Tikrit Journal of Pure Science 17 (4) 2012

ISSN: 1813 - 1662

On Nil-Injective Rings
Raida D. Mahammod , Husam. Q. Mohammad
Department of mathematics,College of Computer Sciences and Mathematics, University of Mosul, Mosul, Iraq

(Received: 8/6 /2009 ---- Accepted:

Abstract :
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In this paper, we continue the studies of several other authors, on nil-injective rings. In particular, we investigate
some characterizations and several basic properties of these rings and the relationship between them and n-egular

rings, SF-rings, the IN-rings and Kasch rings, respectively.
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1. Introduction :

Throughout this paper R denoted an associative ring
with identity, and R-module is unital. For aeR,
r(@and I(a) denote the right annihilator and the left
annihilator of a, respectively. We write J(R), Y(R)
(Z(R)), N(R) and Soc (Rr)(Soc(rR)) for the Jacobson
radical, the right (left) singular ideal, the set of
nilpotent elements and right (left) socle of R,
respectively.

A right R-module M is called right principally
injective(briefly right P-injective) [2] if, for every
principal right ideal P of R, any right R-
homomorphism of P into M extends to one of R into
M. R is called a right P-injective if Rg is P-injective.
A ring R is called right mininjective if every
homomorphism from a minimal right ideal of R to Ry
can be extended from R to Rg[5].

Recall that a ring R is right minsymmetric if kR
minimal, keR implies that Rk is minimal [5]. A ring
R is a left minannihilator ring if every minimal left
ideal K of R is an annihilator, equivalently if Ir(K)=K
[5].A ring R is (Von Neumann) regular provided that
for every aeR there exists beR such that a=aba. R is
called right Kasch ring if for every maximal right
ideal is right annihilator of R [2]. Call A ring R IN-
ring if the left annihilator of intersection of any two
right ideals is the sum of the two left annihilators, that
is (TAT)=I(T)+I(T) for all right ideals T and T' [1].
A ring R is called reduced if contains no non-zero
elements of R. A ring R is said to be reversible if
ba=0 implies ab=0 for a,beR [3].

2. Nil Injective Rings

Following [7] a right R-module M is called nil-
injective if for any acN(R), any R- homomorphism
f.aR—>M can be extended to Rk M, or
equivalently, there exists meM such that f(x)=mx for
all xe aR. The ring R is called right nil-injective if Rg
is nil-injective . Note that right p-injective ring and
reduced ring are right nil-injective, but the converse
is not true by [7]

We starts with the following lemma

Lemma 2.1 :[7]

let R be a right nil-injective ring. Then

(1) Ris aright mininjective ring.

(2) R is right minsymmetric ring.

(3) R is left minannihilator ring.

The following two results are given in [5].

Lemma 2.2 :

Let R be a right mininjective ring and let keR.

(1) If kR is a minimal right ideals, then Rk is minimal
left ideal.

(2) Soc(Rr)=Soc(RR).

Lemma 2.3 :

Let R be a right mininjective, right Kasch ring and
consider the map

0:T — I(T)

From the set of maximal right ideals T of R to the set
of minimal left ideals of R. Then the following
conditions hold:

(1) 6 is one-to —one.

(2) 6 is bijection if and only if Ir(k)=k for all minimal
left ideals k of R. In this case the inverse map is
given by K—r(k).

The following theorem which extends lemma 2.3
Proposition 2.4 :

If R is right nil-injective and right kasch ring, then

(1) Ir(K)=K for every minimal left ideal K of R.

(2) The map 6:T — I(T) from the set of maximal right
ideals T of R to the set of minimal left ideals of R is
a bijection . And the inverse map is given by
K—r(K), where K is a minimal left ideal of R.

(3) For keR, Rk is minimal if and only if kR is
minimal in particular Soc(Rr)=Soc(rR).

Proof :

(1) From Lemma 2.1.

(2) It informed by Lemma 2.1 and Lemma 2.3.

(3) If Rk is minimal then r(k) is maximal by (2)
which shows kR is also minimal .

Conversely; if kR is minimal, then Rk is minimal by
Lemma 2.2.

We introduced the following lemma which contains
several statements, which used frequently in sequel.
Lemma 2.5:

The following conditions are equivalent for a ring R.
(1) Risaright nil-injective ring.

(2) Ir(@)=Ra for every acN(R).

(3) beRa for every aeN(R), beR with r(a)cr (b) .

(4) I(r(a)mbR) = I(b)+Ra for all a,beR with abeN(R).
Proof :

See [7].

Following [7] a ring R is said to be right NPP if aR is
projective for all acN(R). A ring R is called n-regular
ring if for every aeN(R), there exists beR such that
a=aba [7]. Clearly every n-regular rings are semi-
prime by [7].

The following two results are given in [7]

Lemma 2.6 :

The following conditions are equivalent for a ring R.
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(1) Risan n-regular ring.

(2) every right R-module is nil-injective.

(3) Risright nil-injective right NPP-ring.

Lemma 2.7 :

If R is a right NPP, then R is a right non-singular
ring.

The next result is consider a necessary and sufficient
condition for nil-injective ring to be n-regular.
Theorem 2.8 :

Let R be IN-ring . Then R is a right non-singular nil-
injective ring if and only if R is n-regular.

Proof:

For any OaeN(R), consider a principal left ideal Ra.
Since R is a right nil-injective. By Lemma 2.5
Ra=Ir(a) and by hypothesis, R is right non-singular so
r(a) is not essential right ideal of R. Hence r(a)®L is
an essential right ideal, for some non-zero right ideal
L of R Since R is IN-ring, then
Ir(@)+I(L)=I(r(@~L)=R while Ir(a)
NI(L)cI(r(@)+L)=0 since r(a)+L is essential. So
Ra=Ir(a) is direct summand of R. Therefore R is n-
regular.

Conversely; since R is n-regular, then R is right nil-
injective and NPP-ring. By Lemma 2.6 and by
Lemma 2.7, we get R is a right non-singular ring.
Recall that a ring R is called a right (left) self-
injective if for any essential right (left) ideal E of R,
every right (left) R-homomorphism of E into R
extends to one of R into Rg.

Proposition 2.9 :

Let R be a reversible and left self-injective ring. Then
every right R-module is p-injective, if every right R-
module is nil-injective.

Proof :

By Lemma 2.6, R is n-regular. So R is semi-prime.
Thus for any left ideal I, I(I)M1=0. Let a be a non-zero
element in R. Then r(a)=I(a). Thus Ir(a) NlI(a)=I(I(a))
Nl(a)=0 and since R is left self injective ring, then aR
is a right annihilator and R=r(I(r(a))+r(I(a))=r(a)+aR
by[4].

In particular: 1=d+ab, for some b in R, and der(a).
Hence; a=a’b, and a=aba and let f:aR—M be a right
R-homomorphism, defined by f(ab)=yeM. Then for
any reR, f(ar)=f(abar)=f(ab)ar= yar. This means that
every right R-module is P-injective.

3. Whil-Injective Rings :

Recall that a right module M is called Whil-injective
if for any 0zaeN(R), there exists a positive integer n
such that a"#0 and any right R-homomorphism
f:a"R—M can be extended to R—M, or equivalently,
there exists me M such that f( x ) = mx for all x e
a"R[7]. Clearly every right nil-injective modules is
right Whil-injective. If Rg is Whnil-injective, then we
call R is a right Whil-injective ring.

We start the section with the following theorem
which extends Lemma 2.5.

Theorem 3.1 :
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A ring R is a right Wnil-injective if and only if for
any aeN(R) there exists a positive integer n such that
an=0 and Ran=lIr(an).

Proof :

Suppose that a ring R is right Whnil-injective. Then for
every OzaeN(R), there exists a positive integer n
such that a"£0 and any right R-homomorphism of a"R
into R extends to endomorphism of Rg. It is clear that
Ra" clr(a"). Let delr(@"), since r(@")=r(I(r@@" )))<r( d
), then we may define a right R-homomorphism f:a"
R—R by f(a"b)=db for all beR. Since R is Whil-
injective, there exists yeR such that f(a")=ya". Then
d=f(a")eRa", which implies that Ir(a")=Ra" and so
that Ir(a")=Ra".

Conversely, If ¢ eN(R), there exists a positive integer
n such that Rc"=Ir(c"). Let f:.c"R—R be any right R-
homomorphism. Then r(c")cr(f(c")) which implies
Rf(c") < Ir(R(f(c")) < Ir(c") = Rc", and therefore
f(c")=dc" for some deR. This shows that R is a right
Whil-injective ring.

Theorem 3.2 :

Let R be a right Wnhnil-injective ring. Then
Soc(RR)cr(J), where J=J(R).

Proof :

Let KRcR be a minimal right ideal. If kRzr(J), then
there exists jer(J) such that jk=0. Then r(jK)=r(k).
Since R is a right Whil-injective and (jk)?=0, then
Ir(kj)=R(jk) by Theorem 3.1. Note that kelr(jk) and
k=rjk for some reR. Then (1-rj)k=0 since jel
,then(1-rj) is an invertible, so that k=0 which is a
contradiction. Therefore Soc(Rgr)<r(J).

Theorem 3.3:

Let R be a right Whnil-injective and a right non-
singular ring. Then every minimal right ideal of R is
direct summand.

Proof:

Let KR be a minimal right ideal of R. Since every
minimal one-sided ideal of R is either nilpotent or
direct summand of R [5]. If (kR)’#0, then kR is a
direct summand, we are done. If (kR)?=0. Then k*=0
and keN(R) so Rk=Ir(k) by Theorem 3.1. Since
Y(R)=0, then r(k) not essential right ideal of R.
Hence r(K)®L is essential right ideal for some non-
zero right ideal L of R. Let beL such that kb0, then
kRcL implies that r(k)mbR=0 but (kb)*e(kR)*=0,
therefore kbeN(R) and we get I(r(k)nbR)=I(b)+Rk
by Lemma2.5. But r(k)\mbR=0 implies that I(b)+Rk
=R. While
RknI(b)=Ir(k)nI(b)<I(rk)+bR)cl(r(k)+L=(0).

So that Rknl(b)=0 implies that Rk is a direct
summand of R and Rk=Re for some e’=ecR. Write
e=ck, ceR, then k=ke=kck. Set g=kc. Then g’=g,
k=gk and we get kR=gR, so that kR is a direct
summand of R.

Corollary 3.4 :
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Let R be a right Wnil-injective and right NPP-ring.
Then every minimal right ideal of R is a direct
summand of R.

Now, we have the following theorem.

Theorem 3.5:

Let R be a right Wnil-injective ring with
Soc(Rr)NY(R)=0. Then every minimal right ideal is
a direct summand of R.

Proof:

Let kR be a minimal right ideal of R if (kR)*#0, then
kR is a direct summand, we are done. If (kR)*=0, then
k’=0 and if r(k) essential right ideal of R, then
kRcSoc(Rr)NY(R)=0 which is a contradiction.
Hence r(k) not essential. By a similar method proof is
used in Theorem 3.3, kR is direct summand of R.
Theorem 3.6 :

Let R be a reversible ring. Then R is reduced ring if
and only if every maximal essential right ideal of R is
a right Whnil-injective.

Proof :

Let 0=acR such that a®=0. If there exists a maximal
right ideal M of R containing aR+r(a). Then M must
be an essential right ideal. Otherwise M=r(e),
0=e’=ecR. Hence aer(e)=I(e) [ since R reversible ]
and we get eer(e) | which a contradiction. Hence M
is essential and so M is Whnil-injective, and the
inclusion map aR—M can be extended to R—M, this
implies a = ma for some m € M since R is reversible
a =am so 1-mer(a)cM, which a contradiction, which
shows that R is reduced.

Conversely; Assume that R is reduced. Then R is a
right nil-injective. Since every nil-injective is Whnil-
injective. So every maximal essential right ideal of R
is a right Wnil-injective.

The following proposition extends Lemma 2.6 and
Theorem 3.6

Proposition 3.7 :

Let R be a reversible ring. Then the following
conditions are equivalent :

(1) every maximal essential right ideal of R is a right
Whil-injective.

(2) R isreduced.

(3) Risn-regular.

(4) Risaright nil-injective and right NPP.

Proof :

From Theorem 3.6, it is follows (1) implies (2)
(2)=(3) Itis directly verified.

(3)=(4). Assume R is n-regular, then by Lemma 2.6
R aright nil-injective and NPP.

(4)=(1) It is obvious.

4. Connection between SF-ring and nil-
injective ring

In this section we study the connection between SF-
rings and nil-injective rings Recall that A ring R is
called a right SF-ring, if every simple right R-module
is flat [6].

Proposition 4.1 :

If Ris aright SF and Kasch ring, then every maximal
right ideal of R is a direct summand.
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Proof :

First we have to prove Y(R)#0. If not then by
[7, Theorem 3.1] there exists 0£yeY such that y*=0. If
Y(R)+l(y)=R, then u+v=1 for some ueY(R) and
vel(y). This yields uy=y. Let xeyRnr(u). Then x=yr
for some reR and ux=0 this implies uyr=0 and hence
yr=x=0. Therefore yRnr(u)=0. On the other hand,
since r(u) is an essential right ideal of R, yR=0 and
y=0; a contradiction. Suppose that Y(R)+l(y)#R.
Then there exists a maximal right ideal M containing
Y(R)+I(y). But R/M is simple flat and yeM. There
exists ceM such that y=cy, whence 1-cel(y)cM
yielding 1eM and the contradiction M#R. This
proves that Y(R)=0

Now since R is right Kasch ring, then for every
maximal right ideal L of R, L=r(a) for some acR. If
L is essential then aeY(R), but Y(R)=0 a
contradiction, so that L must be a direct summand.
Theorem 4.2 :

Let R be a right Kasch ring, then the following
conditions are equivalent:

(1) Risregular ring.

(2) Ris right nil-injective and right SF-ring.

Proof :

(1) =(2) It is clear.

(2) =(1) From Proposition 2.4 Soc(Rg)=Soc(zrR)=S
and by proposition 4.1 Y(R)=0 by. But R is nil-
injective, therefore every minimal right ideal of R is
direct summand of R by Theorem 3.3 so that S is
regular. Now since R is right Kasch ring, then R/S is
right Kasch and every maximal right ideal of R/S is
an image of maximal essential of R under the natural
map © : R—R/S, but by Proposition 4.1 every
maximal right ideal of R is direct summand so that
R/S is regular. Therefore R is regular.

Wei and Chen [7] introduced the following result.
Lemma 4.3 :

let R be a right nil-injective ring. If N(R) forms an
ideal of R, then N(R)cY(R).

Theorem 4.4 :

Let N(R) forms an ideal of R, then the following
conditions are equivalent:

(1) R is strongly regular ring.

(2) R isright nil-injective and right SF-ring.

Proof :

(1) =(2) Itisclear.

(2) =(1) Since R is right SF-ring, then Y(R)=0 by
Proposition 4.1 and since N(R) forms an ideal of R
and R right nil-injective then by Lemma 4.3
N(R)cY(R)=0 so that R is reduced SF-ring.
Therefore R is strongly regular ring.

Recall that a ring R is called 2-primal if the set of
nilpotent elements of the ring coincides with the
prime radical.

Corollary 4.5 :

Let R be 2-primal ring, then the following conditions
are equivalent:

(1) Ris strongly regular ring.

(2) Risright nil-injective and right SF-ring.
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