Irreducible submoduls and strongly irreducible submodules

Nada Khalid Abdullah

Department of Mathematics, University of Tikrit, Tikrit, Iraq (Received: 20/9/2011 ---- Accepted: 13/3/2012)

Abstract

Throughout this work , all rings are considered commutative ring with identity and all modules are unitary. A submodule N of an R-module M is called irreducible if for each submodules N_1 and N_2 of M, such that $N=N_1\cap N_2$, implies that either $N=N_1$ or $N=N_2$. In this work we give generlization for the concepts irreducible submodule . We call a submodule N of M is a strongly irreducible submodule if for each submodules N_1 and N_2 of M, and $N_2 \subseteq N$, implies that either $N_1 \subseteq N$ or $N_2 \subseteq N$. Furthermore, we generalize some properties of them.

Introduction :

In this work, all rings are considered commutative with identity and all R-modules are unitary. If R is a ring and N is a submodule of an R-module M . The ideal (N:M) ={ $r \in R : rM \subseteq N$ } is called the resutial. Then (0:M) is the annihilator of M, denoted by ann M. A ring R is said to be arithmetical if for all ideals I, J and K of R, we have $(I \cap J) + K = (I + K)$ \cap (J + K), [8]. An ideal I of a ring R is said to be irreducible, if I is not the intersection of two ideals of R that properly contain it, [6]. And a submodule N of an R-module M is said to be irreducible, if N is not the intersection of two submodules of M that properly contain it, [8] .This work consists four sections. In section one we consider some properties of irreducible submodules , so we present some characterizations which are relative to our work . as we see in proposition (1-3) that a submodule N of M is an irreducible if and only if L + N is also irreducible submodule of M , for each submodule L of M. Proposition (1-5) and (1-10) show that a submodule N of an R-module M is an irreducible if and only if the intersection (union) respectively, is also irreducible submodule between N and L , where L is any submodule of M. In proposition (1-15) we prove that N is an irreducible submodule of M if and only if N/L is also irreducible submodule of M/L, where $L \subset N$. Section two is devoted to study irreducible submodules in multiplication R-modules. Also we study some result of irreducible submodules in multiplication R-modules. In proposition (2-2), we prove that if R is an integral domain, then every prime element is an irreducible. The main result is a proposition (2-9) that a submodule N of a multiplication R-module M is an irreducible if and only if (N:M) is an irreducible ideal . In section three we study strongly irreducible submodules . Our main concerns in this section is to give a characterization for strongly irreducible submodules and generalize some know properties of irreducible submodules to strongly irreducible submodules . Also we study new properties for it. Moreover, we study the relation between irreducible submodules and strongly irreducible submodules. Finally in section four, we defined a submodule N of an R-module M is a pseudo irreducible if N=LK, with L+K =M for any submodules L and K of M, then L=M or K=M. Also we prove some results which are relative with it,

which are appear in [11] that if M is a finitely generated faithful multiplication R-module. Then the submodule N of M is a pseudo irreducible, if and only if (N:M) is pseudo irreducible ideal in aring R. And a submodule N of a finitely generated faithful multiplication R-module is a pseudo irreducible if and only if I is pseudo irreducible ideal in a ring R, where N = IM. Finally, if N is pseudo irreducible submodule of a multiplication R-module M, then N is pseudo prime.

1- Basic properties of irreducible submodules Definition (1-1)

A submodule N of an R-module M is called irreducible if for each submodules N_1 and N_2 of M, such that $N=N_1\cap N_2$, implies that either $N=N_1$ or $N=N_2$,[8].

Examples (1-2)

(4) is an irreducible submodule of the Z_{12} -module . But (6) is not irreducible submodule of Z_{12} , since (2) \cap (3)=(6).

The purpose of this section is to introduce interesting and useful properties of irreducible submodules of an R-modules .

Proposition (1-3)

Let R be arithmetical ring , and let M be an R-module. N and L are submodules of M. Then N is an irreducible submodule if and only if L+N is an irreducible submodule .

 $\begin{array}{l} Proof: Suppos \ N \ is \ an \ irreducible \ submodule \ , \ thus \\ there \ exist \ submodules \ N_1 \ and \ N_2 \ of \ M \ , \ such \ that \\ N_1 \cap \ N_2 = N \ , \ implies \ that \ either \ N= \ N_1 \ or \ N= \ N_2 \ . \end{array}$

Thus we get L+N=L+($N_1\cap N_2)=(L+N_1)\cap ($ $L+N_2)$, if $N{=}N_1$, implies $L{+}N=L{+}N_1$, and if $N{=}N_2$, implies $L{+}N=L{+}N_2.$ Therefore $L{+}N$ is an irreducible submodule .

Conversely; suppose L+N is an irreducible , and suppose there exist submodules N_1 and N_2 of M , such that $N_1 \cap N_2 = N$. Hence L+N =L +($N_1 \cap N_2$) = (L+N_1) \cap (L+N_2) , since L+N is an irreducible , thus either L+N =L+N_1 , implies N=N_1 or L+N = L+N_2 implies N=N_2. Therefore N is an irreducible submodule .

The following corollary follows directly from the previous proposition.

Corollary (1-4)

Let R be arithmetical ring , and let M be an R-module . N and L are submodules of M , such that N is an

irreducible . Then L is an irreducible if and only if and only if L+N is an irreducible submodule .

Proposition (1-5)

Let N and L are submodules of an R-module M , if $N \cap L$ is an irreducible . Then N is an irreducible submodule

Proof : Suppose there exist submodules N_1 and N_2 of M, such that $N_1 \cap N_2 = N$. Hence $N \cap L = (N_1 \cap N_2) \cap L = (N_1 \cap L) \cap (N_2 \cap L)$, since $N \cap L$ is an irreducible submodule . Thus either $N_1 \cap L = N \cap L$ or $N_2 \cap L = N \cap L$, implies that either $N_1 \subseteq N$ or $N_2 \subseteq N$. Since $N \subseteq N_1 \cap N_2$, thus $N \subseteq N_1$ and $N \subseteq N_2$, implies $N = N_1$ or $N = N_2$. Therefore N is an irreducible submodule .

The converse is not true in general, as we see in the following example.

Example (1-6)

Let (4) be an irreducible submodule of the Z_{12} module , and (3) is a submodule of Z_{12} . But (4) \cap (3) = (12) is not an irreducible submodule of Z_{12} .

In the following proposition we give a condition for the converse of proposition $(1\mathchar`-5)$ to hold .

Proposition (1-7)

Let N and L are submodules of an R-module M , such that N \subseteq L . Then

 $N\,$ is an irreducible submodule if and only if $N\cap L$ is an irreducible submodule .

Proof : Suppose N is an irreducible submodule . since $N \,{\subseteq\,}\, L$, thus N \cap L =N. Therefore N \cap L is also irreducible .

The converse is similar to proposition 1-5, hence we omitted.

The following corollaries follows directly from proposition (1-5).

Corollary (1-8)

Let N and L are submodules of an R-module M , such that L is an irreducible . If $N\cap L$ is an irreducible , then N is an irreducible .

Corollary (1-9)

Let N and L are submodules of an R-module M, such that $N \subseteq L$, and L is an irreducible . then $N \cap L$ is an irreducible if and only if N is an irreducible.

Proposition (1-10)

Let N and L are submodules of an R-module M , if $_{N}\$ L

is an irreducible submodule . Then N is an irreducible submodule .

Proof : Suppos there exist submodules N_1 and N_2 of M , such that $N_1\cap N_2=N$. Then we get $N\bigcup L=($

 $N_1 \cap N_2) \bigcup L = (N_1 \bigcup L) \cap (N_2 \bigcup L)$, since $\ N \bigcup L$

is an irreducible , thus either $N \bigcup L = N_1 \bigcup L$ or $N \bigcup L = N_2 \bigcup L$. Implies that either $N = N_1$ or $N = N_1$

 $N O L = N_2 O L$. Implies that enter $N = N_1$ of $N = N_2$. Therefore N is an irreducible submodule .

The converse of proposition (1-10) is not true in general, as we see in the following example. **Example :1-11**

Let (4) be an irreducible submodule of the Z_{12} -module , and (2) is a submodule of Z_{12} . But (4) \bigcup (2) = (2) is not an irreducible submodule of Z_{12} -module .

The following remarks we give a condition for the converse of proposition (1-10) to hold.

Remarks (1-12)

Let N and L be submodules of an R-module M , such that L \subseteq N , then N is an irreducible submodule if

and only if $N \bigcup L$ is an irreducible submodule.

Proof: Suppose N is an irreducible submodule , since $L \subseteq N$, thus N. Therefore $N \cup L$ is also irreducible submodule . =N $\bigcup L$

The converse is similar to proposition (1-10) , hence we omitted .

The following corollaries follows directly from proposition (1-10). Corollary (1-13)

Let N and L are submodules of an R-module M, such that L is an irreducible. If $N \bigcup L$ is an irreducible, then N is an irreducible.

Corollary (1-14)

Let N and L are submodules of an R-module M , such that $L\ {\buildrel C}\ N$, and L is an irreducible . Then

 $N \bigcup L$ is an irreducible if and only if N is an irreducible submodule.

Proposition (1-15)

N Let N and L are submodules of an R-module M, such that $L \subseteq$ Then N is an irreducible submodule of M if and only if N/L is an irreducible submodule of M/L.

Proof: Suppose N is an irreducible submodule , to prove that N/L is irreducible. Let N_1/L and N_2/L are submodules of M/L , such that $N_1/L \cap N_2/L = N/L$. But $N_1/L \cap N_2/L = (N_1 \cap N_2) / L = N / L$, thus $N_1 \cap N_2 = N$. Hence N is an irreducible, thus either $N = N_1$ or $N = N_2$. Implies that either N/L = N_1/L or N/L = N_2/L . Therefore N/L $\,$ is an irreducible submodule of M/L .

Conversely ; suppose N/L is an irreducible submodule of M/L, to prove that N is irreducible , let N_1 and N_2 are submodules of M, such that $N=N_1$ $\cap N_2$. So N/L = $(N_1\cap N_2)$ /L = N_1/L \cap N_2 /L , since N/L is irreducible submodule of M/L.Thus either N/L = N_1/L or N/L= N_2/L , hence either $N=N_1$ or $N=N_2$.Therefore N is an irreducible submodule .

Proposition (1-16)

If R is a Noetherian ring , then every non-zero R-module M contains a non-zero irreducible submodule , [7].

Recall that a proper submodule N of an R-module M is called a prime if $r m \in N$, for some $r \in R$ and $m \in M$, implies that either $m \in N$ or $r \in (N:M)$, [8]. And a proper submodule N of an R-module M is called a primary if $rm \in N$, for some $r \in R$ and $m \in M$, then either $m \in N$ or $r^n m \in N$ for some positive integer n. [8], so every prime submodule of M is primary.

Recall that an R-module M is said to be satisfy the ascending chain condition (Acc) if each the ascending chain of submodules of M terminates, [7].

The following results follows from [8].

Proposition (1-17)

If M satisfies (Acc) then every irreducible submodule of M is primary.

Proposition (1-18)

If M satisfies (Acc) then every irreducible submodule of M can be written as an intersection of a finite number of irreducible submodules of M. Therefore if M satisfies (Acc) it contains any primary submodules .If we combine propositions (1-17) and (1-18), we obtain the following result . Which appear in [8].

Proposition (1-19)

f the R-module M satisfies (Acc) , then every submodule of M can be written as an intersection of finite number of primary submodules .

Recall that a proper submodule N of M is called semi-prime if for every $r \in R$, $x \in M$, $k \in Z^{+}$, such that $r^{k} x \in N$. Then $rx \in N$, [4].

Recall that an R-module M is called a quasi-prime R-module if and only if ann_RN is a prime ideal in a ring R for each non-zero submodule N of M, [14].

Proposition (1-20)

Let N be an irreducible submodule of an R-module , then the following statements are equivalent :

1/ N is a prime submodule .

 $2\!/\,N$ is a quasi-prime submodule .

3/ N is a semi-prime submodule . [14]

2- Irreducible submodules in multiplication R-module

An element $r \in R$ is called irreducible element if it is a non-zero and non-unite and whenever r = a b, where $a, b \in R$, then either a or b is a unite of R, [8].

Definition (2-1)

An ideal I of a ring R is called irreducible if for each ideals I_1 and I_2 of R such that $I_1\cap I_2=I$, implies that either $I{=}I_1$ or $I{=}I_2$, [6].

Proposition (2-2)

Let R be an integral domain . Then every prime element is an irreducible

Proof: Let $p \in \mathbb{R}$ is a prime element, since $(P) \neq 0$, and since $(\overline{P}) \neq \mathbb{R}$.

We conclude that p is not a zero and not a unit.

Suppose p=ab where a,b $\in \mathbb{R}$. Then either $a \in (\overline{P})$ or $b \in (\overline{P})$, let $a \in (\overline{P})$, we can write a=pd. Then p=ab =pdb, and since R is an integral domain, and $(\overline{P}) \neq 0$. Thus db =1; that b is a unit of R. Therefore p is an irreducible element.

Recall that an R-module M is called a multiplication if for each submodule N of M, there exists an ideal I of R, such that N = I M, [5]. One can easily show that, if M is a multiplication module, then N(N : M)M for every submodule N of M.

Recall that a multiplication of two elements x , y \in M , then the cyclic submodules Rx and Ry we have some ideals I and J of R , such that Rx =IM and Ry =JM, and so xy=(Rx) (Ry) = (IM) (JM) = (I.J)M , [2]. Recall that N and L are submodules of multiplication R-module M is called a multiplication of submodules in a multiplication R-module , if there exist ideals I and J of a ring R , such that N = IM and L=JM .Hence the multiplication of N and L is defined as , NL=(IM) (JM) =(IJ)M ,[12] .

Lemma (2-3)

A submodule N of an R-module M is a prime if and only if for some submodules L and K, such that L K \subseteq N, implies that either L \subseteq N or K \subseteq N, [2].

Proposition (2-4)

If M is a multiplication R-module , and R is a Notherian ring . Thus each submodule of M can be written as an intersection of a finite number of irreducible submodules , [13].

Proposition (2-5)

Let N be a submodule of a multiplication R-module M. Then N is irreducible ideal of aring R , [13].

It is clear that each prime ideal of aring R is irreducible ideal. Hence we get the following result. **Proposition** (2-6)

Let M be a multiplication R-module, then each prime submodule of M is irreducible, [13].

Recall that aring R is called a regular if and only if for each $x \in R$, there exists $y \in R$ such that x = xyx, [10].

Proposition (2-7)

Each irreducible ideal in a regular ring is a prime,[7]. From the privuo results, we can get the following result.

Proposition (2-8)

Let R be a regular ring, and let M be a multiplication R-module. If N is submodule of M, then N is irreducible if and only if N is prime submodule, [13]. **Proposition (2-9)**

Let M be a multiplication R-module , and let N be a submodule of M. Then N is an irreducible submodule if and only if (N:M) is an irreducible ideal .

But N is an irreducible submodule , thus either $N=I_1M$ or $N=I_2M$. Its mean that either $I_1 \subseteq (N:M)$ or $I_2 \subseteq (N:M)$, so either $I_1=(N:M)$ or $I_2_{=}(N:M)$.

Therefore (N:M) is an irreducible ideal .

Conversely ; Suppose (N:M) is an irreducible ideal , and suppose there exist submodules N_1 and N_2 of M, such that $N=N_1\cap N_2$. Thus $(N:M)=(N_1\cap N_2:M)=(N_1:M)\cap (N_2:M)$, since (N:M) is an irreducible ideal . thus either $(N_1:M)=(N:M)$ or $(N_2:M)=(N:M)$. And since M is a multiplication R-module , thus

either $N_1 = N$ or $N_2 = N$. Therefore N is an irreducible submodule .

3- Basic properties of strongly irreducible submodules

In this section we list some basic properties concerning strongly irreducible submodules .

Definition (3-1)

A submodule N of an R-module M is called strongly irreducible if for each submodules N_1 and N_2 of M, such that $N_1 \cap N_2 \subseteq N$, implies that either $N_1 \subseteq N$ or $N_2 \subseteq N$, [4].

An ideal I of a ring R is called strongly irreducible if for each ideals I₁ and I₂ of R such that I₁ \cap I₂ \subseteq I, implies that either I₁ \subseteq I or I₂ \subseteq I, [6]. An ideal of a ring R which is strongly irreducible submodules is called a strongly irreducible ideal, [4].

A ring R is said to be arithmetical if for all ideals I, J and K of R, we have $(I + J) \cap K = (I \cap K) + (J \cap K)$. This property is equivalent to the condition that for all ideals I, J and K of arithmetical ring R, we have $(I \cap J) + K = (I + K) \cap (J + K)$.

If R is an arithmetical ring , then I is an irreducible ideal if and only if I is a strongly irreducible ideal , [6].

Theorem (3-2)

Let R be arithmetical, and let M be an R-module . N is a submodule of M. Then N is an irreducible submodule if and only if N is a strongly irreducible submodule.

Proof : Assume that N is strongly irreducible submodule, there exist submodules N_1 and N_2 of M, such that $N_1 \cap N_2 \equiv N$. Then $N_1 \cap N_2 \subseteq N$ and N $\subseteq N_1 \cap N_2$. Since N is strongly irreducible , thus $N_1 \subseteq N$ or $N_2 \subseteq N$. And since $N \subseteq N_1 \cap N_2$, implies that $N \subseteq N_1$ and $N \subseteq N_2$, hence either $N = N_1$ or $N = N_2$. Therefore N is an irreducible submodule of M.

Conversely ; Assume that N is an irreducible submodule of M, there exist submodules N_1 and N_2 of M, such that $N_1 \cap N_2 \subseteq N$. Since N is an irreducible submodule of M, thus $N_1 \cap N_2 = N$, implies that either $N = N_1$ or $N = N_2$, So $N_1 \subseteq N$ or $N_2 \subseteq N$. Therefore N is a strongly irreducible submodule of M.

Proposition (3-3)

If M is a Noetherian R-module , and N is a strongly irreducible submodule of M. Then N is a primary submodule , $\left[4 \right]$.

Proposition (3-4)

If N is a strongly irreducible submodule of an R-module M, such that Rm \cap Rn \subseteq N, where Rn and Rm are cyclic submodule of M, then either m \in N or n \in N.

Proof : Assume N is strongly irreducible submodule , with $Rn \cap Rm \subseteq N$, where Rn and Rm are cyclic submodules of M , and let $Rn \not\subset N$, its mean that n

 \notin N, since N is strongly irreducible submodule, and

since $n \not\in N$. Hence $Rm \subseteq N$, so $m \in N$.

Propositon (3-5)

Let N and L are submodules of an R-module M , such that L is contained in N . If N is a strongly irreducible submodule , then N/L is a strongly irreducible submodule of M/L , [4].

Propositon (3-6)

Suppose N and L are submodule of an R-module M. Then N is a strongly irreducible submodule if and only if L + N is a strongly irreducible submodule.

Proof : Suppose L + N is a strongly irreducible submodule , there exist submodules N₁ and N₂ of M , such that N₁ \cap N₂ \subseteq N. Then we get (L+N₁) \cap (L+N₂) = L+(N₁ \cap N₂) \subseteq L+N , since L+N is a strongly irreducible submodule . Thus either L+N₁ \subseteq L+N or L+N₂ \subseteq L+N , implies that either N₁ \subseteq N or N₂ \subseteq N. Therefore N is a strongly irreducible submodule .

Conversely; clear.

Corollary (3-7)

Let N and L are submodules of an R-module M.

(1) If N and L are strongly irreducible submodules then N+L is a strongly irreducible .

(2) If N is strongly irreducible , and N+L is strongly irreducible . Then L is strongly irreducible .

Proof: (1) Clear,

(2) Suppose N+L is strongly irreducible submodule . Since N is a strongly irreducible submodule , hence there exists submodules N₁ and N₂, such that N₁ \cap N₂ \subseteq N, implies that either N₁ \subseteq N or N₂ \subseteq N, to prove L is also strongly irreducible submodule , suppose there exist submodules L₁ and L₂, such that L₁ \cap L₂ \subseteq L .

$$\begin{array}{cccc} (N_1 \cap N_2) + (L_1 & \cap L_2) & _[N_1 + (L_1 & \cap & L_2) \\)] \cap [N_2 + (L_1 \cap L_2)] _ [(N_1 \bot L_1) \cap (N_1 \bot L_2)] & \cap & [(N_2 & \bot & L_2)] \\ \end{array}$$

If $N_1 \subseteq N$, implies that either $L_1 \subseteq L$ or $L_2 \subseteq L$. also either $N_2 \downarrow L_1 \subseteq N + L$ or $(N_2 \downarrow L_2) \subseteq N + L$. . If $N_2 \subseteq N$ implies either $L_1 \subseteq L$ or $L_2 \subseteq L$.

Therefore L is strongly irreducible submodule.

The following result follows direct from the prevue propositions. So the prove of them are similar to the prevue proposition, hence we omitted.

Corollary (3-8)

Let N and L are submodules of an R-module M . such that N is strongly irreducible submodule. Then L is strongly irreducible submodule if and only if N + L is strongly irreducible submodule .

Proposition (3-9)

Let N and L are submodule of an R-module M , if $N\cap \ L$ is a strongly irreducible submodule. Then N is a strongly irreducible submodule .

 $\begin{array}{l} Proof: Suppose \ there \ exist \ submodules \ \ N_1 \ and \ N_2 \ of \\ M \ , \ such \ that \ N_1 \ \cap \ N_2 \ \sqsubseteq \ N \ . \ Since \ \ (N_1 \ \cap \ L \) \cap \ (N_2 \ \cap \ N_2 \$

The converse is not true in general, unless we put some condition as we see in the following proposition.

Proposition (3-10)

Let N and L are submodules of an R-module M, such that $N \,{\subseteq\,} L.$ Then N is a strongly irreducible submodule if and only if $N \,\cap\, L$ is a strongly irreducible submodule .

Proof : Clear .

Corollary (3-11)

Let N and L are submodules of an R-module M , such that L is a strongly irreducible submodule . If N \cap L is a strongly irreducible submodule , then N is a strongly irreducible submodule .

Corollary (3-12)

Let N and L are submodules of an R-module M, such that $N \subseteq L$ and L is a strongly irreducible submodule . Then N is a strongly irreducible submodule if and only if $N \cap L$ is a strongly irreducible submodule.

Proposition (3-13)

Let N and L are submodules of an R-module M , if $N \bigcup L$ is a strongly irreducible submodule. Then N is

a strongly irreducible submodule .

 $\begin{array}{l} \textbf{Proof: Suppose there exists submodules N_1 and N_2 of M, such that $N_1 \cap N_2 \subseteq N$. Since $(N_1 \cup L$) \cap $ \end{tabular} \end{array}$

 $(N_2 \cup L) = (N_1 \cap N_2) \cup L \subseteq N \cup L$, and since $N \cup L$ is a strongly irreducible submodule. Thus either

 $N_1 \cup L \subseteq N \cup L$ or $N_2 \cup L \subseteq N \cup L$, implies that either $N_1 \subseteq N$ or $N_2 \subseteq N$. Therefore N is strongly irreducible submodule .

The converse of the proposition (3-13) is not true in general , unless we put some condition as we see in the following proposition .

Proposition (3-14)

N and L are submodules of an R-module M , such that $L \subset N.$ Let

Then N is a strongly irreducible submodule if and only if $N \mid |L$ is a strongly irreducible submodule .

Proof : Clear .

Corollary (3-15)

Let N and L are submodules of an R-module M , such that L is a strongly irreducible submodule . If N $_{\parallel \parallel}L$

is a strongly irreducible submodule , then N is a strongly irreducible submodule . Corollary (3-16)

Let N and L are submodules of an R-module M, such that $L \subseteq N$ and L is a strongly irreducible submodule . Then N is a strongly irreducible submodule if and only if N $\bigcup L$ is a strongly irreducible submodule .

The following corollaries follow directly from the previous proposition .

The proof of the following corollaries is similar to the last proposition , hence we omitted .

Corollary (3-17)

Let N and L are submodules of an R-module M , If N is a strongly irreducible , and N $_{\bigcup}$ L is irreducible submodule . Then L is strongly irreducible submodule .

the following result is given in [4].

Proposition (3-18)

Each prime submodule of multiplication R-module is a strongly irreducible .

Proof : Suppose N is a prime submodules of M , and suppose N₁ and N₂ are submodules of M , such that N₁ \cap N₂ \subseteq N , but N₁ \subset N and N₂ \subset N . Since M is a multiplication R-module , so we can write N₁ = I₁ M and N₂ = I₂ M , for some ideals I₁ and I₂ of a ring R . So there exist a₁ \in I₁ and a₂ \in I₂ , so m₁ , m₂ \in M , such that a₁m₁ \in N₁ and a₂m₂ \in N₂ , with a₁m₁ \notin N and a₂m₂ \notin N . Hence a₁a₂m \in N₁ \cap N₂ , implies that a₂M \subseteq N , since N is a prime submodule of M . Thus a₂m₂ \in N , which is contradiction . Therefore N₁ \subseteq N or N₂ \subseteq N , thus N is strongly irreducible submodule .

4- Pseudo irreducible submodules .

In this section , we shall study pseudo irreducible submodules in multiplication $R\mbox{-}module$.

Definition (4-1)

Let M be a multiplication R-module , a proper submodule N of M is called pseudo irreducible if N = LK , with L+K = M for any submodules L and K of M , then L = M or K = M, [11].

And an ideal I of a ring R is called pseudo irreducible if one can not write I = JK with J+K = R where I \neq R , J \neq R be ideals of R , [11].

Our starting point is the following result is given in [11].

Proposition (4-2)

Let M be a finitly generated faithful multiplication R-module. Then the submodule N of M is pseudo irreducible, if and only if (N:M) is pseudo irreducible ideal in aring R.

Proposition (4-3)

Let M be a finitely generated faithful multiplication R-module , and let N be a submodule of M. Then N is a pseudo irreducible if and only if I is a pseudo irreducible ideal in a ring R , where N = IM,

Proof: suppose N is pseudo irreducible submodule of M and I = JK , where I and J are maximal ideals of R . Then N = IM = (JK)M = (JM) (KM) and we get M = RM = (J+K)M = JM + KM . Since N is pseudo irreducible we have JM=M or KM=M. And since M

is faithful we get J = R or K = R. Thus I is pseudo irreducible ideal .

Conversely ; suppose the ideal I is pseudo irreducible in R , and suppose there exist submodules L_1 and L_2 of M , such that $L_1 \cap L_2 = N$ and $L_1 + L_2 = M$. Since M is a multiplication R-module , there exist ideals I_1 and I_2 of R , such that $L_1 = I_1 M$ and $L_2 = I_2 M$. Then we get $N = L_1 L_2 = (I_1 M) (I_2 M) = (I_1 I_2) M$. Hence $M = L_1 + L_2 = I_1 M + I_2 M = (I_1 + I_2) M$. Since I is pseudo irreducible ideal , we obtain $I_1 = R$ or $I_2 = R$ that is $L_1 = I_1 M = R M = M$ or $L_2 = I_2 M = R M = M$. Therefore N is pseudo irreducible submodule of M .

Now to study the relation between pseudo irreducible submodules and pseudo prime submodules. First we must defined pseudo prime submodule .

References

1/ Abd El-Bast Z . , Smith PF (1988) . $\underline{\textbf{Multiplication}}$ $\underline{\textbf{Modules}}$, Comm. Algebra , 16 (4) : 755 – 779 .

2/ Ameri R (2003). <u>On The Prime Submodules Of</u> <u>Multiplication Modules</u>, Int . J. Math . Sci. , 27: 1715 – 1724 .

3/ Anderson , F. W. ; Fuller , K. R . , <u>**Rings And**</u> <u>Categories Of Modules</u>. Spring – Verlag (1974).

4/ Atuni , S. E. , <u>Strongly Irreducible Submodules</u>, Bull. Korean Math. Soc. 42 (2005), No. 1 , pp. 121 – 131 .

5/ Barnared , A. , Multiplication Modules , J of Algebra , Vol. 71 (1981) , pp . 174-178 .

6/ Heinzer , W. J. ; Ratlif , L. J. And Rush, D. E. , StronglyIrreducible Ideals Of a Commutative Ring , J. Pure Appl. Algebra 166 (2002) , 267 - 275.

7/ Kasch, F.; <u>Modules And Rings</u>. Academic Press, London, New York, (1982).

8/ Larsan, M. D., P. J<u>. Mccarlthy; Multiplicative</u> Theory Of Ideals , Academic Press , New York . And London .(1971) . Recall that a proper submodule N of the multiplication R-module M is called pseudo prime submodule if $N_1 + N_2 = M$ and $N_1 N_2 \subseteq N$ for any submodules N_1 and N_2 of M, then either $N_1 \subseteq N$ or $N_2 \subset N$, [11].

Proposition (4-4)

Let N be a submodule of a multiplication R-module M . If N is pseudo irreducible submodule , then N is pseudo prime .

Proposition (4-5)

Let M be a cyclic R-module , and let N be a submodule of M , with the property if x , y \in M with x y \in N , and (x) + (y) = M , then x \in N or y \in N . Then N is pseudo irreducible submodule of M .

9/ Lu . C . P . ; Prime Submodules Of Modules , Commtent Mathematics, University Spatula , 33 (1988) , 61-69 .

10/ Mahmood , R . D. ; <u>On Pure Ideals And Pure</u> <u>Submodules</u> , University of Mosul (2000) .

11/ Oral , H . ; <u>Pseudo – Prime And Pseudo –</u> <u>Irreducible Submodules</u>, Int. Journal Of The Physical Seiences Vol . 5 (13) , (2010) .Pp . 1948 – 1951 .

12/ Smith , P . F . ; <u>Some Remarks On</u> <u>Multiplication Modules</u> , Arch . Math . J . (1988) , 223 - 235.

13 / احمد ، عبد الرحمن عبود ، موديولات جزئية في موديولات

جدائية ، رسالة ماجستير ، جامعة بغداد (1992) .

14 / حسن ، منتهى عبد الرزاق، الموديولات شبه الاولية و

الموديولات الجزئية شبه الاولية ، رسالة ماجستير ، جامعة بغداد ، (1999) .

المقاسات الجزئية الغير قابلة للتحليل والمقاسات الجزئية الغير قابلة للتحليل بقوة

ندی خالد عبد الله الدبان

قسم الرياضيات ، كلية التربية ، جامعة تكريت ، تكريت ، العراق (تاريخ الاستلام: 20 / 9 / 2011 ---- تاريخ القبول: 13 / 3 / 2012)

الملخص

لتكن R حلقة ابدالية بمحايد ، و لتكن M مقاسا ايمن احادي معرف على الحلقة R . يتناول الباحث موضوع المقاسات الجزئية الغير قابلة للتحليل ، لما لها من دور هام في كثير من المقاسات الجزئية ، منها على سبيل المثال المقاسات الجزئية الاولية والابتدائية وغيرها بالاضافة الى ذلك علاقتها بالمثالي (N:M) في الحلقة R اذا كان N مقاس جزئي من المقاس M .