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1. Introduction and Preliminaries

Let B be a nonempty subset of a Banach space
M. A map T on B is called nonexpansive map if
|Ta —Th|| < |la—bl|| foralla,b € B. Tt is
called quasi-nonexpansive map [1]if ||Ta — b|| <
lla —pll for all a e B and for all p € F(T),
denote by F(T) the set of all fixed point of T.

In 2008, a new condition for maps, called
condition (C) was introduced by Suzuki [2],
which is stronger than quasi-nonexpansive and
weaker than nonexpansive, and given some
results about fixed point for map satisfying
condition (C). Dhompongsa et al [3] and
Phuengrattana [4] studied fixed point theorems
for a map satisfying condition (C). Weak
convergence theorem for a map satisfying
condition (C) in uniformly convex Banach space
are proved by Kahn and Suzuki [5]. Recently,
Garcial-Falset et al [6] introduced two new
generalization of condition (C), called condition
(E;), condition (C;) and studied the existence of
fixed points and also their asymptotic behavior.
For approximating common fixed point of two
maps, Takahashi and Tamura [7] studied the
following Ishikawa iteration scheme for two
nonexpansive maps.

a€B

any1 = (1 —ap)ay + a,Thy

by, = (1 - Bplan + pnTan

foralln € N, (a,) and (B,)in [0,1].

The aim of this paper is to study weak
convergence of the Picard-Mann iteration
scheme, Liu et al iteration scheme for
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approximating common fixed point of
generalized nonexpansive and quasi-
nonexpansive maps and give some corollaries.
Throughout this paper, M will be a uniformly
convex Banach space and B a nonempty closed
convex subset of M. F(T,S) denotes the set of
common fixed point of the maps S and T.
The Picard-Mann [8] iteration scheme for two
maps through the sequence (a,,) is defined by:
Apt1 = Sby
b,=01-a)a, +a,Ta,, ¥Yn=>0 (D
where (a,) € (0,1).
The Liu et al [9] iteration scheme for two maps
through the sequence (z,,) is defined by:
Zny1 = (1 — ap)Szn + ayTuy,
up, =1 —Bp)Szy, + PuTz,Vn =0 (2)
where (a,) and (B,) € [0,1].
If § = I is called Ishikawa iteration scheme.

Definition (1.1): A Banach space M is called
satisfying:

1-Opial’s condition [10] if for any sequence (a;)
in M, is weakly convergent to a implies that

lim inf |la, —all < lim inf [jay - bl|

forall b € M with a # b.

2-Kadec-Klee property [11] if for every sequence
(a,) in M converging weakly to (a) together
with [|a,|| converging strongly to ||a|| imply that
(a;,) converges strongly to a point a € M.
Defintion (1.2)[12]: A map T:B - M is said to
be generalized nonexpansive map if there are
nonnegative constants &, 4 and w with § + 2u +
2w < 1lssuchthatVa,b € B
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lla — Tall }
—_ < —_
ITa —Th|| < Slla b”+“{+||b—Tb||

of Jla=Tol)
+||b — Tal|

Defintion (1.3)[13]: A map T:B — B is said to
satisfying:
1- Condition (C)

yields
—— ||[Ta—=Th|| < |la—b|,Va b€ B.

2-Condition (C;) if  Alla—Tall < |la — b|

yield
—>||Ta—Tb|| <|la=»b|,Vabe

Band A € (0,1).
3-Condition (E;) if |la —Tb| < Alla — Th|| +
la—b|,Vabe Band A = 1.

if Zlla—Tall < lla— bl

Remark (1.4): A map T: B = M satisfy
1-Condition(C;) and T has fixed point, then T is
quasi-nonexpansive, but the inverse is false[2].
2-Condition(E)) and T has fixed point, then T is
quasi-nonexpansive, but the inverse is false[6].

Definition (1.5)[14]: A map T: B — M is said to
be demiclosed with respect to b € M if for any
sequence (ay) in B, (a,) converges weakly to
aand T(a,) converges strongly to b. Then
a€BandT(a)=b. If (I—T) is demiclosed
i.e if (a,) converges weakly to ain B and
(I —T) converges strongly to 0. Then (I —
T)(a) = 0.

Definition (1.6)[ 15]: Let M be a Banach space,
M is called uniformly convex if for any € >
0 there is ¢ > Osuch that V a,b € Mwith ||a|| =
I|bll =1and |l[a —b|| =€, |la + bl <2(1 —
¢)holds. Every uniformly convex Banach space is
reflexive.

- The modulus of convexity of M is defined by

1B g = o < 1
su(€) = inf 2 B -
la=b||=€eV0<e<?2
M is uniformly convex if

gM(O) = 0and gM(E) = O,VO <e< 2.

Theorem (1.7)[15]: let M be a uniformly convex
Banach space then the modulus of convexity is
increasing function.

Remark (1.8)[16]: If
¢(0) = 0 and has the properties :

c(e) » 0ase - +0.

¢:[0,2] = [0,1] is strictly monotone increasing
function and surjective

Then 7:[0,1] - [0,2] is called strictly monotone
increasing function of ¢.

Vol. 37, Part B. No. 02, 2019

Theorem (1.9)[15]: let M be a uniformly convex
Banach space. Then for any r and e wihr = € >
0 and elements a,b € M such that ||a|| <
rlbll <7 lla=bll=2€35=6(-)>0 such
that

a+b
[~ <

_r[1—6(§)].

Proposition (1.10)[16]: Let B be a closed convex
set in a Banach space M. If (a,) converges
weakly to a for some sequence
(a,)in M,then a € M.

Lemma (1.11)[17]: Let (u)p=o and (p)py=o be

nonnegative real sequences satisfying the
inequality:

b1 < (1 — opdin + pn
where on € (0,1),YVn=ngdn=q10, =

o and 2% - 0 as n - 0. Then lim,, 0 tn = 0.

On

Lemma (1.12)[13]:Let M be a uniformly convex
Banach space and0<L<t,<K<1Vn €
N. Suppose that (a,)and (b,)are two
sequences of M such that:

lim llay || < m, lim ||b, |

< d i || t,a, +
smand Jim [l = ¢

=m
hold for some m = 0.Then lim,,_,||a,
0.

= byll =

Lemma (1.13)[18]: Let B be a nonempty convex
subset of a uniformly convex Banach space. Then
there is a strictly increasing continuous function
f:10,0) - [0,0)with f(0) =0 such that for
each lipschitzain map T:B — B with lipschitz
constant K:

[tTx + (1 — )Ty — T(tx + (1 — t)y||

llx — ¥l
<Kf i 1
= IITx =Tyl
Vx,y € Band Vvt € [0,1].

Lemma (1.14)[18]: Let M be a uniformly convex
Banach space suth that its dual M* satisfies the
Kadec-Klee property. Assume that (a,) bounded
sequence in M such that

lim,_ellta, + (1 —t)p; — p,ll exists
[0,1]and py, p; € W,y (ay), then py = p,.

Vte

2.The Main Results
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Proposition (2.1): Let Bbe a closed convex
bounded of uniformly convex Banach space,
T:B — M is a generalized nonexpansive map and
ay,a, €B, ag #a,Vte[01],a, =tay+
(1—-1t)a; IfVe>0,3a(e) > 0 such that
ITay — aoll < €and [ITa; —a,ll <€ 3
then ||Ta, —a;|l < a(e) and a(e) > 0ase -
+0.
Proof: Assume that (3) holds with ay #
a; and 0 <t < 1. Then leti = 0,1 such that

lla; = (ar + Tan)/2|l = lla; — al
If not, would have the contradiction

L ar+Ta
oy - agll < ) 2
i=0 2

1
<D llai=all = llas - aoll
i=0

since a; # ap we have r = |la; —a;|| > 0,n =
la; = Ta;ll,m = |la; — Ta|l.

Since T is generalized nonexpansive mapping
ITa: — a;ll < ITa; — Ta;ll + ITa; — a;ll

lla; — Tall }

a; —

< 8lla, - all + u

| ral +lla; — Tayll

ar — 14

+ {_l_”ai_Tat”}-l_”Tai_ai”
<oér+u(ale) +¢€)+wn+m)

+e€

let w=ar+u(a(e)+e¢)+ wn+m).

ITa; —a;ll <w +e.

Puta=a;,,b=Ta;,c=aq;and R =w +¢€.

Let n(.) indicate the strictly monotone increasing

function to ¢(.). The diameter of M denotes by

diam(M), by theorem (2.10), we have

€
ITa; — acll < suprepo,auyy(w + E)TI(W—_}_E)

the a(e) defined here has desired properties. First
a(e) = en(1) = 2€ forw = 0.
Forming the supermum separately over the two
intervals [0, Ve — e[ and monotonicity of
n(.), that

a(e) < max{vVen(1), (dM) + e)n(/e)}

- 0ase—0.

Since a(e) = 2¢,then ||Ta; — a;|| < a(e) as
a(e) » 0as e » +0.
Hence
(3)holds for the remaining cases a; #+
ag,t=0,1and ay = a4.

Then

Theorem (2.2): Let B be a closed, bounded and
convex subset of uniformly convex M, then the
operator I — T is demiclosed on B.

Proof: We show that for any sequence (a,) in M,
if (a,) converges weakly to a and (I —T)(a,)
converges strongly to 0 asn — oo, then a €
Mand (I —T)(a) = 0.

By proposition (1.10), we get a € M.

For €5 € (0,1) choose a sequence (€,) such that
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€n < €p_qand a(e,) < €,_,VNEN
This is possible because a(e) » 0ase — 0.
Choosing a subsequence of (a,,) if necessary, we
have
ITa, —ayll <€,,VneEN

then

ITh —b|| < €y,Y b € co{a,,n € N} 4
Now

i) Let b; € co{a,,, a,} wherel <m <n, by
hypothesis

”Tam - am” S €m and ”Tan - an” S €n €
<eé€n
then
”Tbl - bl” =< a(em) S€Ep-1=¢€

ii) Let b, € co{ay, am, ap} wherel <k <m <
n. The key is that b, € co{ay, b} since b, €
Co{am' an} by (i)”Tbl - b1|| < €m-1€Em-1 <
€k, SO

ITay — axll < e, and ||Thy — byl < €
hence

ITb, — byl < a(€x) < €x-1 < €
if (a,) converges weakly to a asn — oo, then
a € co{a,,n € N}, by proposition (1.10) and step
(4) , we obtain
ITa —all <€

since €, can be any arbitrary small, Ta — a = 0.
Not only is the map a — Ta generalized
nonexpansive, but for fixed point b soisa —
Ta + b.This implies that I — T is demiclosed.

Lemma (2.3): Let T:B—>B be a quasi-
nonexpansive map and S: B — B be Lipschitzain
and generalized nonexpansive maps. Let

i)(a,) be as in (1) where (a,) € (0,1).

ii)(z,,) be as in (2) where (a,,)and( S,) € [0,1].
If F(T,S) # @, then
lim,_.lla, — a*|| and lim,_ .||z, — a*|| both
exist for all a* € F(T,S).

Proof: Let a® € F.

Dllan+: —a*ll = ISb, — a’ll

< 6”bn _a*” +H{”bn _Sbn”}

” *” ||a'=I< a*”
bn —a
|| n”

sawn—wn+u{

lby, — a”|l }

“’{+5||§rbn;a*||
Uurw *

< (6 +2u+2w)lb, — a*|l
< ||by —a’l
= ”(1 - an)an +a,Ta, — a*|l
< (1 - Crn)”an - a*” + an”an - a*”
= |lap — a’|l

Iy =l }

+[|Sby, — a”|l
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then lim,,_,, ||a, — a*|| exists Va* € F(T,S).

ii)|lu, —a*|| < (A = BIISz, —a*|l +
BnllTz, — a*||

<@
81|z, — a*|
_.Bn) {”Zn_SZn”} { ”Zn_a*”
+ " s )] "
Fltlla — ol +lla* = Szl
+ Bullzy — a”ll ” ”
Z _a* -
Sz, — a*|| + { n . }
- (1 ” n ” U +||Szn—a ”
=0=h 2o~
+w{ n }
+la® — Sz,
Hhullzn — a'll
_ +u+ e
< U= (ot o) In = @
o Hpnllz = al
_ + 2u e
<@ =B (° ) Nz = @'l
+Bllzn — |
< (1= B+ Bz — @l
= ||z, — |

Izne1 —a’ll < (1 — ap)llSzy, — a”||
+an||ITu, — a”||

_6||Zn _a*” _l_'u{llzn _Szn”}]

<(-a,) +la® —a’|
B " +w{ llzn —a”ll }
Hla® = Szl

+ap |luy, — a’l

<@ -a)|[(° 52 Iz - @'l

+agllu, —a’l
< (1 - an)”Zn - a*” + an”Zn - a*”
= ||z, — a’l
Then lim,,_, . ||z,, — a*|| exists Va* € F(T,S).

Lemma (2.4): Let T:B—->B be quasi-
nonexpansive map and S: B — B be Lipschitzain,
generalized nonexpansive maps and affine and
(a,) be as in (1). Suppose that the following
condition |la —Th|| < ||Sa—Th||,Va,b € B
holds. If F(T, S) # @, then

T{i_r)lgollTan - an” = Al_l;rolollsan - an” =0
Proof: Let a* € F(T,S).
By lemma(2.3.i) lim,_l|la, —a*|| exists.
Suppose that lim,,_,|la,, — a*|| = ¢,V ¢ = 0.
If ¢ = 0, there is nothing to proof.
Now suppose ¢ > 0,

lanss —a*ll = ISby, — a*||
< |lby —a”ll

By lemma(2.3.i), we show that ||b, —a*| <
llan —a’|l

this implies to
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lim supl|lb, —a*|| < ¢ (5)
n—-oo

moreover d = limy,q_ ||la,1 — a’ll
lan+: —a®ll < llbp — a’ll

then
c< 7ym inf||b, —a*|| (6)
By (5) and (6), we get

lim||b, —a*|| =c
n—-oo
Next consider
¢ =|lb, —a’|
< (1 - an)”an - a*” + an”Tan - a*”
By applying lemma (1.12), we get
lim|la, — Ta,|]| =0
n—-oo
¢ = lim|lapy, —a’|l = lim [|Sb, — a”|
n—-oo n—oo
ISI(1 — ap)an + ayTa,] — a’l
< (1 - an)llsan - a*” + an”STan - a*”
By applying lemma (1.12), we get
lim ||Sa,, — STa,|| =0
n—-oo
Now
|Sa, — ayll < ||Sa, — STa,|| + ||STa,, — a,||

By using the hypothesis condition, we have
ISa, — a,|l < 2||Sa,, — STa,|| - 0 asn - .
Thus
Al_r}gollsan - an” = 0.

Lemma (2.5): Let T:B—B be a quasi-
nonexpansive map, S: B — B be Lipschitzain and
generalized nonexpansive maps and (z,) be as in
(2). Suppose that the following condition|la —
Tb|| < ||Sa—Tb|,Va,b € B holds. If
F(T,S) # @, then
lim, Tz, — z,|| = lim,_ Sz, — z,|| = 0.
Proof: Let a* € F(T,S).
By lemma (2.3.ii)) lim, .|z, —a®|| exists.
Suppose that lim,,_, ||z, — a*|| = ¢,V ¢ = 0.
If ¢ = 0, there is nothing to proof.
Now suppose ¢ > 0

lim [|z 4 —a*ll = c
¢ = llznsq —a’|l

<A = ap)llSz, —a’l
+ anllTu, — a*||

By applying lemma (1.12), we get

Tlli_l)rgO”SZn - Tun” =0
||an+1 —a’l[=l1- an)SZn + apTu, —a*||

< ”Szn - a*” + an”SZn - Tun”
this implies to

¢ < lim inf||Sz, — a”|| 7
n—-oo
and ||Sz, — a’|| < ||z, — a”|l
therefore
lim supl||Sz, —a*|| < ¢ (8)
n—oo
By (7) and (8), we have
lim ||Sz, —a*|| = ¢
n—oo
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”Szn - a*” < ”SZn - Tun” + ”Tun - a*”
that yields to

¢ < lim inf||lu, —a*|| 9
n—oo
and
llun — a”ll
< (A - BlSzy — a’|l + BullTz, — a”||
= llzp, —a’ll
Now
lim sup|lu, —a*l| <c (10)
n—-oo
By (9) and (10), we have
lim [lu, —a*|| =c
n—oo

¢ = |luy —a’|l
< (A = BllSzn — a”ll + BullTz, — a”|]
By applying lemma (1.12), we obtain
Al_r)l(;lollszn - TZn” =0
Now
”SZn - Zn” < ”Szn - Tzn” + ”TZn - Zn”

By using the hypothesis condition, we get
1Sz, — zull < 2||Sz,, — Tz,|l > 0asn - o

and

”Tzn - Zn” < ”TZn - SZn” + ”SZn - Zn”
<2||Tz, — Sz,|| > 0asn — oo.

Hence

lim,, L, ||T2, — z,|l = lim, 6 ||Sz, — z,]| = 0.

Lemma (2.6): Let T: B = B be Lipschitzain and
quasi-nonexpansive maps and S:B = B be
lipschitzain and generalized nonexpansive maps.
Then for aj,a; € F(T,S), (a,)be as in (1) and
(zp)be as in (2) such that

Ai_r){)lolltan + (1 —-1t)aj —a;|| and

lim||tz, + (1 —t)a] —a3|| =0,V t € [0,1].
n—-oo

Proof: Now to prove lim,_||ta, + (1 — t)aj —
a;|| exists and equal to zero, by lemma (2.3.i)
lim,_lla, —a”|| exists,
Va* € F(T,S)and (a,) is bounded.

Then there is a real number L > 0 such that
(ap) €D = B,.(0) NnB,sothat D # @ is a closed
convex bounded subest of B.

Puty,,(t) = lltan, + (1 — )a; — a3 |l.

Notice that y,(0) = [la; — a3|| and y,,(1) =
||a, — a5|| esists by lemma(2.3.).

DefinR,,:D - D,Yyn € N,R,,a =

Sl —-ay)a, + a,Ta,] Vae€D.
”Rna - Rnb”
S[(l - an)an + anTan]
-S[(1 — a,)b, + a,,Th,]
< (1 - an)”an - bn” + an”Tan - Tbn”
< (1 - an)”an - bn” + an”Tan - a*”

+anllTh, — a’|l

<A -aplla, —a*ll + (1 — ap)llb, — a”||
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+apllan, — a’ll + ayllb, — a’l
= lla, — a’ll + llb, — a”||
Set Wy m = RpymRn4m-1 .- Ry and
bn,m = ”Wn,m(tan + (1 - t)a;) - (th,man
+(1- t)ai”,Vn,m EN.

Then

”Wn,ma - Wn,mb”

< ||Wn,ma —a”|| + ||Wn_mb —-a*
<lla=a’ll + b —a’l

and [Wpma — a*|| < lla = a*ll, Wy man =
Aptm and wy ma* =a*,vVa* € F.

By lemma(1.13) there is a strictly increasing

function  continuous  function  f:[0,00) —
[0, 0)with f(0) = 0 such that

1 Wama
bum < Kf ™ (llan = aill = | )
_ N 1 an+r;1
< Kf " (lap = aill == || 2% [P

since lim,,_,||a, — a*|| exists V a* € F.

yields
lim supf(bn,m) =0 — lim lim sup by,
n—oo n—00 Mm—00
=0
Now,
Ynem () = ltansm + (1 — t)aj — a3l
= ||th,man + (1 —-t)a] — a§||

tWyman, + (1 —t)a; —a; +
Wn,m(tan + (1 - t)aI)
—-a,+a"—a"
_Wn,m(tan + (1 - t)a;) + a;

<bym+ ||Wn‘m(tan + (1 —-1t)aj) — a§||
< bn,m + ”Wn,m(tan + (1 - t)ai) - Wn.ma;”
< bn,m + Yn (t)
Now
lim supy,m(t) < lim supb,, , + v, (t)
n—-oo n—-oo
then
lim supy,m(t) < lim infy, (t)
n—-oo n—-oo
which implies that lim,_||ta, + (1 —t)a] —
as|| exists V t € [0,1].

Now to prove lim,_lltz, + (1 —t)a] —a;l|
exists.

By lemma (2.3.ii) lim,,_, ||z, — a*||exists,V a* €
F(T,S)and (z,) is bounded.

Then there is a real number L>0 such that(z,) S
D = B,(0) N B so that D # @ is a closed convex
bounded subest of B.

Put v, (t) = lltz, + (1 — t)ai — a3l

notice that  y,(0) = |laj — a}|| and y, (1) =
||a,, — a5|| esists by lemma (2.3.ii).
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Define R,:D->D,VneN,R,z=(1-
an)Sz, + anT((l — B)Sz, + ﬁnTzn)

”an - RnW”

|l A =ap)Sz, + a,Tu,
B | -1 - a,)Sw, — a,Tv,
< (1 - an)”SZn - SWn” + an”Tun - Tvn”

d+2
< =a) (L) llz = wl

+anl|ITu, — a*ll + anllTv, — a’l
< (1 - an)”Zn - Wn” + 6(n”un - a*”
+ap|lv, —a”||
< (1 - an)llzn - Wn”
i {1 Pl 'l
+Bullz, — a||
i {1 Pl 'l
+Bnllw, — a”||
= llzn — a’ll + llwy, — a”l
The rest of the proof follows the pattern of the
above argument.

Theorem (2.7): Let M be a uniformly convex
Banach space satisfying Opial’s condition and
T:B —- B be quasi-nonexpansive map with
(I —=T) demiclosed at zero, S:B—>B be
Lipschitzain and generalized nonexpansive maps
and (a,), (z,) as in lemma (2.4) and lemma (2.5),
respectively. If F(T,S) # @, then (a,) and (z,)
both converge weakly to a common fixed point of
Sand T.
Proof: Let a* € F(T,s). As proved in lemma
(2-3) limn—mo“an - a*” and limn—mo”Zn - a*”
exist.
Now, must prove that (a,) converges weakly to a
unique weak subsequential limit in F.
Since (a,,) is bounded sequence in M, there exist
two convergent subsequences
(ani) and (anj) Of (an)-
Let xy,x; € B be weak limit of (ay;) and (ay;)
respectively. By lemma (2.4) lim,_.l||Sa, —
an” = 0.
By propsition (2.1) and theorem (2.2), we get
I — S is demiclosed to zero.
Then Se, = e; and by hypothesis [ —
T is demiclosed so,Te; = e;. In the same way,
can prove that e, € F(T, S).
To prove the uniquence, assume e; # e,. Then
by Opials condition:
lim [la, — e;]l = lim |lan; — eyl
n—oo n—-oo

< limn—mo”an - eZ”

= limy | an; — €|

< lim laz; - e

= limn—mo”an - el”
this is contrasiction. Thus (a,) converges weakly
to a point in F(T, S).
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By ulitizing the same above argument, we can
prove that (z,) converges weakly to a point in
F(T,S).

Theorem (2.8): Let M be a uniformly convex
Banach space such that its dual M* satisfies the
Kadec-Klee property. Let T,S, B, (a,) and (z,)
be as in lemma (2.4) and lemma (2.5),
respectively. If F(T,S) # @, then (a,)and (z,)
converge weakly to a common fixed point of S
and T.

Proof: Since (a,) and (z,) are bounded and M
is reflexive . Then, there is a subsequence
(ani) of (a,) that converges weakly to a point
a* € B. By lemma (2.4)

Ai_r)lgollsani —anll=0= %i_r};lo”Tani — anll

thus a* € F(T,S).

To prove (a,) converges weakly to a point a*.
Assume that (a,;) is another subsequence of
(a;,) that converges weakly to a point b* € B.
Then by lemma (2.6) lim,,_, . ||ta, + (1 —t)a* —
b*|| exists V t € [0,1].

By lemma(1.15) a* = b*. Then (a,) converges
weakly to the point a* € F(T, S).

Ulitizing the same above argument to prove that
(z,) converges weakly to the point a* € F(T, S).

The following corollary as a special case of
quasi-nonexpansive mapping is now obvious.
Corollary (2.8):Let M be a uniformly convex
Banach space satisfying Opial’s condition and
T:B — B be satisfying condition (), S:B — B
be generalized nonexpansive map and (a,), (z,,)
be as in lemma (2.4) and lemma(2.5),
respectively. If F(T,S) # @, then (a,) and (z,)
converges weaklt to a common fixed point of S
and T.

Corollary (2.9): Let M be a uniformly convex
banach space and its dual M* satisfies the Kadec-
Klee property and T: B — B be lipschitzain map
and satisfying condition (C;) and S:B — B be
lipschitzain and generalized nonexpansive maps
and (a,), (z,) be as in lemma (2.6). If F(T,S) #
@, then (a,) and (z,) converges weakly to a
common fixed point of S and T.

Corollary (2.10): Let M be a uniformly convex
Banach space satisfying Opial’s condition and
T:B — B be satisfying condition (E), S:B — B
be generalized nonexpansive map and (a,), (z,)
be as in lemma (2.4) and lemma (2.5),
respectively. If F(T,S) # @, then (a,) and (z,)
converges weaklt to a common fixed point of S
and T.
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Corollary (2.11): Let M be a uniformly convex
banach space and its dual M* satisfies the Kadec-
Klee property and T: B = B be Lipschitzain map
and satisfying condition (E;) and S:B — B be
Lipschitzain and generalized nonexpansive maps
and (a,), (z,) be as in lemma (2.6). If F(T,S) #
@, then (a,) and (z,) converges weakly to a
common fixed point of S and T.

3. Equivalance of Iterations

Theorem (3.1): Let B be a nonempty closed
convex subset of a Banach space M. Let T: B —
B be a quasi-nonexpansive map, S:B — B be
Lipschitzain and generalized nonexpansive maps
and a* € B be a common fixed point of S and T.
Let (a,) and (z,) be the Picard-Mann and Liu et
al iteration schemes defined in (1) and (2),
respectively. Suppose (a,,) and (B,) satisfied the
following conditions:
1-(a,)and (B,) € (0,1),Vn > 0.
2-Y a, = oo.
3-X apfn < .
If zy = ay and R(T), R(S) are bounded, then the
Picard-Mann iterative sequence (a,) converges
strongly to a* (a,, = a*)and the Liu et al iterative
sequence (z,) converges strongly to a*(z, —
a").
Proof: Since the range of T and S are bounded,
let
M = supgepiliTall} + llagll < oo

then

llanll < M, byl < M, ||z, |l < M, [luyll < M
therefore

ITanll < M, |ITz, |l < M

lanss = znall
= ||1Sb, — (1 — a,)Sz, — a,Tu,l|
< ”Sbn - SZn” + an”SZn - Tun”
< Sbn — a*ll + [1Szn, — a*ll + anlSz, — a”l

+apllTu, —a’|l b — b1

* n n

< 8lb —all+ufyn o

by — a*| | :
+“’{+||a* Sy} Sz =l

”bn_Sbn”} { ”bn_a*” }
b R s
Fagllzn — a’ll + anlluy — 'l
S e A N G I e
tagllzg — a*ll + anliuy — a’|
< llbn — a*ll + (1 + ap)lizy — @'l
gl —a'l

bn, — a”l

< (1 - an)”an - a*” + an”Tan - a*”

< (A -apllan, — a’ll + ax{liTayll + lla”|}
< (1 - apllay — a’ll + e ||M + lla|
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luy, =l

< (= plsen— a4 fulllan )
§+2u . { Tz, }

< — _

<=8 (050w = a4 Bl oy

<@ =B)M + lla*|l} + Bp{M + lla”|I}
=M +|la”]|

Thus
lant1 — Zn4all
< by, —a’ll + (1 + ap)llz, — a”|l
+agllu, — a’l
<A -alla, —a’ll + an{M + [la*|I}
+(1 + apllzy, — a*|l + an{M + |[a”||}
< (1 - an)”an - Zn” + (1 - an)”Zn - a*”
+2a,{M + |la*|I} + (1 + ap)llz, — a”|
< (1 - an)”an - Zn” + ”Zn - a*” + 20*’n
M+ |la*|1}
< (1 - an)”an - Zn” + (1 + Zan){M + ”a*”}
let Up = ”an - Zn” »Pn = (1 + Zan){M +
lla*|I}, o, = @y, and Z—" > 0asn — oo,
n
By applying lemma(1.11), we get
Tlli_r)rc}o”an - Zn” = 0.
Ifa, » a* € F(T,S), then
”Zn - a*” < ”Zn - an” + ”an - a*” —0asn
— 00,
Andifz, - a* € F(T,S), then
”an - a*” < ”an - Zn” + ”Zn - a*” —0asn
— 00,

4. Numerical examples

In this section, we consider two examples to show
that the Picard-Mann iteration scheme converges
faster than Liu et al iteration schem.

Example (4.1): Let T,S: R = R be a map defined

by Ta=2?aand5a=%,Va€R. Choose

a, =B = %,Vn with initial value a; = 30. The

two iteration scheme converge to the same fixed
point a* = 0 .It’s clear from table 1, that Picard-
Mann converges faster than Liu et al.

Table 1: Numerical results corresponding to
a; = 30 for 20 steps

n Iterati Iterati n Iterati Iterati
on (1) on (2) on(l) on(2)
0 30 20 1 0.000 0.003
1 6 4
1 11.25 13.12 1 0.000 0.001
00 50 2 2 5
2 4218 5.742 1 0.000 0.000
8 2 3 1 6
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3 1.582 2.512 1 0.000 0.000
0 2 4 0 3
4 0.593 1.099 1 0.000 0.000 n Iteratio Iteratio n Iteratio Iteratio
3 ! >0 ! n()  nE@ n()  nE@)
5 0.222 0.480 1 - 0.000 0 30 30 1 0.0001 0.0014
5 9 6 1 6
1 10.7713 12.9255 1 0.0000 0.0008
6 0.083 0.210 1 - 0.000 7
4 4 7 0 2 3.1911 7.5904 1 0.0000 0.0005
7 0.031 0.092 1 - 0.000 8
3 0 8 0 3 0.5325 3.4317 1 0.0000 0.0003
9
8 0.011 0.040 1 - 0.000
7 3 9 0 4 0.2540 0.7150 (2) 0.0000 0.0002
9 0.004 0.017 2 0.000 5 0.1256 0.3940 2 - 0.0001
4 6 0 0 1
6 0.0626 0.2304 2 - 0.0001
(1) (6).001 3.007 - 8.000 5
7 0.0313 0.1370 2 - 0.0000
3
8 0.0156 0.0819 2 - 0.0000
4
1 0.0078 0.0491 2 -
9 5
1 0.0039 0.0295 2 -
0 6
1 0.0020 0.0177 2 -
1 7
1 0.0010 0.0106 2 -
2 8
1 0.0005 0.0064 2 -
3 9
1 0.0002 0.0038 3 -
Figure 1: Convergence behavior corresponding to N 0
1 0.0001 0.0023
a, = 30 for 20 steps. 5

Example (4.2): Let B = [—180,180], T,S:B —
B be a map defined by Ta = acosa and Sa =

% vV a € B. Choose a,, = i,ﬁn = % V n with
initial value a; = 30 . The two iteration scheme
converge to the same fixed point a* = 0 .It’s
clear from table 2, that Picard-Mann converges
faster than Liu et al.

Figure 2: Convergence behavior corresponding to
a,; = 30 for 30 steps.

Table 2: Numerical results corresponding to
a; = 30 for 30 steps Finally, it is appropriate to ask a question about
the possibility of employing the above results in
finding solutions to problems such in [19] and
[20]
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