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Abstract : 
In this paper, we continue the studies of several other authors, on nil-injective rings. In particular, we investigate 

some characterizations and several basic properties of these rings and the relationship between them and n-egular 

rings, SF-rings, the IN-rings and Kasch rings, respectively. 
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1. Introduction : 
Throughout this paper R denoted an associative ring 

with identity, and R-module is unital. For aR, 
r(a)and l(a) denote the right annihilator and the left 

annihilator of  a, respectively. We write J(R), Y(R) 
(Z(R)), N(R) and Soc (RR)(Soc(RR)) for the Jacobson 

radical, the right (left) singular ideal, the set of 

nilpotent elements and right (left) socle of R, 

respectively. 

A right R-module M is called right principally 

injective(briefly right P-injective) [2] if, for every 

principal right ideal P of R, any right R-

homomorphism of P into M extends to one of R into 

M. R is called a right P-injective if RR is P-injective. 

A ring R is called right mininjective if every 

homomorphism from a minimal right ideal of R to RR 
can be extended from R to RR[5]. 

Recall that a ring R is right minsymmetric if kR 

minimal, kR implies that Rk is minimal [5]. A ring 
R is a left minannihilator ring if every minimal left 

ideal K of R is an annihilator, equivalently if lr(K)=K 

[5].A ring R is (Von Neumann) regular provided that 

for every aR there exists bR such that a=aba. R is 
called right Kasch ring if for every maximal right 

ideal is right annihilator of R [2]. Call A ring R IN-

ring if the left annihilator of intersection of any two 

right ideals is the sum of the two left annihilators, that 

is l(TT')=l(T)+l(T) for all right ideals T and T' [1]. 
A ring R is called reduced if contains no non-zero 

elements of R. A ring R is said to be reversible if 

ba=0 implies ab=0 for a,bR [3]. 

2. Nil Injective Rings 
Following [7] a right R-module M is called nil-

injective if for any aN(R), any R- homomorphism 

f:aRM can be extended  to RR M, or 

equivalently, there exists mM such that f(x)=mx for 

all x aR. The ring R is called right nil-injective if RR 

is nil-injective . Note that right p-injective ring and 
reduced ring are right nil-injective, but the converse 

is not true by [7] 

We starts with the following lemma 

Lemma 2.1 :[7] 

let R be a right nil-injective ring. Then 

(1) R is a right mininjective ring.  

(2) R is right minsymmetric ring.  

(3) R is left minannihilator ring.  

The following two results are given in [5]. 

Lemma 2.2 :  

Let R be a right mininjective ring and let kR. 

(1) If kR is a minimal right ideals, then Rk is minimal 

left ideal. 

(2) Soc(RR)Soc(RR).  

Lemma 2.3 : 
Let R be a right mininjective, right Kasch ring and 

consider the map  

:T  l(T) 
From the set of maximal right ideals T of  R to the set 

of minimal left ideals of R. Then the following 

conditions hold: 

(1)  is one-to –one. 

(2)  is bijection  if and only if lr(k)=k for all minimal 
left ideals k of R. In this case the inverse  map is 

given by Kr(k).  
The following theorem which extends lemma 2.3 

Proposition 2.4 : 

If R is right nil-injective and right kasch ring, then  

(1) lr(K)=K for every minimal left ideal  K of R. 

(2) The map :T  l(T) from the set of maximal right 
ideals T of R to the set of minimal left ideals of  R is 

a bijection . And the inverse map is given by 

Kr(K), where K is a minimal left ideal of R. 

(3) For kR, Rk is minimal if and only if kR is 
minimal in particular Soc(RR)=Soc(RR). 

Proof :  

(1) From Lemma 2.1. 
(2) It informed by Lemma 2.1 and Lemma 2.3. 

(3) If Rk is minimal then r(k) is maximal by (2) 

which  shows kR is also minimal .  

Conversely; if kR is minimal, then Rk is minimal by 

Lemma 2.2.  

We introduced the following lemma which contains 

several statements, which used frequently in sequel. 

Lemma 2.5: 

The following conditions are equivalent for a ring R. 

(1) R is a right nil-injective ring. 

(2) lr(a)=Ra for every aN(R). 

(3) bRa for every aN(R), bR with r(a)r (b) . 

(4) l(r(a)bR) = l(b)+Ra for all a,bR with abN(R). 

Proof : 

See [7].  

Following [7] a ring R is said to be right NPP if aR is 

projective for all aN(R). A ring R is called n-regular 

ring if for every aN(R), there exists bR such that 
a=aba [7]. Clearly every n-regular rings are semi-
prime by [7]. 

The following two results are given in [7] 

Lemma 2.6 : 

The following conditions are equivalent for a ring R. 
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(1) R is an n-regular ring. 

(2) every right R-module is nil-injective. 

(3) R is right nil-injective right NPP-ring.  

Lemma 2.7 : 

If R is a right NPP, then R is a right non-singular 

ring.  

The next result is consider a necessary and sufficient 

condition for nil-injective ring to be n-regular. 

Theorem 2.8 : 

Let R be IN-ring . Then R is a right non-singular nil-

injective ring if and only if R is n-regular. 

Proof: 

For any 0aN(R), consider a principal left ideal Ra. 
Since R is a right nil-injective. By Lemma 2.5 

Ra=lr(a) and by hypothesis, R is right non-singular so 

r(a) is not essential right ideal of R. Hence r(a)L is 
an essential right ideal, for some non-zero right ideal 

L of R. Since R is IN-ring, then 

lr(a)+l(L)=l(r(a)L)=R while lr(a) 

l(L)l(r(a)+L)=0 since r(a)+L is essential. So 
Ra=lr(a) is direct summand of R. Therefore R is n-

regular. 

Conversely; since R is n-regular, then R is right nil-

injective and NPP-ring. By Lemma 2.6 and by 

Lemma 2.7, we get R is a right non-singular ring.   

Recall that a ring R is called a right (left) self-

injective if for any essential right (left) ideal E of R, 

every right (left) R-homomorphism of E into R 

extends to one of R into RR. 

Proposition 2.9 : 

Let R be a reversible and left self-injective ring. Then 

every right R-module is p-injective, if every right R-

module is nil-injective. 

Proof : 

By Lemma 2.6, R is n-regular. So R is semi-prime. 

Thus for any left ideal I, l(I)I=0. Let a be a non-zero 

element in R. Then r(a)=l(a). Thus lr(a) l(a)=l(l(a)) 

l(a)=0 and since R is left self injective ring, then aR 
is a right annihilator and R=r(l(r(a))+r(l(a))=r(a)+aR 

by[4]. 

In particular: 1=d+ab, for some b in R, and dr(a). 

Hence; a=a2b, and a=aba and let f:aRM be a right 

R-homomorphism, defined by f(ab)=yM. Then for 

any rR, f(ar)=f(abar)=f(ab)ar= yar. This means that 
every right R-module is P-injective.  

3. Wnil-Injective Rings : 
Recall that a right module M is called Wnil-injective 

if for any 0aN(R), there exists a positive integer n 

such that an0 and any right R-homomorphism 

f:anRM can be extended to RM, or equivalently, 

there exists m M such that f( x ) = mx for all x  
anR[7]. Clearly every right nil-injective modules is 

right Wnil-injective. If RR is Wnil-injective, then we 

call R is a right Wnil-injective ring. 
We start the section with the following theorem 

which extends Lemma 2.5. 

Theorem 3.1 : 

A ring R is a right Wnil-injective if and only if for 

any aN(R) there exists a positive integer n such that 

an0 and Ran=lr(an). 

Proof : 

Suppose that a ring R is right Wnil-injective. Then for 

every 0aN(R), there exists a positive integer n 

such that an0 and any right R-homomorphism of anR 
into R extends to endomorphism of RR. It is clear that 

Ran lr(an). Let dlr(an), since r(an)=r(l(r(an )))r( d 
), then we may define a right R-homomorphism f:an 

RR by f(anb)=db for all bR. Since R is Wnil-

injective, there exists yR such that f(an)=yan. Then 

d=f(an)Ran, which implies that lr(an)Ran and so 
that lr(an)=Ran. 

 

Conversely, If c N(R), there exists a positive integer 

n such that Rcn=lr(cn). Let f:cnRR be any right R-

homomorphism. Then r(cn)r(f(cn)) which implies 

Rf(cn) lr(R(f(cn))) lr(cn) = Rcn, and therefore 

f(c
n
)=dc

n
 for some dR. This shows that R is a right 

Wnil-injective ring.  

Theorem 3.2 : 

Let R be a right Wnil-injective ring. Then 

Soc(RR)r(J), where J=J(R). 

Proof : 

Let kRR be a minimal right ideal. If kRr(J), then 

there exists jr(J) such that jk0. Then r(jk)=r(k). 
Since R is a right Wnil-injective and (jk)2=0, then 

lr(kj)=R(jk) by Theorem 3.1. Note that klr(jk) and 

k=rjk for some rR. Then (1-rj)k=0 since jJ 
,then(1-rj) is an invertible, so that k=0 which is a 

contradiction. Therefore Soc(RR)r(J).  

Theorem 3.3: 

Let R be a right Wnil-injective and a right non-

singular ring. Then every minimal right ideal of R is 

direct summand. 

Proof: 

Let kR be a minimal right ideal of R. Since every 

minimal one-sided ideal of R is either nilpotent or 

direct summand of R [5]. If (kR)2o, then kR is a 
direct summand, we are done. If (kR)2=0. Then k2=0 

and kN(R) so Rk=lr(k) by Theorem 3.1. Since 

Y(R)=0, then r(k) not essential right ideal of R. 

Hence r(k)L is essential right ideal for some non-

zero right ideal L of R. Let bL such that kb0, then 

kRL implies that r(k)bR=0 but (kb)2(kR)2=0, 

therefore kbN(R) and we get l(r(k)bR)=l(b)+Rk 

by Lemma2.5. But r(k)bR=0 implies that l(b)+Rk 
=R. While 

Rkl(b)=lr(k)l(b)l(rk)+bR)l(r(k)+L=(0).  

So that Rkl(b)=0 implies that Rk is a direct 

summand of R and Rk=Re for some e2=eR. Write 

e=ck, cR, then k=ke=kck. Set g=kc. Then g2=g, 
k=gk and we get kR=gR, so that kR is a direct 

summand of R.  

Corollary 3.4 : 
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Let R be a right Wnil-injective and right NPP-ring. 

Then every minimal right ideal of R is a direct 

summand of R.  

Now, we have the following theorem. 

Theorem 3.5: 

Let R be a right Wnil-injective ring with 

Soc(RR)Y(R)=0. Then every minimal right ideal is 
a direct summand of R. 

Proof: 

Let kR be a minimal right ideal of R if (kR)20, then 
kR is a direct summand, we are done. If (kR)2=0, then 

k2=0 and if r(k) essential right ideal of R, then 

kRSoc(RR)Y(R)=0 which is a contradiction. 
Hence r(k) not essential. By a similar method proof is 

used in Theorem 3.3, kR is direct summand of R.  

Theorem 3.6 : 
Let R be a reversible ring. Then R is reduced ring if 

and only if every maximal essential right ideal of R is 

a right Wnil-injective. 

Proof : 

Let 0aR such that a2=0. If there exists a maximal 
right ideal M of R containing aR+r(a). Then M must 

be an essential right ideal. Otherwise M=r(e),  

0e2=eR. Hence ar(e)=l(e) [ since R reversible ] 

and we get e ce M 
is essential and so M is Wnil-injective, and the 

inclusion map aRM can be extended to RM, this 

implies a = ma for some m  M since R is reversible 

a = am so 1-mr(a)M, which a contradiction, which 
shows that R is reduced. 

Conversely; Assume that R is reduced. Then R is a 

right nil-injective. Since every nil-injective is Wnil-

injective. So every maximal essential right ideal of R 

is a right Wnil-injective. 

The following proposition extends Lemma 2.6 and 

Theorem 3.6 

Proposition 3.7 : 

Let R be a reversible ring. Then the following 

conditions are equivalent : 

(1) every maximal essential right ideal of R is a right 

Wnil-injective. 

(2) R is reduced. 

(3) R is n-regular. 

(4) R is a right nil-injective and right NPP.    

Proof : 

From Theorem 3.6, it is follows (1) implies (2) 

(2)(3) It is directly verified. 

(3)(4). Assume R is n-regular, then by Lemma 2.6 
R a right nil-injective and NPP. 

(4)(1) It is obvious.  

4. Connection between SF-ring and nil-

injective ring 
In this section we study the connection between SF-

rings and nil-injective rings Recall that A ring R is 

called a right SF-ring, if every simple right R-module 

is flat [6]. 

Proposition 4.1 : 

If R is a right SF and Kasch ring, then every maximal 

right ideal of R is a direct summand. 

Proof : 

First we have to prove Y(R)≠0. If not then by 

[7,Theorem 3.1] there exists 0≠yY such that y2=0. If 

Y(R)+l(y)=R, then u+v=1 for some uY(R) and 

vl(y). This yields uy=y. Let xyRr(u). Then x=yr 

for some rR and ux=0 this implies uyr=0 and hence 

yr=x=0. Therefore yRr(u)=0. On the other hand, 
since r(u) is an essential right ideal of R, yR=0 and 

y=0; a contradiction. Suppose that Y(R)+l(y)≠R. 

Then there exists a maximal right ideal M containing 

Y(R)+l(y). But R/M is simple flat and yM. There 

exists cM such that y=cy, whence 1-cl(y)M 

yielding 1M and the contradiction M≠R. This 
proves that Y(R)=0 

Now since R is right Kasch ring, then for every 

maximal right ideal L of R, L=r(a) for some aR. If 

L is essential then aY(R), but Y(R)=0 a 
contradiction, so that L must be a direct summand.  

Theorem 4.2 : 

Let R be a right Kasch ring, then the following 

conditions are equivalent: 

(1) R is regular ring. 

(2) R is right nil-injective and right SF-ring. 

Proof : 

(1) (2) It is clear. 

(2) (1) From Proposition 2.4 Soc(RR)=Soc(RR)=S 
and by proposition 4.1 Y(R)=0 by. But R is nil-

injective, therefore every minimal right ideal of R is 

direct summand of R by Theorem 3.3 so that S is 
regular. Now since R is right Kasch ring, then R/S is 

right Kasch and every maximal right ideal of R/S is 

an image of maximal essential of R under the natural 

map  : RR/S, but by Proposition 4.1 every 
maximal right ideal of R is direct summand so that 

R/S is regular. Therefore R is regular.  

Wei and Chen [7] introduced the following result. 

Lemma 4.3 : 

let R be a right nil-injective ring. If N(R) forms an 

ideal of R, then N(R)Y(R).  

Theorem 4.4 : 

Let N(R) forms an ideal of R, then the following 

conditions are equivalent: 

(1) R is strongly regular ring. 

(2) R is right nil-injective and right SF-ring. 

Proof : 

(1) (2) It is clear. 

(2) (1) Since R is right SF-ring, then Y(R)=0 by 
Proposition 4.1 and since N(R) forms an ideal of R 

and R right nil-injective then by Lemma 4.3 

N(R)Y(R)=0 so that R is reduced SF-ring. 
Therefore R is strongly regular ring.  

Recall that a ring R is called 2-primal if the set of 

nilpotent elements of the ring coincides with the 

prime radical. 

Corollary 4.5 : 

Let R be 2-primal ring, then the following conditions 

are equivalent: 

(1) R is strongly regular ring. 

(2) R is right nil-injective and right SF-ring.  
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 الملخص

. بصورة خاصة ندرس بعض المميزات والخواص الاساسية   nil–في هذا البحث , نكمل دراسة بعض الباحثين, حول الحلقات الغامرة من النمط 
 وحلقات كاش.  IN–, الحلقات من النمط   SF–, الحلقات من النمط   n–لهذه الحلقات والعلاقة بينها وبين الخلقات المنظمة من النمط 

 


