Also in 

some cases we count the coincidences between the 

cipher stream and the sequence generated by LFSRi. 

5. If the number of coincidence agrees with the 

threshold values then the secret initial state of LFSRi 

is determined.  

6. In the same manner the secret initial state of each 

LFSR can be deduced. 

6. Conclusions 
This paper introduced a studied and analysis of 

stream ciphers systems based on LFSRs, since LFSRs 

are the basic building block in most stream ciphers. 

The general technique for destroying the linear 

properties of LFSRs is to use a non linear combining 

function on the outputs of several LFSRs. The 

combining function must include several conditions 

in order to withstand against cryptanalytic attacks. 

Thus the combining function should be carefully 

selected to ensure that there is no statistical 

dependence between any small subset of the n LFSR 
sequences and the keystream. 
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 تحليل نوع من التشفير الانسيابي
 قاسم محمد حسين،  خالد فاضل جاسم

      جامعة جيهان ، اربيل ، العراق  ، قسم علوم الحاسوب 1
 ، تكريت ، العراق جامعة تكريتوالرياضيات ،  كلية علوم الحاسوب،  قسم علوم الحاسوب 2

( 7107/  6/  07   تاريخ القبول: ---- 7101/  01/  72  تاريخ الاستلام:)   
 الملخص

تستخدم انظمة التشفير الانسيابي بشكل واسع في تشفير المعلومات الحساسة )المهمة( وذلك لسرعتها وقلة نشرها للاخطاء. ان تصميم أنظمة 
سية مختلفة. يقدم هذا التشفير الانسيابي يعتمد على استخدام مسجل تزحيف خطي باطوال محتلفة ، ودوال ربط تستخدم متعددات حدود للتغذية العك

ي. كما البحث تحليل للمعايير التي تؤخذ بنظر الاعتبار عند تصميم نظام التشفير الأنسيابي فيما يتعلق باختيار مسجلات التزحيف والتعقيد الخط
 يقدم طريقة تستخدم في مهاجمة هذا النوع من انظمة التشفير.

 


