Electrochemical Behaviour of Benzylidene acetophenone and Its Derivatives in methanol at 298.16K

Laith Waad Allah Abd Allah

Dept. Of pharm chem., College of pharmacy., Uni. of Tikrit, Tikrit, Iraq (Received: 15 / 5 / 2011 ---- Accepted: 27 / 9 / 2011)

Abstract

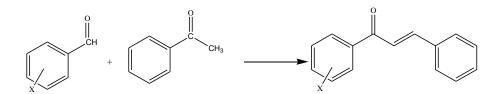
Molar conductance (Λ) of an aqueous solution of benzylidene acetophenone and its derivatives has been determined through accurate conductance measurements. The obtained data were analyzed in accordance to Lee-Wheaton equation taking into account the activity of the electrolyte in the solution. The conductance measurement results were used to determine the association constants (K_A) of ion-pairs, the main distance between ions in solution (R), in addition to the molar conductance at infinite dilution (Λ_O) for the free ion in solution at the best fit value of ($\sigma\Lambda$).

Keyword: Benzylidene acetophenone, conductivity, Lee Wheaton equation. Association constant.

Introduction

The possible importance of such properties as solubility, partition coefficients, surface activity, degree of dissociation of the pH at the body fluid ,interatomic distances between functional groups, redox potential (reduction-oxidation),hydrogen bonding, dimensional factor chelation and the spatial configuration of the molecule are worthy of consideration⁽¹⁾.

A classic electro analytical technique that finds application in a variety of chemical and biochemical studies is a measurement of solution conductance. For example determination of ionic strengths of solutions, monitor dissolution kinetics and the approach to equilibrium for partially soluble salts, determine critical micelle concentration, follow the course of some enzymatic reaction, as well as to provide basic thermodynamic data of other electrolyte solution from association constant.⁽²⁾ The conductivity of the complex of (8-hydroxyquinoline) with some transition and alkaline earth metals in methanol were measured, Lee-Wheaton conductance equation was used to analyze the experimental data, and it was found that this equation is very applicable for such type of complexes⁽³⁾. The electrical conductivity of the water solutions of o-benzenedisulfonate, mbenzenedisulfonate, 2,6-naphthalenedisulfonate with $[Fe(phen)_3]^{2+}$ was measured at temperatures from 0 °C to 50 °C, to obtain the detailed thermodynamic information of the ion association and examine the nature of the interkaction in these solutions.⁽⁴⁾ The electrical conductivity of (Tetracycline, Genlamycine, and stretomycine) complexes with (Ca,Mg,and Fe) have been studred to determine the association


constant K_A , equivalent conductance(Λ_O) at infinit dilution and the distance parameter R at best fit values of ($\sigma\Lambda$) which give agood information abouth the interaction in solution.⁽⁵⁾ Measurements of the electrical conductivity of the compounds 2-(2,4dichlorophenoxy methyl-5-(3-chlorophenyl)-1,3,4oxadiazole and 2,5-di(2,4-dichlorophenoxy methyl)-1,3,4-oxadiazole in mixture of methanol water as a solvent at different percentages were analyzed by using Lee-Wheaton equation, the values of Λ_o , K_A and R are calculated⁽⁵⁾.

Experimental

All chemicals were obtained from the usual commercial suppliers and used without further purification. Melting points were measured on electro thermal melting point apparatus 9300 and were uncorrected. The IR spectra (using KBr disc) were recorded with Shimatzu FT/IR spectrophotometer. UV-Visible spectra were measured for ethanolic solutions (25°C) with Zeius PMQ II manual spectrophotometer using matched 10 mm fused silica cells . Conductivity measurements were performed using Jenawy PCM3 conduct meter.

General procedure for preparation of substituted Benzylidene acetophenone:

To a solution of substituted aldehyeds(0.01 mol) in ethanol (25 mL), a solution of NaOH(6 mL,40%) was added. The reaction mixture was stirred at room temp for a period of 24h, diluted with water (100 mL) and acidified with dil.HCl. The product obtained was filtered, washed with water, and recrystallized from ethanol⁽⁶⁾.

X=1-H,2-P-Cl,3-P-NO2,4-m-NO2,5-P-CH3O,6-P-Br,7-P-CH3

No.	Name of compound	$m.p(C^{\circ})$	Wt(gm)	colour	%
1	benzylidene acetopheneone	55-58	5.3	Yellow faint	60
2	p-chloro benzylidene acetopheneone	102-106	7.00	Greenish-yellow	63.6
3	p-nitro benzylidene acetopheneone	161-165	3.2	Yellow deep	64
4	m-nitro benzylidene acetopheneone	143-146	4.7	Green faint	60
5	p-methoxy benzylidene acetopheneone	72-75	4.5	Green faint	68
6	p-bromo benzylidene acetopheneone	121-124	1.9	Green faint	58.5
7	p-methyl benzylidene acetopheneone	95-97	3.6	Green faint	70

Table(1): Physical properties of substituted benzylidene acetopheneone

No.	C=O		C=C	C=C arom	Others
1		1663	1606	1573	
2	1659		1595	1565	C-cl=631
3	1658		1595	1560	NO ₂ asmy=1514
					NO ₂ smy=1335
4	1660		1607	1555	NO ₂ asmy=1528
					NO ₂ smy=1349
5	1656		1595	1512	C-O-C=1215
6	1657		1604	1545	C-Br=550
7	1664		1605	1490	

Conductivity measurements

The conductivity water was prepared by distilling the water twice to give conductivity water of specific conductance 2×10^{-6} µs. The cell constant for the conductive cell was measured according to method of Jones and Bradsaw⁽⁷⁾ (Jones and Bradsaw, 1933), by using standar solution from(0.01 M) KCl solution (BDH reagent), and it was checked regularly and found to be 1.14cm⁻¹. General methods have been used for measuring the conductivity of the electrolytes; the conductivity cell was washed with conductive water, methanol, and dried. The empty cell was weighed, then placed in a thermostated water bath type Haake NK22, with temperature deviation was not greater than ± 0.1 °C. A known amount of deionized water (25 ml) was placed in the cell and the conductivity of the solvent (water) was measured whereupon the cell plus contents, a solution of 10^{-3} M (0.5ml) was injected into the conductivity cell by a syringe and the conductivity was measured. The measurement was repeated after each addition of 0.5 ml of 10^{-3} M of the solution till twelve additions. ⁽⁸⁾

Result and discussion

A series of benzylidene acetophenone (I-VII) were prepared and used to estimate their conductivity. These compounds were prepared from the reaction of benzaldehyde with acetophenone. The structure of these compounds was assigned based on their I.R..UV spectral data.

The measurements of the conductivity of compounds were carried out for their aqueous solutions at room temperature.

The values of the molar conductance (Λ) in deferent concentration of the substituted benzylidene aetophenone (I-VII) were given in Table (1) (A-G). The conductance data obtained in this work were first analyzed in accordance with Lee-Wheaton equation. The correlation between the concentration of the aqueous solution of these compounds and their molar conductance are shown in Fig. (1) (A-G) and they behaves as a weak electrolytes, according to Kaloraoush equation. The oppositely charged ions tend to form ion-pairs in the medium of low relative permitivity.At constant temperature the concentration of free ions (Ca) and ion-pairs C(1- α) are at equilibrium. This state is described by the thermodynamic equilibrium (K) for the ionassociation reaction. Since the ion pairs are nonconducting entities, and the degree of their dissociation (α) can be given by the ratio between the molar conductivity of the electrolyte (Λ) and the free ion (Λ -C α), Then the combination of the expressions for K and α can be given as :

$$\Lambda = \frac{(\Lambda - C\alpha)}{1 + K(C/C^{\circ}) \alpha y^{2} \pm} \dots \dots (1)$$

Where $^{\circ}C = 1$ mole dm⁻³, y± is the main activity coefficient which can be obtained from equation 2

$$y \pm = \exp \frac{Kq}{1+KR} \quad ----- \quad (2)$$

referring to the dissociated part of the electrolyte ,R is the distance parameter which must be the least distance that two free ions can approach before they merge into an ion-pair, or in other words, its the furthest distance that separates two ions. The parameters K and q can be obtained from equation 3 and 4 respectively.

$$K^{2} = 16000 \pi N_{A} qC\alpha \qquad -----(3)$$

$$q = \frac{e^{2}}{8 \pi \epsilon_{\circ} \epsilon_{r} KT}$$

If it is assumed that the dissociated part of the weak electrolyte acts like a completely hypothetical dissociated strong electrolyte of the same type, $\Lambda_{C\alpha}$ can be replaced by any theoretical equation for conductivity in order to make a conductivity model,

which was founded to be the Lee-Wheaton equation (5).

$$\Lambda_{c\alpha} = \Lambda_{\circ} [1 + C_1(KR)(\varepsilon K) + C_2(KR)(\varepsilon K)^2 + C_3(KR) (\varepsilon K)^3] - (\rho K)/$$

$$(1+KR)[1+C_4(KR)(\epsilon K) + C_5(KR)(\epsilon K)^2 + (KR)/12] --$$

----(5)

where the concentration dependent terms are both the plasma parameter (EK) and (KR), while the concentration coefficients ε , K and ρ can be obtained from equation 6-8 respectively.

$$\begin{aligned} \varepsilon &= Zi_1^2 e^2 / DKT \quad ------(6) \\ K^2 &= 8 \pi \text{ Ne}^2 \quad Zi_1^2 C/1000 \quad DKT \quad ------(7) \\ \rho &= F \zeta e \quad Z \quad 13 \pi \eta \quad -------(8) \end{aligned}$$

Where F is the Faraday constant (9.6486 x $10^4)$, ζ is conversion factor (volt \rightarrow the а e.s.u.)=1/299.7925, and all other terms have previously been defined in details Lee Wheaton, 1978) ⁽⁹⁾.

$\bigwedge_{(ohm^{-1}.equiv^{-1}.cm^2)}$	$\sqrt{conc.} \times 10^2$	$10^5 \times \text{Conc}$ (mole/L)
44.2	0.006202	3.8461
33.6	0.007524	5.6603
25.7	0.008607	7.4074
22.0	0.009535	9.0909
19.6	0.010351	10.7142
18.4	0.011082	12.2807
17.4	0.011744	13.7931
16.6	0.012351	15.2542
16.5	0.01291	16.6666
16.0	0.013429	18.0327
15.8	0.013912	19.3548
15.5	0.014365	20.6349
15.3	0.01479	21.875
15.1	0.015191	23.0769

Table(3) A: The measurement of equivalent conductivity of benzylidene acetophenone

Table (3) B: The measurement of equivalent conductivity of Para chloro benzylidene acetophenone

$\bigwedge^{\Lambda} (ohm^{-1}.equiv^{-1}.cm^2)$	$\sqrt{conc.} \times 10^2$	10 ⁵ ×Conc (mole/L)
15.8	0.010351	10.7142
13.8	0.011082	12.2807
13.0	0.011744	13.7931
12.4	0.012351	15.2542
12.0	0.01291	16.6666
11.6	0.013429	18.0327
10.8	0.013912	19.3548
10.6	0.014365	20.6349
10.5	0.01479	21.875
9.9	0.015191	23.0769

$\bigwedge^{\Lambda} (\mathbf{ohm}^{-1}.\mathbf{equiv}^{-1}.\mathbf{cm}^2)$	$\sqrt{conc.} \times 10^2$	$10^5 \times \text{Conc}$ (mole/L)
98.99	0.008607	7.4074
93.33	0.009535	9.0909
89.57	0.010351	10.7142
87.0	0.011082	12.2807
85.22	0.011744	13.7931
83.99	0.012351	15.2542
83.18	0.01291	16.6666
82.45	0.013429	18.0327
81.34	0.013912	19.3548
80.8	0.014365	20.6349
67.99	0.01479	21.875
65.36	0.015191	23.0769

Table (3) C: The measurement of equivalent conductivity of Para nitro benzylidene acetophenone

Table (3) D: The measurement of equivalent conductivity of meta nitro benzylidene acetophenone

$\bigwedge^{\Lambda} (ohm^{-1}.equiv^{-1}.cm^2)$	$\sqrt{conc.} \times 10^2$	10 ⁵ × Conc (mole/L)
54.94	0.008607	7.4074
48.85	0.009535	9.0909
46.66	0.010351	10.7142
45.3	0.011082	12.2807
43.67	0.011744	13.7931
42.3	0.012351	15.2542
41.99	0.01291	16.6666
40.36	0.013429	18.0327

Table (3) E: The measurement of equivalent conductivity of para methoxy benzylidene acetophenone.

$\begin{bmatrix} \Lambda \\ (ohm^{-1}.equiv^{-1}.cm^2) \end{bmatrix}$	$\sqrt{conc.} \times 10^2$	10 × Conc (mole/L)
67.49	0.008607	7.4074
65.33	0.009535	9.0909
58.0	0.010351	10.7142
52.44	0.011082	12.2807
48.0	0.011744	13.7931
46.49	0.012351	15.2542
43.61	0.01291	16.6666
41.67	0.013429	18.0327
41.1	0.013912	19.3548
39.94	0.014365	20.6349
39.41	0.01479	21.875
38.5	0.015191	23.0769

$ \begin{array}{ c } \Lambda \\ (ohm^{-1}.equiv^{-1}.cm^2) \end{array} $	$\sqrt{conc.} \times 10^2$	$10^5 \times \text{Conc}$ (mole/L)
	0.000 f0 -	
94.5	0.008607	7.4074
88.0	0.009535	9.0909
81.0	0.010351	10.7142
72.5	0.011082	12.2807
66.0	0.011744	13.7931
61.0	0.012351	15.2542
58.1	0.01291	16.6666
56.7	0.013429	18.0327
55.1	0.013912	19.3548
52.8	0.014365	20.6349
52.5	0.01479	21.9000

Table (3) F: The measurement of equivalent conductivity of Para bromo benzylidene acetophenone.

Table (3) G: The measurement of equivalent conductivity of Para methyl benzylidene acetophenone.

$ \begin{array}{c} \Lambda \\ (\mathbf{ohm}^{-1}.\mathbf{equiv}^{-1}.\mathbf{cm}^2) \end{array} $	$\sqrt{conc.} \times 10^2$	10 ⁵ × Conc (mole/L)
88.0	0.008607	7.4074
84.0	0.009535	9.0909
81.4	0.010351	10.7142
79.7	0.011082	12.2807
78.0	0.011744	13.7931
76.0	0.012351	15.2542
74.0	0.01291	16.6666
72.3	0.013429	18.0327
72.0	0.013912	19.3548
71.7	0.014365	20.6349
71.0	0.01479	23.0769

Table (4): The result of analysis of derivatives benzylidene acetophenone.

Compount	R×10 ⁻⁸	KA	Λ ⁰	бл
unsubstituted	9.0	9802	53.27	0.003
p- methoxy	10	7477	143	0.003
p- methyl	9.5	4416	111.5	0.001
p- chloro	14	30897	105	0.004
P- Bromo	13	29679	115	0.005
m- nitro	10	12162	82.23	0.0015
p- nitro	10	5429	128.27	0.001

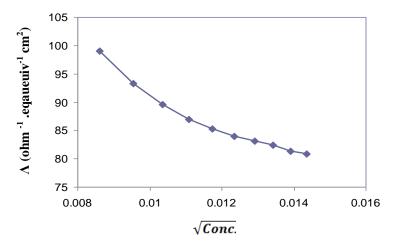


Figure (1) A:- The relation between the square root of conc. Against the equivalent conductance of benzylidene acetophenone.

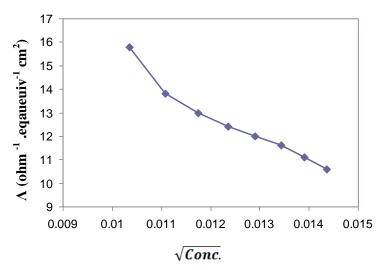


Figure (1) B:- The relation between the square root of conc. Against the equivalent conductance of Para chloro benzylidene acetophenone.

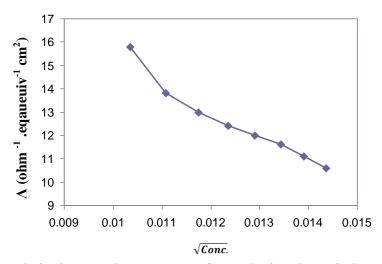


Figure (1)C :- The relation between the square root of conc. Against the equivalent conductance para nitro benzylidene acetophenone.

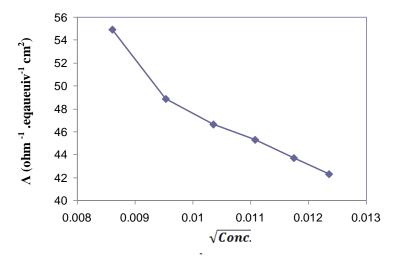


Figure (1) D:- The relation between the square root of conc. Against the equivalent conductance of meta nitro benzylidene acetophenone.

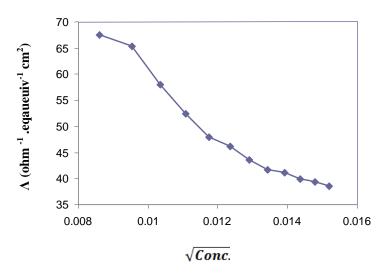


Figure (1)E :- The relation between the square root of conc. Against the equivalent conductance para methoxy benzylidene acetophenone.

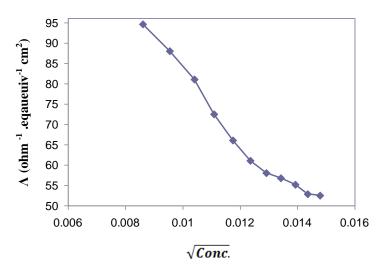


Figure (1)F :- The relation between the square root of conc. Against the equivalent conductance para bromo benzylidene acetophenone.

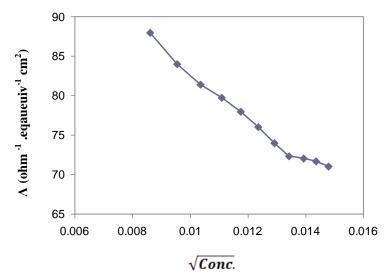


Figure (1)G :- The relation between the square root of conc. Against the equivalent conductance Para methyl benzylidene acetophenone.

The value of K_A , Λ_o , R of the aqueous solution the compounds (I-VII) at 298.16K were shown in Table 2. Close inspection of this table shows that all values of K_A follow the sequence p-Cl, p-Br >m-Nitro > unsubstituted >

p-methoxy > p-Nitro > p-methyl. This diversity of the values of K_A may be attributed to the short range interaction and the H-bonding that formed (Yokoyama, H.,1992)⁽³⁾.

The differences in the K_A values with respect to the above substituent's are explicable in terms of their abilities to form hydrogen bonding and ion-solvent interaction, in addition to their electron donating and with -drawing abilities, since the increase in donor properties of the substituent's will lead to the decrease of association and vice versa. The electrons drawing ability of any group, result in delocalization of the electron density between the substituent's and rest the molecule and accordingly enhances the polarizability

References

1- Coury .L. " Biochemistry System " Inc., Coury bioanalytical, **1999**.

2- Wilson and Gisvolds "Text book of organic Medicinal and Pharmaceutical chemistry Twelfth edition **2011 p12**.

3- Akrawi, B.-A.; Sarsem, L.-A. Raf. J. Soc, 2001, 12, (2), 17.

4- Yokoyama H.; Ohta T.; Iida M. Bull. Chem. Soc. Jp. **1992**, 65, 2901

5- Y.O.AL-ALLaf,R.T. Homeed, H.A. AL -Tai study the biological activity of some antibiotics and their complexes, with som metals Tikrit Journal of pharmaceutical science 2009,5(1): pp 33 -43.

of the molecule, giving rise for more association to take place.

Conclusion:

in this study we went to determine the conductivity behavior of the compound understudy to determine their association constant, equivalent conductance of infinite dilution and the main distance parameters between two solvated ion in solation which gives arecel indication about ion - ion and ion - solvent interaction in solution and to study the behavior of each compound to know the difference in behavior from one to another because of their difference in substitution at room temperature and to examine thier conductivity which is known as weak electrolytes and to apply the Lee - Wheaton equation which is the best equation and modern once in determination of the physical constants (KA, Λ^{o} , R) of the compound under study.

6-B.A. Akrawi, Raf. Jour. Sci, 13, 1, (2002), 63-70

7- Arthur .I.Vogel."Practical Organic Chemistry "Third edition 1956 p718.

8-Jones,G.and Bradsaw,B.C.,**1933**. The measurement of conductance of electrolytes ,J.Amer.Chem.Soc.55,1780-1795.

9-Akrawi,B.A.,and Sarsem,L.A.2001,The electrolytic conductivity of Oxine with transition alkaline earth chloride complexes in methanol at 25°C ,Raf.Jour.Soc vol 12,No.2,PP17-27.

10-Lee, W.H.and Wheaton, R.J., **1978** conductance of symmetrical , unsymmetrical and Mixed Electrolytes ,J.Chem.Soc.Faraday Trans .II, 74, 743.

سلوك الكيمياء الكهربائى للبنزيليدين اسيتوفينون ومشتقاته فى الكحول المثيلى عند درجة حرارة

298.16 كلفن

ليث وعدالله عبدالله

فرع الكيمياء الصيدلانية ، كلية الصيدلة ، جامعة تكريت ، تكريت ، العراق (تاريخ الاستلام: 15 / 5 / 2011 ---- تاريخ القبول: 27 / 9 / 2011)

الملخص

تم تقدير التوصيل المولاري (Λ) للمحلول المائي للبنزيليدين اسيتوفينون مع مشتقاته من خلال دقة قياسات التوصيليه . النتائج التي تم الحصول عليها مطابقة لمعادلة لي ويتون مأخوذا بنظر الاعتبار فعالية الالكتروليت في المحلول.أستعملت نتائج قياس التوصيليه لتقدير ثابت الترابط للأيونات المزدوجة (KA) والمسافة الرئيسية بين الأيونات في المحلول (R) بالأضافه إلى التوصيل المولاري بالتخفيف اللانهائي للأيون الحر في المحلول(Λο) كانت ملائمة لقيم (σΛ) .