P- ISSN 1991-8941 E-ISSN 2706-6703

2011,(5), (3) :50-56

Effects of Parallel Processing Implementation on Balanced Load-
Division Depending on Distributed Memory Systems

Subhi R. M. Zebari*

Journal of University of Anbar for Pure Science (JUAPS) Open Access

52\
5

Numan O. Yaseen**

*Foundation of Technical Education/Arbil - Amedi Technical Inst.

**Amedi Education Directory.

ARTICLE INFO

Received: 29 / 5 /2011
Accepted: 15/ 11 /2011
Available online: 14/6/2012

DOI: 10.37652/juaps.2011.44313
Keywords:
Parallel Processing Implementation ,

Balanced Load-Division ,
Distributed Memory Systems.

ABSTRACT

Complex problems need long time to be solved, with low efficiency and
performance. Therefore, to overcome these drawbacks, the studies went toward the
approaches of breaking the problem into independent parts, and treating each part
individually in the way that each processing element can execute its part of the
problem simultaneously with the others.Parallel processors are computer systems that
consist of multiple processing units connected via some interconnection network and
the software needed to make the processing units work together. Parallel processing
is divided into three types; Shared, Distributed and Hybrid memory systems.In this
paper, distributed memory systems addressed depending on client/servers principles,
the network can contain any number of nodes; one of them is a client and the others
are servers. The algorithms used here are capable of calculating the (Started,
Terminated, Consumed -CPU and Total Execution- times and CPU usage) of servers
and the Client's -CPU and total execution- times. This work addresses an improved
approach for problem subdivision in balanced form and design flexible algorithms to
communicate efficiently between client-side and servers-side in the way to overcome
the problems of hardware networking components and message passing problems.
We addressed Matrix-Algebra case-study to display the effect of balance load-
division for this approach. The obtained results are checked and monitored by special
programming-checking-subroutines through many testing-iterations and proved a
high degree of accuracy. All of these algorithms implemented using Java Language.

Introduction

The MP is expected to reach faster than the

To speed-up the execution of a program, the
program divided into multiple fragments that can be
executed simultaneously, each on its own processor.
A program be executed across n processors might
execute n times faster than it would using a single
processor [1].

A Parallel System is a combination of a parallel
algorithm and a machine on which it operates. Both
factors count with several variables. Parallel
algorithms can be specified using a wide range of
models and paradigms. Supporting architectures, even
though they all count with more than one processor,
they can be different in several dimensions, such as in
a control mechanism, address space organization,
processors granularity and interconnection
network[2].

The main argument for using Multi-Processors
(MPs) is to create powerful computers by simply
connecting multiple processors.

* Corresponding author at: Foundation of Technical
Education/Arbil - Amedi Technical Inst, Irag.E-mail address:
subhizebari@yahoo.com

50

fastest single-processor system. In addition, the MP
consists of a number of single processors expected to
be more cost-effective than building a high-
performance single processor. Another advantage of
the MP is fault tolerance. If a processor fails, the
remaining processors should be able to provide
continued service, albeit with degraded performance

[3].

Parallel Processing

Parallel Processing (PP) is certainly not a new
concept. For decades, performance research has
focused on reducing the time it takes to execute
floating-point and other operations related to solving
numerically intensive algorithms used in such fields
as structural mechanics and fluid dynamics. There are
three distinct areas of PP: server-side functions, server
process client-side functions and client process object
rendering [4].

Uses or applications for PP come from two
different areas; on one hand, there are high
performance systems for speeding up compute-intense

mailto:subhizebari@yahoo.com

P- ISSN 1991-8941 E-ISSN 2706-6703
2011,(5), (3) :50-56

calculations. These can be executed on traditional
supercomputer systems or on large clusters of
workstations. On the other hand, there are embedded
control systems on sequential hardware, which
requires Parallel Programming concepts to control
concurrent external actuators or internal processes. PP
is common place today under standard operating
systems such as Linux and Windows, with parallel
software design becoming more and more important
[5]. Although the use of multiple processors can
speed—up many operations, most applications cannot
yet benefit from parallel processing. Parallel
Processing is appropriate only if: (The application has
enough parallelism to make a good use of multiple
processors. In part, this is a matter of identifying
portions of the program that can execute
independently and simultaneously on separate
processors) [1].

Taxonomy of Computer Architecture
In 1996, Michael J. Flynn created one of the

earliest classification systems for parallel (and
sequential) computers and programs, now known as
Flynn's taxonomy [6]. Flynn’s classification scheme
based on the notion of a stream of information. Two
types of information flow into a processor:
instructions and data. The instruction stream defined
as the sequence of instructions performed by the
processing unit. The data stream defined as the data
traffic exchanged between the memory and the
processing unit [3]. Parallel computers are classified
along data and instruction axes data stream as bellow
[71:

a. Single Instruction Single Data (SISD).

b. Single Instruction Multiple Data (SIMD).

c. Multiple Instruction Single Data (MISD).

d. Multiple Instruction Multiple Data (MIMD).

Parallel Programming and Implementation

One way to solve a problem fast is to break the
problem into pieces, and arrange for all the pieces to
be solved simultaneously. The more pieces, the faster
the job goes-up to a point where the pieces become
too small to make the effort of breaking-up and
distributing worth the bother. These simple, obvious
observations underlie all of parallel programming. A
"parallel program™ is a program that uses the
breaking-up and handing-out approach to solve large
or difficult problems [8]. Parallel programs are
intended for execution on many processors
simultaneously. Each processor works on one piece of

Journal of University of Anbar for Pure Science (JUAPS)

51

Open Access

the problem, and they all proceed together. In the best
case, n processors focused on a single problem will
solve it n times faster than any single processor [8].

Parallel programming is a viable method for
solving computationally intensive problems in various
fields. In electrical engineering, for instance, solving
power systems network equations is an area where
parallel algorithms are being developed and applied.
A popular approach to implementing parallel
algorithms is to employ a cluster or a network of
parallel computers. With the advances made in
computer hardware and software, it is now quite a
simple matter to configure a computer network and
program it to solve problems cooperatively. The
parallel software simulation is interesting application
that has been implemented on a computer cluster. The
common programming paradigm for this type of
parallel algorithm is either multiple program multiple
data or single program multiple data [9]. Because of
the importance of improving the performance and the
quality of the solutions, researchers have proposed
different approaches to parallelize multi-objective
evolutionary algorithms [10].

Client/Server Principles

Client/server computing enables the use of low-
cost hardware and software, increases local autonomy
and ownership of data, and offers better performance
and higher availability. It is used to build many
different types of application, from corporate
distributed online transaction processing and data
warehousing applications, to departmental and
groupware systems. These applications often involve
a wide range of different hardware and software;
powerful machines, departmental servers, desktop
systems, or even network computers. Some people
argue that the advent of Internet/Intranet and Web
technology signal the demise of client/server, but
closer examination shows that this technology is just
another form of client/server computing. In fact, many
organizations are interested in connecting new Web-
based applications to existing client/server systems.
Client/server, therefore, is likely to be with us for
some time to come, and will be used for developing
an ever-increasing set of complex and interconnected
applications [11].

Early implementers of client/server applications
focused primarily on fast application development,
and on the cost savings provided by the use of cheaper
hardware and software. The first client/server systems
paid little attention to good architecture design,

P- ISSN 1991-8941 E-ISSN 2706-6703
2011,(5), (3) :50-56

systems management, or even performance.
Experience has shown that designers and developers
ignore these issues at their peril [11]. In a document-
partitioned index, each index server is responsible for
a subset of the documents in the collection. Each
incoming user query is received by a front-end server,
the receptionist, which forwards it to all n index
nodes, waits for them to process the query, merges the
search results received from the index nodes, and
sends the final list of results to the user [12].

The System-Structure and Proposed Algorithms

In a distributed memory system, each process
has its own address space and communicates with
other processes by message-passing (sending and
receiving messages). Each processor has its own local
memory; the processors connected to each other. In
distributed memory system, there is no limitation on
number of processors and memory modules because
the servers are connected as cluster-network, which
can be extended to any required number.

In this work, number of servers in the cluster-
network is 16-servers of identical properties. The
proposed algorithms have two main parts; the first one
relates to hardware of the work, and the second is
about the software that guides these hardware
components and manages the passing of messages
between client-side and servers-side.

Hardware Part

The hardware part constructed of client-side
and servers-side, this network is designed according to
star topology. In such works, the properties of
computers are important; either these properties will
be deferent from one computer to another, or they will
be the same, which means having identical-computers.
In fact, for more accurate-results with acceptable
comparisons, it is preferable to depend on identical-
computers. Therefore, in this work all computers for
both sides are identical completely, which have the
following properties: (CPU: Core 2 Due, Speed: 2.6
MHz, RAM: 2 GB, and HD: 120 GB).

Client-side has only one host, which controls
the sending of message passing operations to other
side. Client-host contains the main program that can
treat with all server-hosts individually, subgroups, or
all of them. The secondary storage of the client-host
stores the original data related with the addressed case
study that must be send to other side, also stores the
receiving results calculated by the servers-side.

Journal of University of Anbar for Pure Science (JUAPS)

52

Open Access

Servers-side consists of sixteen hosts connected
in the way to get a cluster of 16-sockets. Each socket
contains a program constructed from many sub-
programs and functions that have the ability of
receiving data, making the required processing,
calculating the results, and then returning them to the
client-side. Servers-side can stores the received data
and the determined results on their secondary
storages, or returns them directly to client-side.

Software Part

As the hardware part consists of two sides, the
software part also consists of two sides, which are
client-side-software and servers-side-software.

Client-side-software represents the main-
program, which is responsible of the following tasks:

1. Detecting number of connected server-sockets at
other side.

2. Deciding how many server-sockets will receive
the messages from the client.

3. Sending control-messages to server-sockets.

4. Sending related data (as message-text or as data-
files) to server-sockets.

5. Monitoring all related server-sockets in case if
they send any results or any query-messages.

6. Responding the query-messages received from
servers-side.

7. Receiving the calculated results by server-sockets
and accumulating them to get the final results.

8. Making sure that all sending or receiving
messages and data are stored on the client-side
secondary-storage.

Servers-side-software represents the programs
that service the commands issued from the main
program (i.e. client program). The software at each
server-host is responsible of the following tasks:

1. Detecting the connection status of the client-host.

2. Deciding which sockets to work according to
number of server-sockets sent by the client, taking
into consideration that may be several of these
server-sockets be out of work for certain numbers
of server-sockets, for example; if number of
server-sockets is 2, then only servers (1 & 2) will
work and the servers (3 to 16) will be out of work.

3. Receiving the control-messages from client-host
and guide the execution of the server-program to
apply the client-requirements.

4. Receiving the related data (as message-text or as
data-files) from client-host.

5. Monitoring client-host in case if it sends any
immediate command, message, or data.

P- ISSN 1991-8941 E-ISSN 2706-6703
2011,(5), (3) :50-56

6. Run the appropriate-subroutines according to the
requirements of client-host and calculate the
correct results, knowing that each server will treat
with that part of data that selected for it by the
client-host.

7. Sending the calculated results to client-host,
knowing that these results will be arranged in a
form to be managed and assembled by the client-
host in a suitable manner.

8. Each server-program contains all subroutines of
the same case study. This gives the server-program
the ability of treating with any selected part of data
and chose the appropriate subroutine to calculate
the required results.

Messages Transferred Between Client-side and
Servers-side

There are two types of messages related to this
approach of PP which are (control-messages and data-
messages).

Control Messages:

Control messages issued by client-host and sent
to server-sockets. These messages control the
management of the processing overall the network
and monitor the performance of the hosts especially
server-hosts. This work uses the following control
messages:

1. Connection status of each server-socket, either it is
ready or not.

2. Selecting number of server-sockets to participate in
the task.

3. Selecting and/or deselecting any server-socket to
be ready for communication with client-side.

4. Sending the starting-signal and/or termination-
signal for any selected server-socket.

Data Messages:

Data messages; issued by client-side and/or
servers-side. These messages carry specific data,
which help running processes at server-sockets if the
messages are issued by client-host. Also, may be
representing specific results if the messages issued by
server-sockets. This work uses the following data
messages:

1. Starting task time (issued by client).

2. Starting CPU time (issued by each server).

3. Size of data-arrays that must be generated by
client then used by servers).

4. Names of files containing these data-arrays used
by both client-side and servers-side.

Journal of University of Anbar for Pure Science (JUAPS)

53

Open Access

5. Starting running time (issued by each server).

6. Size of data-arrays that must be generated by
servers after processing and used by client later for
rearrangement.

7. Names of files containing these data-arrays to be
used by both client-side and servers-side.

8. Terminating CPU time (issued by each server).

9. Consumed CPU time (issued each server).

10.Consumed running time (calculated by each
Server).

11.CPU usage percentage ratio (calculated by each
Server).

Matrix Algebra Case-Study

Matrix algebra is the famous type case-study
related to PP. However, in this work, there are sixteen
servers used and it can be N-servers according to the
capacity of the laboratory of these experiments as
shown in Figure (1).

(@)
=

.
:
2
;
:
2
:
S ER N R EN EN R R N Y A R R IR

(c) (e)

Server1

Seruerll

Server13?

Server13?

Server14

Server15

Server16

Figure (1): Cases of Matrix Algebra Algorithm. (a) One-
server. (b) two-servers. (c) four-servers. (d) eight-servers.
(e) sixteen-servers. Number of servers=2", where m= {0, 1,

2,3 and 4}

The algorithm is designed to treat with two
original matrices of square order (4096, 4096) as
maximum depending on the host's RAM. This means
that each matrix will contains (16,777,216) elements.
Therefore, there will be (33,554,432) elements
divided into sub parts (sub-matrices) to perform the
(Addition, Subtraction and Multiplication) operations
using (one, two, four, eight and sixteen) server-
sockets. Figure (2) represents a sample of load-
division among 16-servers in balance form.

o — - - _
Agerverl server2 | server3 | serverd, ,{cr\'crllscmﬂ server3 serverdy ﬂ'rvcrl server2 serverd 'L‘TVEM

SEIVers [server6 | server?| serve§ servers servert |server7 [server§ servers servert server? [server§

Alserver? server10| serverll server12(+B kerver 9 ferver10 ferverllgerver12 [=C erver9 serverlOserverllgerver]2

serverl3|serverlq serverl5 | servel6 kerverl3 serverl4|serverl|servel6 serverl3 serverl4 serverlj servelf
/

) _ o SN A
Figure (2): Sample of load-division representation among
16-servers for Matrix Algebra Algorithm Case-Study

P- ISSN 1991-8941 E-ISSN 2706-6703
2011,(5), (3) :50-56

Results and Discussion

The obtained results are stored in tables and
plotted as shown in Figures (3 to 13). The results are
divided into two main groups; first one is related with
the average values of timing and usages for servers-
side which are represents the average of related times
or usages for all servers as an acceptable value to be
depended, these values are plotted as shown in
Figures (3, 4, 5, 8, 9 and 10), Figure (11) represents
the average of CPU-Usage for all servers and for all
sets of elements. The second group of the results is an
additional assessment of performance of this work in
the view of the latest returning results by the servers-
side which is named here as Maximum-Values. These
results are shown in Figures (6, 7, 12 and 13).

The results that represent the three subsets of
matrix orders {(64, 128, 256), (512, 1024) and (2048,
4096)} are plotted in three separated Figures which
are (3, 4 and 5) respectively, this arrangement is
dependent because of the high-gap of obtained-results
among these sub-sets which cannot be cleared in one
figure, these results are very acceptable.

The results of Figures (6 and 7) represent the
maximum consumed CPU time also are very
acceptable, in this case the results of orders less than
(512) which are small-loads are ignored because of
the instability of decreasing the time with the
increasing number of servers. This is applied also on
the results of Figures (12 and 13) that related with
maximum total execution-time of the program.

Results of Figures (8 to 10) represent total
execution-time of matrix-algebra operations which are
very acceptable.

Figure (11) illustrates the average CPU-usage
of all servers with all tested sets of matrix-orders; it
represents the relationship between CPU-usage and
number of servers to determine the Average CPU-
usage according to all cases of matrix-orders. It is
clear that CPU-usage is increasing with increasing of
the load for the same number of used-servers. It is
expected that for each certain number used servers,
the value of CPU usage will increase by increasing the
load. This is clear with the cases of high-number of
servers (i.e. > 2 servers), but for (< 2 servers) the
average of CPU-usage is unstable and may be the
changing is independent on this manner because the
value of CPU-usage is affected by any instance under-
running tasks depending on the computer status, also
may be the nature of the data that under-processing
effects on the value of CPU-usage.

Journal of University of Anbar for Pure Science (JUAPS)

54

Open Access

Conclusions

The main points arise from the research
employed in this paper can be summarized by the
following:

1. Distributed memory systems addressed depending
on client/servers principles with a network consists
of seventeen nodes one of them is a client and the
others are servers.

2. The algorithms wused here are capable of
calculating: the (Started, Consumed, and
Terminated) times for (CPU and total execution),
CPU usage of servers, and (CPU and total
execution) times for the Client.

3. The algorithms are designed in very active
programming-routines to get minimum loss of
spend-time through the running state (at both
Client and Servers sides).

4. Matrix Algebra Case-study is addressed, and there
are many general algorithms and other related
algorithms. All these algorithms are designed and
tested completely by this work.

5. The obtained results are checked and monitored by
special programming-checking-subroutines
through many testing-iterations and proved a high
degree of accuracy.

6. The results showed that parallel-processing
operations are ineffective and inefficient with
small load applications, and this efficiency is
growing with increasing the task load. So, the
highest load task will be implemented in high
efficiency and the lowest load task implemented
with low efficiency, taking in the consideration
number of servers used.

7. All depended algorithms in this work are built in
NetBean-Java Language.

Average of Consumed CPU Time

0.48 :I
0.45
0.4z A
0.39 A
o35 Number
033 of
0.20 A Elements
0.27 A
0.24 A
0.21 A
018
015 256

128

Time (Seconds)

012
0.08
0.06
0.03
0.00

T T T 1
1 2 4 k-] 16

MNumber of Servers

Figure (3): Average Consumed CPU Time for Matrix-
Algebra of (64, 128 and 256 Orders)

P- ISSN 1991-8941 E-ISSN 2706-6703
2011,(5), (3) :50-56

Average of Consumed CPU Time

Number
of
Element

EREEEEERERE NN

ORNWENG~NBOOR NG NG -0 DO R

512
1024

Time {Seconds)
il rinn inlninir nin i n i i
(f

T T T
k-] 16

"
M
s

Mumber of Servers

Figure (4): Average Consumed CPU Time for Matrix-
Algebra of (512, and 1024 Orders).

Average of Consumed CPU Time

Number
of
Elements
— 2048
—— 2096

Q T T T

Time (Seconds)
8

"
[
&
o
[
o

Number of Servers

Figure (5): Average Consumed CPU Time for Matrix-
Algebra of (2048, and 4096 Orders).

Max Consumed CPU Time

Number
of
Elements
—0512
— 1024

T T
8 16

Time (Seconds)

[=TRIXTPNNT L. TNT.)

-
TN R B R R B A A B AR B A

o
()

Number of Servers

Figure (6): Maximum Consumed CPU Time for Matrix-
Algebra of (512, and 1024 Orders)

1.682
1,572
1,462
1,352
1,242
1,133
1,022
912
802
692
582
472
362

Time (Seconds)

Max Consumed CPU Time
252

Number
of
Elements
— 2048
— 4056
R —

32 T T T 1
1 2 e 8 16

MNumber of Servers

Figure (7): Maximum Consumed CPU Time for Matrix-
Algebra of (2048, and 4096 Orders)

Journal of University of Anbar for Pure Science (JUAPS)

55

Open Access

Average of Total Execution Time

L X=1-]
0.50

0.81
a7z Number
0.63 of
Elements
0.54
—_—a
0.45
o038 128
0.27 2=e
0.18
0.09
000 +— T T
1 2 4 &

MNumber of Servers

Time (Seconds)

Figure (8): Average Total Execution Time for Matrix-
Algebra of (64, 128, and 256 Orders)

Average of Total Execution Time

Number
of
Elements
512
1024

T T 1
1 2 B 16

Time (Seconds)

MNumber of Servers

Figure (9): Average Total Execution Time for Matrix-
Algebra of (512 and 1024 Orders)

Average of Total Execution Time

Number
of
Elements
— 2048
— 4006

a T T T 1
B 16

Time (Seconds)

o
o
oo
TN I I T T B A B A

"
M
&

Number of Servers

Figure (10): Average Total Execution Time for Matrix-
Algebra o f (2048 and 4096 Orders)

Max Total Execution Time

Number
of
Elements
512
1024

T T T 1
2 4 B8 16

Time (Seconds)

000000000000000000000000000

e
R BN OO RMWELD
[slelsle/alelale]ele]olsle el a]u]e]ol o] ole]e el o] u]e o]

-

Number of Servers

Figure (11): Maximum Total Execution Time for Matrix-
Algebra of (512 and 1024 Orders)

Max Total Execution Time

1,795
1,685

1,575

1,465 -

1,355

1.2a5 Number
= 1.135 o of
2 19025 4 Elements
] 915
D 805 2048
v, 695 s08s
@ 585 —_—
E ars
— 355 o

255
145
35

s 1s

M
w4
B

Number of Servers

Figure (12): Maximum Total Execution Time for Matrix-
Algebra o f (2048 and 4096 Orders)

P- ISSN 1991-8941 E-ISSN 2706-6703
2011,(5), (3) :50-56

Average of CPU Usage

Number
of
Elements

64
——128

— 256

CPU Usage
8

— 512

—1024
2048

10 % A — 2006

T T T d
1 2 4 a8 16

Number of Servers

Figure (13): Average CPU-Usage for Matrix-Algebra of
(64, 128, 256, 512, 2048 and 4096 Orders)

References

[1] Hank Dietz,hankd@engr.uky.edu, "Linux Parallel
Processing HOWTO", http://aggregate.org/LDP/,
v2.0, 28-06, 2004.

[2] Marcelo R. Naiouf, Parallel processing. "Dynamic
Load Balance in Sorting Algorithms", University

Journal of University of Anbar for Pure Science (JUAPS)

Open Access

Arrchiittectturre and Parrallllell Soffttwarre
Desiign”, Book, University of Western Australia,
2010.

[6] Ameya Waghmari, "What is Parallel Processing",
BE SCE Roll No. 41, 2000.

[7] Mohamed Iskandarani and Ashwanth Srinivasan,
"Introduction To Parallel Computing, Notes on
Parallelization Strategies”, November 12, 2008.

[8] Nicholas Carriero and David Gelernter, "HOW TO
WRITE PARALLEL PROGRAMS", Book,
Massachusetts Institute of Technology, 1992.

[9] Y. F. Funga, M. F. Ercanb, Y. S mChonga, T. K.
Hoa, W. L. Cheunga and G.Singha, "Teaching
parallel computing concepts with a desktop
computer”, The Hong Kong Polytechnic
University, 2003.

[10] Dr. Tran, Van Hoai, "Parallel Computing",
HCMC University of Technology, 2010.

Nacional de La Plata, Facultad de Ciencias [11] Chris Loosley and Frank Douglas, "High-
Exactas, September 2004. Performance Client/Server”, John Wiley & Sons

[3] H. El-Rewini and M. Abd-El-Barr ," Advanced © 1998.
Computer Architecture and Parallel Processing”, [12] DRAFT, "Information Retrieval: Implementing
ISBN 0-471-46740-5 John Wiley & Sons, Inc, and Evaluating Search Engines", MIT Press, 2010.
2005.

[4] Eitan Frachtenberg, "Job Scheduling Strategies for
Parallel Processing”, JSSPP, June 17, 2007.

[5] Professor Thomas Braunl , "PARALLEL
PROCESSIING: Parrallllell Compultterr

dsjgall 5804 Aakail Ao Talaie] Jaall ¢ jlsiall anadil] Ao dujigiall dadlaall 3,5 cfyils

G 2ae G Asa b e Gland
E.mail:subhizebari@yahoo.com

iyl

L malie slaih cuad lah)all fggluall o3 (e (aldnll (AL s el 5oUS aa cJad S ogha iy) i ad Bakeal) JSLEAY
Lo S I A e A Gaadall Bad) 3 of (e dallee seaie US o Cunssan e Ta S dlileay cilifine olial) A
Liay alalsia Julys 4805 (3l (e lgodany ae Adasiye Aallaall 52asie clang o (g50n3 ilials dalil o)lal) cilalladll. alial
Lejpall ASHaall) I I dakl ¢ plodl A) aes Algiall Ladlaal L lgany poe doand Lallaal Glang doxad Aglhadl) ilgaall
lalas eagall o sae (f e (gt of oS A< cclaaldllf Jsanl) t50le e Talaiel deyall 58130 Aalaif Jols 5 canill 130 (. (dabially
LS5 Aalleal ang U (e A8 pxiaal) chagiiall (lallaieVl) Glea o 5,008 La Lastiod) cilae) o) cclable o Aadly Juanll 50
AL a3l LS5l Aalleall Sang U (e paienall ol ISy Ll (4S5l Aalead) Bang Dliiad dos) ALl SN ddwl) SlISS,
cilaalall- il Joanl=caila o 5ol JLaai &je ilaa) st paaraliy 4335k ings ACA il jylan grgia Joli Canill 134 . Jaaall
Jealpraii 5l (myal Cligiad) jon b Alls s Wls o ALl) JSLiey ASaal) e cilbole JSlie (o aldil) Sy Guny
O dlle da Cuiayg ALaaYI-ChS DA (e pasdll Lald due b galy ddaulss dliasioa)) Ll pand o el 130 G5l
Ml Aad aladials Wadun &5 Clie) lsal) 028 aues L 382])

56

http://aggregate.org/LDP/

