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 Given aset of permutation {p1,p2, … . pk} on aset S, we say that the set of 

permutation is transitive on S if for every ordered pair of elements  a,b € S, there 

exists at least on Pi for which (a) Pi=b. A permutation set for which there is exactly 

one Pi which maps a to b is called Sharply transitive. 

For example, if on the set consisting of the three elements {1,2,3} we represent 

the permutation which maps 1  3 ,2 2 and 3 1by (321). Then the following set of 

permutation is transitive.(123),(132),(213) and (321) and the last three permutation 

form sharply transitive set. This construction give a set of mutually orthogonal latin 

squares. A set S of mutually orthogonal latin squares(MOLS) is maximal if no latin 

square is orthogonal to each member of S.  
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Introduction: 

 A latin square is an arrangement of m variables x1, x2, 

….,xm into m rows and m columns such that no row 

and no column contains any of the varibables twice. 

Many of the application in the theory of latin squares 

involves same are lationship between squares of the 

order called orthogonally. 

   Two latin squares L1=|aij| and L2=|bij| on n symbols 

1,2,…n are said to be orthogonal if every order pair of 

symbols  occurs exactly once among the n2 pairs 

(aij,bij), i=1,2,…..,n. j=1,2,……n 

  For example, a pair of orthogonal order 3 latin squares 

and the q distinct ordered pairs that they form 

2  3  1     2  1  3   2,2   3,1   1,3 

1  2  3      1  3  2   1,1   2,3   3,2 

3  1  2      3  2  1   3,3   1,2   2,1 

Euler was originally interested in such pairs and 

in his writings he would always use latin letters for 

the first square and greek letters for second. 

 
* Corresponding author at: COMPUTER COLLEGE - 

UNIVESITY OF AL-ANBAR, Iraq. 

E-mail address: mak_alturky@yahoo.com 

 

Thus, when he referred to only one of the squares 

he called it the latin square, when referring to both of 

the orthogonal square he used the term graeco; latin 

squares, which is the way orthogonal squares are 

referred to in all the earlier literature. 

      Orthogonal Mates: given apair of orthogonal latin 

squares, consider the cells in the first square which 

contain one particular sympol. By latiness, there is 

only one of these cells in each row and column, Now 

consider the cells in the orthogonal matt which 

correspond to these cells the first square. By 

orthogonally, the entries in these cells must all be 

different and so these cells form atransversal in the 

orthogonal mate. 

Theorem (2-1): A given latin square possesses an 

orthogonal mate if and only if it has n disjoint 

transversals. 

Theorem (2-2): the multiplication table of any group of 

odd order form a latin square which possesses an 

orthogonal mate. 

mailto:mak_alturky@yahoo.com
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Proof: By [1] agroup of odd order has a complete 

mapping, so by [1] the multiplication table of this 

group is a latin square which has a transversal. 

Thus, we have this latin square has an orthogonal 

mate. 

Corollary (2-3): There exist pairs of orthogonal latin 

squares of every odd order. 

Euler’s conjecture(2-4): There does not exist an 

orthogonal mate for any latin square whose order 

has the form  n=4k+2 

Theorem (2-5): For any order n≠2 or 6, there exists a 

pair of orthogonal latin a squares order n. 

 Definition  

Set of Mutually orthogonal latin squares [MOLS]. A 

set of latin squares of the same order, each of which is 

an orthogonal mate of each of the othoers is called 

[MOLS].  

For example 1 0  3  2     2  3  0  1     3  2  1  0 

                     2 3  0 1     3  2  1 0      1  0  3  2 

                     3  2 1 0     1  0  3  2     2  3  0  1 

                     0  1 2 3     0  1  2  3     0  1  2  3 

Lemma (3-1)[Standard form]: Any set of MOLS is 

equivalent to a set  where each square has the first row 

in natural order and one of the squares (usually the first) 

is reduced (it also has its first column in natural order). 

Proof: Given a set of MOLS, we can convert it to an 

equivalent set by renaming the elements in any or 

all squares, If we do this to each square, we can 

make the first rows be any thing we like, in 

particular, we can put them all in natural order. 

Now, take any square and simultaneously permute 

the rows of all the squares, so that the first column 

of this square is in natural order (this will not affect 

the first row, since it is in natural order and so 

strarts with the smallest element) The result is an 

equivalent set with the required properties. 

Propostion (3-2): Any set of MOLS is equivalent to a set 

of MOLS  in standard form. 

Theorem (3-3): No more than n-1 MOLS of order n can 

exist. 

Proof: Any set of MOLS of order n is equivalent to a set in 

standard form, which of course has the same number 

of squares in it. 

Consider the enteries in first column and second 

row of all of the square in standard form. 

No two squares can have the same entry in this 

cell. 

Suppose two squares had an r, say, in this cell, 

then in the superimposed square, the ordered pair (r,r) 

would appear in this cell and also in the r-th cell of the 

first row because both squares have the same first row, 

and so, the two squares can not be orthogonal 

contradiction. 

Now, we can not have a 1 in this cell, since it 

appears in the first column of the first row. 

Thus, there are only n-1 possible entries for this 

cell and so there can be at most n-1 squares. 

Theorem(3-4): Suppose that there exist r MOLS of order n 

and r MOLS of order m, then there exist r MOLS of 

order mn. 

Proof: Let A(1), A(2)……..,A(r) be the set of MOLS of order 

m and B(1),B(2),…….B)r) be the set of MOLS of order 

n. for e=1,2,……..,r. 

Let (aij(e), B(e)) represent the n x n matrix whose h, k 

entry is the ordered pair (aij(e), bij(e)). 

Let C(e), be the mn x mn matrix that can be 

represented schematically by  

(911
(e), B(e)) (912

(e), B(e)) … (91m
(e), B(e)) 

(921
(e), B(e)) (922

(e), B(e)) … (92m
(e), B(e)) 

……..    
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(9m1
(e), 

B(e)) 
(9m2

(e), B(e)) … (9mm
(e), B(e)) 

We will show that C(1), C(2), …,C(r) is a set of MOLS 

of order mn. 

We must show that C(e) is a latin square. 

Note, first that in a given row, two entries in 

different columns are given by (aij(e), buv(e)) and (aik(e), 

buw(e)) and so are distinct since A(e), and B(e) are latin 

square. 

In a given column two entries in different rows are 

distinct by the same reasoning. 

Now, to see that C(e), and C(f) are orthogonal, 

suppose that 

((aij(e), duv(e)), ((aij(f), buv(f))= ((apq
(e),bst

(e)), (apq
(f), bst

(f)))  

Then it follows that 

((aij(e), aij(f))= ((apq
(e), apq

(f))  

So, by orthogonality of A(e)and A(f), i=p and j=q 

similarly, or thogonality of B(e) and B(f)  Implies 

that u=s and v=t. 

Theorem(3-5): (MaCneish’s theorem) [4]: Suppose that 

n=Pa
1,Pb

2,Pc
3…..Pt

s is the prime power 

decomposition of n, n>1, and r is the smallest of the 

quantities(P1
q-1), (P2

b-1),….., (Ps
t-1) then N(n)≥r. 

Where N(n) is the maximum number of MOLS of 

order n. 

Proof: for each prime power P* in the decomposition we 

know that there are P*-1 MOLS of that order. 

Thus, there are r MOLS for each P*. 

Since r is the smallest of theser values. 

So, by theorem above r MOLS of order n. 

   This conjecture was put to rest in 1959 when E.T. 

Parker [2] shown that N(21) ≥ 4 by constructing a set of 

4 MOLS of oreder 21 the lower bounds of N(n) has 

shown that  

 N(n) ≥ 3 for all  n ≥  52 

 N(n) ≥ 4 for all  n ≥  53 

 N(n) ≥ 5 for all  n ≥  63 

 N(n) ≥ 6 for all  n >  9 

It is also known that N(n)         ∞ as n        ∞       

Corollary(3-6) : If n is not of the form 4k+2, then N(n)≥2  

Proof: For n of this type, either 2 is not a divisor or its 

power is grater than 1. 

In either case, the smallest possible value of P*-1 is 2. 

MaCNeish belived that his theorem actually gave the upper 

bound for N(n) as well (this is true for prime powers). 

Therom(3-7): if alatin square L of order 4k+2 contains a 

latin subsquare of order 2k+1, then L has no 

orthogonal mate. 

Proof: it is easily see that if a latin square has an 

orthogonal mate. Then any isotope of it also has a 

mate. 

So we can, without loss of genrality, assume that the sub 

square occupies the first 2k+1 rows and columns for if 

not then row and colomn permutations will put it there. 

The square L is thus partitioned in to 4(2k+1) * (2k+1) 

submatrices which we will label as:  

 

 

 

 

Where A is the given latin subsquare. 

Let the 2k+2 symbols which appear in A form a set S, and 

the remaning 2k+1 symbols of L form a set Q. 

No element of S can appear in B or C since both L and A 

are latin, therfor D is composed entirely of elements of 

S and B and C entirely of elements of Q (in fact, all 

four are latin subsquare). 

Now con sider a transversal T of L. 

Say that there are h cells of t which appear in A since 2k+1 

cells of Tmust appear in  the first 2k+1 a row of L, and 

A  B 

C  D 
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h of these are in A the remaning 2k+1-h must 

appear in B. 

A similar argument for the first 2k+1 column shown that 

there must be 2k+1-h cells of t in C. in these cells of 

B and C, all the elements of Q must appear exactly 

once. 

Since ther are 2K+1 elements of Q, 

We have 2(2k+1-h)=2k+1 

Or this is clearly impossible if h and k are integers, so 

we may conclude that L has no transversal. 

 

Construction: 

let S1=i, S2,S3,……Sr be the permutations 

representing the row of r x r latin square L1 as 

permutations of its first row and M1=i, M2, 

M3,…Mh, h≤r, be permutations keeping one 

sympole of L1 fixed, then the squares Li
* whose 

rows are represented by the  permutations Mi S1, Mi 

S2,……, Mi Sr for i=1,2,…..,h are all latin and will 

be mutaually orthogonal if, for every choice of i, j 

≤h, the set of permutations  

S1
-1Mi

-1MjS1, S2
-1Mi

-1MjS2,……, Sr
-1Mi

-1MjSr, 

Is harply transitive on the sympols of L1. 

let L1 be the 4*4 latin square  

      1   2   3  4 

      2   1   4  3 

      3   4   1  3 

      4   3   2  1 

The rows of this square, considered as permutation 

provide the S’s, So 

S1= (1 2 3 4), S2= (2 1 4 3), S3= (3 4 1 2), S4= (4 3 2 1) 

Now let M1= ( 1 2 3 4 ), M2= ( 1 4 2 3 ), M3= (1 3 4 2),  

All of which fix the symbol 1. 

Direct calculation now gives as the following: 

M1S1= ( 1 2 3 4), M2S1= ( 1 4 2 3 ), M3S1=(1 3 4 2) 

M1S2= ( 2 1 4 3), M2S2= ( 2 3 1 4 ), M3S2=(2 4 3 1) 

M1S3= ( 3 4 1 2), M2S3= ( 3 2 4 1 ), M3S3=(3 1 2 4) 

M1S4= ( 4 3 2 1), M2S4= ( 4 1 3 2 ), M3S4=(4 2 1 3) 

So, the three latin square produced are: 

1 2 3 4       1 4 2 3     1 3 4 2  

2 1 4 3       2 3 1 4     2 4 3 1 

3 4 1 2       3 2 4 1     3 1 2 4 

4 3 2 1       4 1 3 2     4 2 1 3 

and it is not too difficult to see that this is a complete set of 

MOLS. 

Choice of i=2 and j=3, the set of permutations 

 S1
-1M2

-1M3S1= (1 4 2 3) 

 S2
-1M2

-1M3S2= (3 2 4 1) 

 S3
-1M2

-1M3S3= (4 1 3 2) 

 S4
-1M2

-1M3S4= (2 3 1 4) 

We see that it is a sharply transitive set of 

permutations on {1,2,3,4}. The same is true for any other 

choices of i and j. 

 

Proof of construction: 

   First, notice that since L1 contains each symbol exactly 

once in each column, the permutations S1,S2,….Sr must 

form a sharply transitive set. If we multiply each of these 

by afixed permutation, the new set of permutations is again 

sharply transitive, consequently the columns (and of course 

the rows) of Li will contain each symbol exactly once, So 

Li will be Latin. 

    Secondly, if U1,U2,…,Ur are permutations 

representing the rows, of one latin square Li and if 

W1,W2,…Wr are the permutations representing the 

rows of another square Lj, then the permutations U-

1,W1,U2
-1W2,….,Ur

-1Wr map the first, second, ….., r-th 

row of Li respectively to the first, second,….., r-th row 

of Lj. 
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   If and only if these squares are orthogonal each 

symbol of Li must map exactly once onto each of the 

symbols of Lj since each symbol of Li occurs in 

positions corresponding to those of a transversal of Lj. 

Thus, Li and Lj are orthogonal iff the permutation U1
-

1W1, U2
-1W2,….,Ur

-1Wr form a sharply transitive set. 

To find the permutations Mi of these construction can 

be found in chapter 7 of Denes & Keedwell. 

 

5-Trails, E.T. Parker’s criterion: 

Let Є={L1,…s} be a set of MOLS of order υ for 

each t, represent Lt as Lt=  

Let 1≤ r ≤υ. Suppose that At is a latin square of 

order r for each t, and that Є is obtained from Є by 

performing a common row permutation on the Li’s 

and a common column permutation on the Li’s. then 

.MOLS–set of (υ, r) -o be an sis said t -Є 

With out loss of generality, we assume that the 

entries of each Lt of Є belong to a common set of υ 

elements and that the entries of each At belong to a 

common subset ∑ of cardinality r. Elements of the set 

are called little if they are in ∑, big if they are not. A 

cell is a pair (i, j) with 1≤i, j≤ υ. One says that the (i, j) 

th entry of a matrix is in cell (i, j) and that the cell(i,j) is 

in or from row i and column j. We define the trail of Є 

to be the set of all cells (i, j)with r< i, j such that the (i, j) 

th entry of Lt is big for each Lt in Є. 

Theorem (5-1): (E.T. Parker, 1963, see [7, Theorem 

12.3.3])  

    Let Є be an s-set of (Sr+r+Є,r)MOLS, then Є ≥0, and 

the trail consists of Є (Sr+Є) cells. 

Theorem (5-2): (E.T.Parker, 1963, see [7, theorem 

12.3.4]. Let Є be an S-set of (Sr+r+ Є,r) MOLS, 

Then Є is maximal if [r2/ (sr+r+ Є)] < (r- Є)/(s+1). 

Definition (5-3): A transversal T of Lt is a set of υ cells 

from distinct rows and distinct columns such that the 

entries of Lt in T are distinct. 

    A common transveral to L1,…Ls is called a transversal 

of Є. 

Lemma (5-4): let Є be an s-set of (sr+r+ Є, r) MOLS. If T 

is a transversal to Є which contains x cells of the 

subsquares, then T contains x (s+1)-r+ Є cells of the 

trail.  

Proof: Since T meets Sx little entries in the At’s,T must 

meet sr-sx little entries in the Dt’s. 

Thus, T intersects D1 in sr-sx non-trid cells since T 

intersects A1 in x cells,T intersects B1in r-x cells and D1 

in (sr+ Є) – (r-x)= sr-r+x+ Є cells altogether. 

Proof of theorem(5-2): suppose that Є is an s-set of (sr+r+ 

Є,r) MOLS which is not maximal. Then there exists a 

common orthogonal mate L which induce Sr+r+ Є disjoint 

transversals on Є.  

One of these transversals T contains x cells of the Ai’s 

for some x≤[ r2/(sr+r+ Є)]. 

By lemma above, T contains x (s+1)-r+ Є≥0 trail cells. 

Thus, inequality (1) fails. 

Corollary(5-5): Let Є be an s-set of (sr+r+ Є,r) MOLS 

with Є≥0. If the residue δ of Є-r modulo s+1 satisfies 

0≠δ ≥ Є, then Є is maximal. 

Proof: Assume, by way of contradiction, the existence of a 

latin square L which is orthogonal to each square of Є. 

By lemma above, each of the sr+r+ Є transversal to Є 

induced by L meets the trail of Є in at least δ cells. 

Thus, theorem [1] yields the contradiction Є (sr+ Є) ≥ 

(sr+r+ Є) max { Є,1}. 

Corollary(5-6): let Є be an s-set of (sr+r+1,r) MOLS if r 1 

modulo s+1, then Є is maximal. 

At  Bt 

Ct  Dt 

At  Bt 

Ct  Dt 
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 المجموعة العظمى من المربعات اللاتينية المتعامدة المتبادلة وتكوينها

 مكارم عبدالواحد عبدالجبار  
Email:  mak_alturky@yahoo.com 

 الخلاصة:

إذت كتا  كت  جوم جباتن جت   Sجمجوعت  تلادانات   تت جاةنات  علت   . اجكت  ت  نوتو  Sعلت  تلجمجوعت   {P1, P2 ,….. Pk}لو كانت  لتنانا تلادانات         

استج  جاةتني متنت وج تا  علت  ذلت   bإل   aج   iPجمجوع  لادانا  لاطداق وتحن دالاحنان  . اومن عل  تلأق  Sتلذي اناجت إل   a,bتلةناصب 
( وتلادانات  123علت  تلتتك  3←2,1←1,2←3كت  اج ات  تلادانات  علت  تتك  اطداتق دحات  اج {1,2,3}لو كان  لنانا جمجوعت  ااكتو  جت     ت  عناصتب 

نة تلجادانلت . ( وتلادانا  تل     تلأخابة اج   جمجوع  جاةنا  منت.  ذت تلدناء اةطانتا تلجبدةتا  تياانات  تلجاةاجت(321( و(213( و(132( و123تلجاةنا   ت  
 .Sاةادب  ت تلجمجوع  تلةظج  تذت كا  ياومن جبدع ياانت جاةاجن لأي عنن ج   جمجوعه ج  تلجبدةا  تياانا  تلجاةاجنة
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