Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(25): 2017

On the Support Sets of Acyclic and Transitive
Digraphs
Khalid Shea Khairalla AI’Dzhabri

University of Al-Qadisiyah, College of Education, Department of mathematics
khalidaljabrimath@yahoo.com

Abstract

For any “acyclic digraph & there is defined a connected component” G_ (X) of the graph G(X)

containing relation O, there are defined non-empty “support sets”:

S(o)U{ye X :o(x,y)=0for all xe X}, S'(o){xe X :o(x,y)=0for all y e X},

there are defined the families:

S(G){S(r)c X:7eG_(X)}, S(G,)I{S(r)c X :7eG_(X)}

“consisting of all support sets of acyclic digraphs” 7 included in the componentGU (X) . In this work
we proved that the equality S(GU) = S'(GU) is valid and we investigated some features of the
concepts of “support sets of acyclic and transitive digraphs”.

The family S(G,) = (S (G, )) is a specific partially ordered set with respect to the natural relation of
inclusion of sets. Specificity is that, together with each element, the family S(GU) contains all non-
empty subsets of this element, and, in addition, S(GJ) contains all singlton subsets of the set X.
Moreover, if O is a “transitive digraph”, then the family S(G_) contains all two-element subsets of the

set X . The latter circumstance can play an important role in the process of separating transitive digraphs
from acyclic digraphs. In connection with this fact, we consider the central problem of an independent
description of

families S(G_) (or their maximal elements).
Key words: support sets, partial order graphs , acyclic and transitive digraphs.

LaMAl)

Slesendl e 3yl G(X) gl G (X)) dlsiall Sl candl 13 b lie O slae 553 4550 ol Y
26 Aec)

S(o){yeX:o(x,y)=0for all xe X}, S(c)I{xe X :o(x,y)=0for all ye X},

Al Jilsd) e o

s S(G,){S(r) = X:teG,(X)}, S(G,){S(r)c X :teG_(X)}
o Lyt 1 3 G (X)) clall o ally Gawially Gl angell cililall (e Gaclall e sanall IS e (553
il 5580l sl bl Aaclal) e ganal psshes 35 I Gailasll e waad Lay S, S(G) =S (G,)
e )y e o g3 Ll Ly el il alle OS g 0 S(G,) = (S(G,)) a asad,
o L i e g3 el 1 S(G,) Al 03 gaie Sl 4nse gly O IS 13y Aaclall Agial) Cile ganal

el Agiall Gle sendl
gaxially (Al anpall Gl ¢ Bl unall GlBle Ly ¢ Asclall desanall s Aualidall cilal)

877


mailto:khalidaljabrimath@yahoo.com

Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(25): 2017

1. Definitions and auxiliary propositions

Definition 1.1 Any “binary relation o C XZ(X —arabitrary set), generates a
characteristic function” o : X2—{0,1},(if (X,y)eo, then o (X,y) =1, otherwise
o (X,y) =0), and this mapping is bijectve.

Remarks 1.2 1) from the definition above we called the subseto < X Zas the
relationships and functions (sometimes digraphs).
2) If X finite set then the characeteristic function can be interepreted as a binary matrix
(the matrix consisting of 0 and 1).
Definition 1.3 the relations ,T< X? called adjacent if there exists a disjoint of union of
two subsets X =Y uZ , such that:

1) o(x,y)=0 forall (x,y)eYxZ;

2) t(x,y)=0 forall (x,y)e ZxY;

3) 7(X,¥) +o(y,x) =1 forall (X,y)eY xZ;

4) o(x,y)=1(x,y). forall (x,y)eY*uZ?.
Remark 1.4 1) From the definiition above, that if the relation t adjaceent with a relation
o, then o adjaceent with a relation t, and this fact we write in the form of a diagram

YxZ
<>,

Y Y Z
Z
Y O =c<« 2 51=|y 1-o (X, Y)
z | o(xy) z |0

Example 1.5: For X ={1,2,3,4}we have the following adjaceent relations:

1000 1100 10 0

0100 {W{34 {2,43x{1,3}
1111 ° 5 E ;
1101

o+ O O

1
{2,3}{1,4} i
1

o O — O

0100 01 0
0111 00 0
0101 11 1

Example 1.6: X ={1,...,6}, Y={1,2}, Z={3,4,5,6}, Then the adjacent relation is:

o

00 |1010 =0« 1= 1010
101110 0 1110
00 (0010 0010
110001 0001
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“Thus, the set X generates a pair (2% ,E(X)), where 2% is the set of vertices,
consist of the set of all binary relations of the set X , and E(X)— is a set of edges,
consist of all unordered distinct pairs of adjaceent of binary relations of the set X . The

pair G(X) i(ZXZ, E(X)) will be called “undirected graph of binary relations of the set
X,

The following theorem proved that in [Al’ Dzhabri, and Rodionov 2015].
Theorem 1.7: If card X =1, then diam(G(X)) =2.

Remark 1.8: we denoted the “connected component of the graph” G(X) by G_(X),

2
which contains the given relation o € 2%,

2. Certain types of the subgraphs of the graph of binary relations.
“We denoted that the collection of all partial orders defined on the set X by
V, (X)) . And the collection of all reflexive —transitive relations defined on the set X by

V (X) and where X finite sets the collection of all acyclic relations by A(X).”
In [AI’ Dzhabri, and Rodionov 2013; Al’ Dzhabri, and Rodionov 2015; A1’ Dzhabri,
and Rodionov 2015] we proved that if 0,7 € 2X2 are adjacent then:
1. o €V, (X)ifand only if 7 €V, (X);
2. o eV (X)ifandonly if 7€V (X);
3. o€ A(X)ifand only if 7€ A(X).

Therefore, in the graph (2X2 , E(X)) define the following subgrphs:
MV, (X),E(X)),  (V(X),E(X)),  (AX),E(X)). ceeiiiiiiiiiiiiiiinn, (1)

Continue to suggest that card X <oo (i.e X ={L,...,n}) . Then we get the following

remakes:
Remakes 2.1: 1) If replacing the unit elements (X, X), zeros, then we get a one-to-one

correspondence between the set V,(X) and the set of all labeled transitive digraphs
denoted by V' (X).
2) There exist a one-to-one correspondence between the set V,(X) and the seet of
all labeeled T, —topoology denoted by T,(X).

3) Let T,(n)[) card T,(X)[ card V,(X) card V. (X). Additional suggest

that T,(0) [ 1.

In [Al” Dzhabri, and Rodionov 2013] we proved that the number of “connected
component of the graph “{V,(X),E(X)) equal to T,(n—1). we note that for any
nataural number n the following equaliities are hold:

To(n) = Z ni!V(pl,.--,pk), .......... 2)

pi+..4+P=n pl !+ et pkI
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Tm= Y (1)”—' W(ppD,),

i p ..+ P
where the summation is over all ordered sets (p,,..., p,) of positive integers such
that p, +...+ P, =N. The first formula see [Comtet 1966; Erne 1974; Borevich 1982]
and second in [Rodionov, 2016].The number of V' (p,,..., p,) and W(p,,..., p,) denote
the number of partial orders of a special form, which depends on a set of (p,,..., P, )-

If X ={.,...,n}. Then cardV(X)= ZS(n m)T,(m) see [Comtet 1966;

Evans, et al., 1967; Gupta 1968] where S(n, m) — This Stiriling numbers of the 2nd
kind in our work we proved that the number of coonnected component of the graph

n
(V(X),E(X)) equal to ) S(n,m)T,(m—1).

m=1
Remark 2.2 From above there exists a one to one corresponded between the set of all
transitive- reflexive relations V (X)) and the set of all labeled topologies T (X) defined

ontheset X .
If X ={L,...,n} according to [Rodionov 1992] the following equality holds:

cardA(X)= > ( 1) : 2<”2-Pf-----pf>’2, .................................. 3)
Drt Py = pL..p!
In our work [AI’ Dzhabri, V.I. Rodionov] we proved that the number of connected
component of the graph (A(X),E(X)) equal to
Z (_1)n—k (n-1)! o(n*=p-.~p)I2
P+ P=n (pl _1)| P, L.. Py

Remark 2.3 We note that the formulas (2) and (3) have the same struccture, and In the
second case if the formula has a finished appearance, then in the first formula remains a

problem of calculation of numbers W (p,,..., P, )-
Now from the formulas above we give the following example:
Example 2.4: Let X ={1,2,3}.Then we get 3 “connected components of the graph”

(V,(X),E(X)), contains 19 partial orders:
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10 0 100 100
110 110 110 110
1,0 1

And °the graph (V(X),E(X))’, contains 29° reflexive- ‘transitive relations.” [t "has 7
conneected componeents: 3 components of the graph (4) above and 4 components as:

1.0 0 10 0 1
1

o 100
110 0

o
1
0

o Rk
or r
koo

b o
or o
b o kR

111 m
011 01 1
011 0 1 1

And the graph (A(X),E(X)) contains 25 acyclice relations . It has 5 connected
components :

3 components of the grapha (4) above (in them should be replaced the elements of the set
V,(X) by the elements of the set V(X))
2 components as follows:

10 0
110
10 1

PR e
or o
» oo

0
11
[

» oo

(6)

“Where X ={1,2,3,4}in subgraphs of the form (1) there is a 219, 355 and 543

vertices respectively and the number of connected components of these subgrags in (1)
equal to 19, 45, and 79 respectively.”

B o e

0
DRI ¢ IR
[

Qo

881



Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(25): 2017

3. Supporot sets of acyclic and transitive digraphs
In this section we introduced a new concept “support sets S(o)” of acyclic and

transitive digraphs of adjacency and determined the algebraic system consisting of all
binaray relations of a set and of all unordered pairs of various adjacent binary relations.
Definition 4.1: For any acyclic digraph o € A(X), cardX <oo define a non-empty

support sets:
S(o)U{ye X:o(x,y)=0 for all xe X},
S (o) {xe X :o(x,y)=0for all ye X}.
And defined families of support sets:
S(G,)I{S(zr) = X :teG_(X)}, S(G,){S(r)c X :teG_(X)}
Where G_ (X ) is the “connected of componeent of the graph” G(X), contains o .
Example 4.2: In example (2.4) the first “connected components of the graph”

Mo (X), E(X)),

We can compute: S(o) and S'(o) in all vertices such as:

In the vertex number (1) S(o) ={1,2}and S (o) ={3}.

In vertex number (2) S(o) ={2} and S (o) ={1,3}.

In vertex number (3) S(o) ={1} and S (o) ={2,3}.

In vertex number (4) S(o) ={1,2,3} and S (o) ={1,2,3}.

In vertex number (5) S(c) ={2,3} and S'(c) ={1}.

In vertex number (6) S(o) ={1,3} and S (o) ={2}.

In vertex number (7) S(o) ={3} and S (o) ={1,2}. And we show that:
S(G,) ={{3{2}.{31{L 2} {L.3},{2,3}{L.2,3}}=S (G,).

Remark 4.2 If X finite be setthen S(o) # J forany o € A(X).
Now we prove that the following theorem:
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Theorem 4.3: For any o € A(X), then S(G,)=S(G,).
Proof: Let p € G, defines the following sets Z[1 S(p) €S(G,)and Y I X \Z, and
p(X,y)=0 forall (X,y)e X xZ=Z?U(Y xZ). Define the relaation = € G such

that p«——%—>r,and hence 7(X,y)=p(X,y)=0 for all (X,y)eZ® and
7(X,y) =0 forall (X,y)eZ xY. Thereforre 7(X,y)=0 forall (x,y)eZ x X, and

hencee Z =S (r) €S (G,), then there exist 7 € G_such that Z=S(x) S (G,).

And hence S(G_) = S (G, ). The inverse inclusion is proved by the symmetricc.
Proposition 4.4: Let X finite set . For any non-trivial o€ A(X) and for any
y € X \S(o) there exist X € S(o) such that o(x,y) =1.

Proof: Let V [1 S(o), W = X \V since o non- trivial acyclic then the set W is non
empty such that for any y € Z there exist X # Yy such that o(X,y) =1 therefore for o
we have the following representation:

V D F
VAR 0
O‘:
0
0 *

D={aeW:o(y,a)=0for all eV},
F=W\D={aeW :o(y,a)=1for some v eV}.

For proof these proposition its enough to show that D =(J. Now we assume that
D+0.

1) If F =, then o(x,y)=0 forany (x,y) eV xD=( UF)xD.
2) If F=O,then FxD=d. Fix (X,y) e F xD. since X e F,then there exist

zeV
such that o(z,x) =1; since (z,y) €V x D, then o(z,y) =0 and from defintion (1.3)

we get o (X, y) =0(in the other word all elements in the block * equal to zero) . Thus,
in both cases o(X,y) =0 forany (X,y) e(Y UJ)x 1. and hence for Yy € | there exist
X e |, suchthat X # yand o(X,Y) =1 and this contradiction with remark (4.2) . Really

in the block 17 is located acyclic 7 [] & |, which is the restriction o on | and therefore
by remark (4.2) we get that S(7) = &.

Corollary 4.5 Let X finite set and o € A(X) such that S(o) ={x} singleton set then
o(x,y)=1forany y e X.
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Proposition 4.6: Let o€ A(X) and peG_(X). Then S(o)=S(p) if and only if
o=p.

Proof : Where card X <2 The proposition is triivial. Now suppose that
card X >3. Let Y[1S(o)=S(p) and Z[] X \Y. Assume that o # pin another

word o (X,z) # p(X,z) for some pair (X,z2) € X xZ.
1) We assume first X €Y. Without lose of generality, we can assume that o(X,z) =1,
and p(X,z)=0. If card Y =1, then Y ={x}, then by Corollary (4.4) p(x,z)=1

and this a contradiction and hence card Y >1, therefore by proposition (4.3) there exist
w e Y suchthat W= X, and p(w,z) =1.

Let 10{neZ:p(x,n)=0%and JU{neZ:p(x,n)=1}. It is cleare that
zel, therefor |1#< and YxI=#. If  ({,m)edxl, then
p(X,¢) =1, p(x,n7) =0, therefore :

p(&.n) =p(x,8)p(g,n) < p(X,17) =0. And henc p(&,77) =0 and for p we have
the diagiram:

Y | J Y | J
«— X
1 0.. —W : 0..0
Y 0 1 1 v 1 0
1 1 1
| 0 p(é’,q) Ix(YUI) px: | 0 0
J 0
0 0 J : 1-0(n.¢)
0

<—X

«—W

In particular, p*(w,z) =1.

On the other hand, Let K[1{neZ:o(x,n)=0}and LU{neZ:0(x,n)=1}. Itis
clear that zeL,therefore L= and YxL=#, And if (,7)eLxK, then
o(X,¢)=10(x,n) =0, and therefore by definition (1.3) o({,7) =0, and for o we
have the diagiram:
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Y K L Y K L
«— X X
1 0. 1.1 | w 1 0..0 “w
0
Y s Y s 0
k| o o K| o 0
O =
Lx(YUK) § X _ 0
L 0 0 L |: 1-0(n,¢)
0
Tz 2y Tz
Hence o”(£,n7)=0 for all{ €Y ;in particular o*(wW,z) =0 p*(w,z); therefore
o # p* and this contrdiction with lemma (2) in [1] then X g Y.
2) So, (x,2)eZ? and o(&,n) = p(&,n) forall (&,n) €Y xZ. Fixany yeY, and
let :
| U{neZ:o(y.n)=p(y.n) =0} J={neZ:o(y.n)=p(y.n)=1.
Repeating the calculations of the previous subsection, we get that
o(&,n)=p(<,n)=0 forall (£,77) € xI. Then we get the following diagram:
Y | J Y | J
<y <y
1 0... [1...1 1 0...0
Y 0
1 1
O =
I o(S.m) o o(¢.m)
0 (&m) ) IYUN) v I 0 0
0
oo | o | o ' 1-o(n.¢) | 7C7
0
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Y [ J Y | J
«y <y
1 0 1...1 1 0 0
Y
0 Y 0
1 1
|
P& m) p(Sm)
0 (<) I vUl) I 0 0
< 7P = 0
J p(&.n)
0 0 p(&. ) J | 1-p(<m) '
0
Ty

Since from above diagram, we show that o = p”, then from the representations for

o’ and p’ it follows that o(<,n)=p(S,n) for all (&,n)eZ? and this
contradiction and hence o= p. The converse is trivial.

Proposition 4.7: Let X finite set and o € A(X), for any a non-empety subset
S < S(o) there exist a unique p € G_(X) such that S(z) =S where p is adjacent

to o.
Proof :
Suppose that

Ul S(e), VOUNS, WO X\U, 1 0{neW:o(<,n7)=0for all £S} in
the other word in the block *#* (see the diagram below) for any 7€ J there exist
¢ €S such that o(¢,n7) =1. Fix (X,y) € J x 1. Since X € J then there exist Z€ S,
such that o(z,X)=1and since (z,y)eSxIthen o(z,y)=0and from definition
(1.3) we get that o(X,y) =0 (in the othere word in the block * all elements equal to
zZero) :
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S V | J
S 0 0 % %
1 _ (sUI)=xevUD)
O': 1 ~ 4
Vv 0 o(¢,n)
I 0 0
J 0 0 *
S Vv | J
S 1 1 % %
pP=| V 0 o(&.n) 0
I 0 0 0
J 0 1-0(n,.¢) | 1-0(n,<)

From the diagram above, we can see that S(7)=S.

From the propostions above we get the following remarks:
Remarks 4.8: 1) Where o € A(X).The set S(G_) It is a specific partially ordered set
with respecet to the natural inclusion relation of sets. “The specificity is that, together
with each element, the family S(G_) contains all non-empty subsets of this element, and

in addition, S(G_) contains all singleton subsets of X .”

2) f eV (X)c A(X), then the family S(G,) necessarily contains all two-

element subsets of the set X . The latter circumstance can play an important role
in the process of separating transitive graphs from acyclic.

3) Analysis of the structure of a partially ordered set S(G_)shows that for its
description it is sufficient to indicate all its maximal elements.

4) Transpose procedure for matirices o(X,Y) = o' (X,Y) generates for the sets
S'(o) and S'(G,) similar propostions as above.
Example 4.9: In example (2.4) we note that in the graph (4) the support sets S(o)

contains two elements, but in the graph (6) the support sets S(o) contains only one
element.
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