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Abstract

The definition of a Fractional differential type of equations is a branch of mathematics, science which
developed from derivative operators and the calculus integral traditional definition. It’s so much like the
fractional exponents were grown from the exponents having integer number. In this paper, will intend to
study the ways which are in turn used for solution approximation in fractional differential equations
through and how. This paper will also include the Riemann-Liouville differential operator for the basic
theorem of the initial value problem for the fractional differential equations. On the same regard, the
classical approach will be employed. The theory involving concepts such as local existence, inequalities,
global existence of solutions external solutions, comparison results going to be referred.
Keywords:Fractional Differential Equations, Riemann- Liouville operator, initial value problem,
Numerical Methods, Gamma function.
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I. Introduction

In spite of the availability of fractional calculus tools in many fields of sciences, the
fractional differential equations theory investigation is a corner of the research. In
contrast with the ordinary differential equations well-known theory and for modelling
some physical problems, the importance of the standalone and deep study of such
differential equations must be started such differential equations include Riemann-
Liouville operators (differential operators) of fractional carrying order g fall in the
domain of [0,1]. Fractional differential equations, basic theory which is involving the
differential operators of Riemann— Liouville of order between 0 and 1 will be discussed
in this paper. There are other ways to state the solution without deducing the
uniqueness and basic existence outcomes from the theory of fixed points, after
following the differential equations, classical proofing in a manner one can contrast
and compare the differences. Moreover, to understand the complexities that might
appear at the investigation. The inequalities fundamental theory may start at the
beginning, which makes the results of necessary comparison available which are
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important to be used in the coming study of quantitative and qualitative Properties of
fractional differential equations solutions. The existence of Piano’s local resulting
solution will be proven as we progress with prior underlying results and external
solutions will be considered existed. From this comparison then going to study the
global existence in the later part of this.

1. Strict type of inequalities
Assuming the IVP (initial value problem) as the question below:

Dix = f(t,x) , x(0)=xg......... [1]

When f belongs to C([0,T], R), DY x represents the derivative fractional of equation x.
Moreover, g value fall in domain [0,1] .Since function f was considered to be
continuous, then equation (1) will become equal to Volterra integral fraction as below:

x(t)—x0+r( ) f( $)471 f(s,x(s))ds, 0<t<T ...[2]

As this result, it is clear that the solution of equation (1) will be equivalent to that in
equation (2). The function of Gamma is termed to I'. At the following section, the
fundamental results are going to be demonstrated. These results are related to
inequalities fractional integral.

1. First method

Let w and v are belonging to C which falls in the ([0,T],R), and f is belonging to
([0,T],R * R)

v(t) < v(0) + ﬁf (t—9)"1f(s,v(s))ds ,

W(t)SW(0)+F( )f(t—s)q Lf(s,w(s))ds , 0<t<T

Because the fact, says not all the mequalltles is straight forward and it may include a
stack components and by assuming that that f (t,x) for any value of t, f cannot
decrease on x and also,

v(0) <w(0) ....... [3]

As a result can get:
v()<w(), 0<t<T ...[4]
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The proof: By assuming that the last formula is wrong. And since the formula in
[Diethelm & Ford, 2002] is in the continuous condition the function may exist at time
slot t 4 in the [0, T] domain.

v(t)=w(ty) , vi)<w(®) , 0<t<t; ... [5]

Assuming the strict nature of the inequality in equation 2 and be employing the non-
decreased results of equation f at 5. The following formulation can be stated.

1 t

w(ty) > w(0) + 5,

Yty — )T f(s,w(s))ds

ty
1 1
> v(0) + rq)of (t, — )77 f(s,v(s))ds = v(ty)

Which is a contradiction in view of (5). Hence the conclusion (4) is valid and the proof
is complete. The next result is for non-strict inequalities, which requires a one-sided
Lipschitz type condition.

Iv. Second method

Suppose the conditions in first method reserved with non-strict inequalities (2) &
(1). Assume further as the following:

f&,0) = ft,y) S ——@x—=y) ... 6]

1+t4

Whenever x > yand L > 0. then, v(0) < w(0) and L < I'(q + 1) implies

vi)<w() , 0<t<T ... [7]

The proof: Put w, as the following :
we(t) =w(t) +e(1+t?), forsmalle >0

Then can gain the below formulation:
we(t) = w(0) + L tl(t —5)q1 f(s,w(s))ds +e(1+t9) ....[8]

I'(g) 70

Thus, by calling Lipschitz condition for one side, then:
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L(1+ s9)

1T sa lds+et"

we(6) = we(0) + rlq)of(t — )71 [f(s, we(s)) — €

t t
1 eL
=W(0)+—f(t—s)q_1 s,w.(s))ds ——f(t—S)q_ldS-l-th
D) fowe®)ds =gy
.[9]
Now , since

t _ -1 _ 1 _ -1 — F(q) 1
Jyt=9)1ds =t [ (1-0)T""do = T+ D t9 , It can arrive at

we(£) > w,(0) + %q) [t =) f(s,we(s))ds ... [10]

Now, add the first method to the (9), (10) & (1) inequalities for getting v(t) < w(t),
0 < t< T.Asthe e > 0 becomes an arbitrary, as of that we can put the conclusion
that (7) considered as true and that is all.

Notation: Suppose the equation number six is changed by Lipshitz condition (single
side):

ft,x)—ft,y) <Llx—y) ,x=y, L>0 ... [11]

As a result, the second method will keep working (validity).

v. External conditions and local existence

In here, going to consider the external solution existence and also the local
existence for the case of equation IPV (1). Firstly the type of existence called Piano’s
existence is going to be discussed:

V1. Third theory

Assuming that f is fall into domain [R,Ry]; Ry = [(t,x): 0 <t <
aand |[x — x| < b], and on value R, suppose that f (t,x) < M. Thus the equation
IVP (1) related to the Eq. (1) The fractional differential must be owning one solution
at least, x(t) on0 < t < a, when

1
«=min |a |2 I'(g+ 1) ,0 < g < 1, T is become a Gamma function as it
M

was before.

The proof:
By assuming the function x(t) to continue, then can getting the following formulation:
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1

xe(t) = xO + l—-(q)

fot(t =) f(s,xc(s—€)ds ... [12]
On [0, a,], where @; = min (a, €) . we observe that

%(0) ~ 0] < o5 f (¢ =) (525 = )] ds < s f (t — )7 ds

Mad

=ran Sh e [13]

As a result of choosing “a;”. And if « > a;, we can exploit of the equation (12) to be
extended as the continuity of the functions are being. Such like [x(t) — x| < b is
kept.

re(ty) = Xe(62)] = = |y (62 = )T (5,365 = )dds = [y7(t, = )7 (5, (s —
e))ds|

= %q) |f0tl[(t1 — )37 — (t; — )7 f (s, xc(s — €))ds + fttlz(t2 — $)T £ (s, x. (s —
e))ds|

M ty _1 1 t, _
< r(q) |fo [(t; — )Tt = (t, — )97 ]ds + ft1 (t, — s)4 ds|
_ M
T T(g+1)

2M
r'(g+1)

[2(t, —t)T+t] —t]] < (t,—t)I <€, ... [14]

That may provide the § > | — t; + t, |, next by following equations 14 and 13 that
x(t) family will be forming the functions that are bounded uniformly equation
continuous. As an application provided by the theorem of Ascoli—-Arzela is showing
that the existence of en sequence such like en < ....< €, < ¢; All are approached to
zero as n is an approach to infinity. And the limn — infinity of x € n (t) is found
in uniform on the domain [a , —&]. And because of uniform continues nature of f, then
can start f(x en(—en + t),t) is tending to be uniform to f(x(t),t)) as n
approaches to infinity thus, by using term to term integration of the equation (12) the
following term isresulting :

1
xt)=x04+ —— | (r =509 F(s5. x(s5))ds.
I'g) Jo

By doing this we proved that x(t) is one of equation (1) solutions (IVP) and that’s all.
Now we can prove the external solution existence for the equation (1) IVP by
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employing the second and third methods.

VIl. Fourth Method

1
br'(g+1)]q

In the domainof @y > t > 0, min (a,[
2M+b

) = a, provided by assuming

that the equation (1) IVP has an existence solution on the third method. Hence the
f(x,t) forevery t it

IS not decreasing in term x.

The proof

The existence of the maximal solution will be only provided because of the minimal
solution case is much similarity, supposing that b/2 > € > 0, then the initial
conditions of the fractional differential equations will be considered:

Dix = flr.xy+e. x(l)=xy+e.

We observe that f. (r. x) = fir. x) + ¢ 1s defined and continuous on

b
R. = |:1]c_i:5-aund Y — (xp+ <€) 5;]

ra

The R, term is part of Ry and the (b/2)M > |f € (x,t)| on the term R, then can
deduce base on the third method that I\VVP equation (15) is having a solution X ( (,t) on
the interval of ay, <t < 0.

At this section, €e > ¢; > €, > 0, then can drive the following:

a0, ea) = x(0, ),

] !
x(r,e2) = x(0, e2) + —— [ (r —51‘3"'_4’;1[.&1‘{.&', e21ds,
Iig) Jo }

I i
x(r,e1) =x(0,€) + —— [ (1 —.ﬁ']"’"ll_f'u.'n.t'q.?,E|J} + 2 ]ds.
I'(g) Jo

And by applying the second method, then can get the following:
xit,ex) =xir,e1), 0 <r < op.

By considering the function [x (e, t)] family on the domain a, > t > 0. Then can get
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t 3 1
|x(r, e} —xi0.€)] = ;f (t —5) Y fo(s. x(s5, €))|ds < @M +b) [ (1 —s5)9 1as
I'(g) Jo 2 Jo
C2M 4+ an b
< =5 =b

= 2 T+ "2

The same is demonstrating the nature of the uniform boundary of the family and the
same can be applied when @y > t, > t; > 0 and:

(2M + b)

- (-7
Cig+1) 1)

|x (1. e) —x(r2, €)| = 2

Which is very much similar to the formula (14) by forming little changes; That is
proving the equation continuous nature of x (e, t) family. Hence, after the sequence en
is existing with en is approach to zero as n is approaching to infinity, also the
following uniform limit

nie) = lim x(t.ey) .o [16]
l—00

On the period of [, 0 ] is having an existence. Clearly the term x, = @(0). As it was
shown in the third method the f term is having continuous uniformly nature and
provide as arguments as before and showing that term @(t) is having a solution of the
equation (1) [ the VP equation].

Now we are going to show that the minimal solution requirement by B(t) from the
equation (1).

Supposing that x(t) may be a solution of the equation (1) at the period of @y, > t >
0. Then:

xp <= g+ e =x(0, e,

1 ! . .
Iy =xp+—— | (r— .r]"r"]l_a' (5.x(5)) + €]ds,
Uig) Jo

x(t,e) = xo+e+

ol
j (r — )7 V[ Fs. x(s, €)) + €]ds.

I'ig) Jo

By using the second method (Samko et al., 1993) we can have x(e,t) > x(t) on
the period of [a,, 0] of any 0 < €. The uniqueness which are existing on the maximal
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solution yield that x( (,t) is tending to be E(t) in the uniform fashion in the period
[y , 0] where the term € is approaching zero and by this, the proof is over.

viil. Global type of existence
Before driving on this context, the result yields from the last section need to be
compared.

IX. Fifth Method:

By supposing that m belongs to the C when C is on the domain (+R, [T, 0]), and
g when g in the domain of (u,t) is being not decreasing in any u and for every t as
well as the:

m(t) < m(0) +

: / (t—s) 7 g(s.m(s))ds, 0<r<T.. . .[17]
I (q) JO

And by assuming the maximal solution is being the term &(t) of the:

Dy =girw). w®=w=0 ... [18]

Which is in the period of (T, 0] such a like (0) > m(0) , so
that:

miry=nir). 0=7=T. [19]

The proof:

By the maximal solution definition for the term [&I(t), that will be sufficient for
concluding and proving the equation (19) such:

|.-"k

m(t) <u(r,e), O0=<¢e=T1, [20]
When the term of u in the domain of (e, t) is being one of the solutions that related to:
Diw=gtou)y+e. udy=u,+e. =0 ]21]

At this point by following the equation (21) such :

1 ! .
- A=l , :
e} = P — 5,08, ds.
Hir. el unp + ¢ + T'q) Ui 5) gis, uis, €))ds
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And by applying the second method, then can get the equation (20) and as a result of the
term

n(t) = lim.,,u(e, t) is a uniformly distributed on the period of T > T, > t > 0.
By this step, the proof is said to be done. At this point, the global existence can be
proven.

X. Sixth method:

Suppose that £ is fall in C which is distributed on the domain (R,R * (,0]) and
g is belong to C where C is distributed on the domain (+R,+R * (,0]) and finally g
of domain (u, t) is a not desirable in u for every t , moreover the following :

lf(t, o) <g(tlx]) ..cooennn. [22]

Another assumption can be stated that on x ( x, ,t) we may say that local existence is
assumed on this solution of

Dix =f(t,x) , x(0)=x5 ....... [23]

The term B(t) having a maximal solution of the following:

Dilu=g(t,bu) , u(0)=uy=0

Which is existing in the period of (,0]. Then the any larger in the value of
integration in the x(x,,t) solution existence of the equation (23) much similar to
uy > |xo| will be (,0].

The proof

Assume the term x(x,,t) being any solution of equation (23) just a like u, >
|xol|, that lie on the range infinity > [ > zero. And the § value is non increasable
any more. The set of m, |x(x,,t)| = m(t) for the range § > t > 0. And then by
employing the equation (22) assumption we can have the following:

m(t) < |xo| +

1 t
rq)!(t — )7 1g(s,m(s)) ds

Now, by applying the fourth method (comparative method), (Podlubny, 1999) the
following expression can be obtained:
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m(t) = [x(t,x)| <n() , 0<t<p

And because the term [(t) is considered to be existing on the domain
(infinity, zero]. The same is following that:

lgen)I <M, 0<t<p

By letting the domain 8 > t, >t; > 0. And by making use of the arguments is
looking like to estimable equation (14) and by employing the equation (22) and the M
value of the bounds of the termg, thus the following can be state:

2M
|x(t1, x0) — x(t2,x0)| < m (t; —t1)1

Let the term t,, t; approaching to - 8 as well as the Cauchy criterion is going to be
called, then it will bbe the following lim,_,_z x(x,,t) is existing and may define the
term lim,_,_p x(xo, t) = x(xo, ) and then new form of equation (1) IVP is going to be
considered as ffollows

Dix =f(t,x), x(B)=x(B x)

Now, the term of x(x,,t) is being possible to consider below the value of g by
assuming that local existence is there. Then the each solution of the equation (23) of
x(xo, t) is being existed ointhe range of (infinity, zero]. And by that our proof isover.

x1. Conclusion

This study was concentrating on the methods of differential equations of zero or
one order differential operator aiming to state the suitable solutions for different
variables that might be existing in the fields of interests such as (Physics, Image
processing, etc.). According to the above demonstration, the main agenda was for
paving the way for a real-life solution, hence the good understanding of the underlying
process of each method was provided independently in this paper, which may be
helpful for easing the solutions and avoid the complexity that may face during the real-
life solutions. The details of each method have been proven within the above
demonstration.
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