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Abstract 
In this paper, a three dimensional autonomous chaotic system is considered (Liu system) which is discovered by 

the scientist Liu in 2004, we begin to study the new system with a rich structure, we obtained some information 

on stability and bifurcation. We show that this system is unstable at origin while has asymptotically stable under 

the condition 2)( cab   at the other critical points where a,b,c are a positive parameters of this system . 

The system possesses a Hopf bifurcation, finally an illustrative example is given .  
Keywords: Liu system, Stability, Hopf bifurcation, Routh-Hurwitz. 

1- Introduction: 
Dynamic systems described by nonlinear differential 

equations can be strongly sensitive to initial 

conditions. This phenomenon is known as 

deterministic chaos just to mean that, even if the 

system mathematical description is deterministic, its 

behavior proves to be unpredictable[8].Chaos as a 

very interesting complex nonlinear phenomenon has 

been intensively studied in the last three decades 

within the science, mathematics and engineering 
communities [5].In recent years, the study of the 

nonlinear chaotic dynamics is a popular problem in 

the field of the nonlinear science and great progress 

has been made in the research of nonlinear chaotic 

dynamics. In 1963, Lorenz found the first classical 

chaotic attractor in three-dimension autonomous 

system [5]. In 1999, Chen and Ueta found another 

similar but not topological equivalent chaotic 

attractor to Lorenz’s [6]. In 2002, L u  found the 

critical chaotic attractor between the Lorenz and 

Chen attractor [7]. In the same year, L u  et al. unified 

above three chaotic systems into a chaotic system 

which is called unified chaotic system [10].It is 

noticed that these systems can be classified into three 

types by the definition of Vanece and Celikovsky [3]: 

the Lorenz system satisfies the condition 02112 aa , 

the Chen system satisfies 02112 aa , and the L u  

system satisfies 02112 aa ,where 12a  and 21a  are 

the corresponding elements in the linear part matrix 

33)(  ijaA  of the system.In 2004, Liu etc. 

discovered another chaotic system by using physical 

electrical circuits and called Liu system [3,10]. It 

provides a new domain for the study of chaotic 

system.The nonlinear differential equations that 

describe the Liu system are 
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Where a, b, c, k and h are a positive parameters. It has 

a chaotic attractor. According to the critical term 

2112aa   which was proposed by Vanece and 

Celikovsky: The Liu system satisfies the condition 

02112 aa . The chaotic attractor obtained from this 

system is also the butterfly-shaped attractor. This 

attractor is similar but not equivalent to the Lorenz 

chaotic attractor. The third differential equation has 

one quadratic item that can produce folding 

trajectories [3]. In the following we briefly describe 

some basic properties of the system (1). 

1-Symmetry and invariance: 
First, we note that the system (1) has a symmetry S 

because the transformation 

),,(),,(: zyxzyxS    (2) 

Which permits system invariant for all values of the 

system parameters a, b, c, k and h . Obviously, the z-

axis itself is an orbit [4]. 

2- Dissipative:   
The system can be a dissipative system, because the 

divergenence of the vector field, also called the trace 

of the Jacobian matrix is negative if and only if the 

sum of the parameters a and c is positive, that is 
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So, the system will always be dissipative if and only 

if when 0 ca   with an exponential rate: 

)( cae
dt

Vd 



  [9] . 

In [4] studied the stability and bifurcation for a new 

Lorenz-Like system by method of nonlinear 

dynamics theory. and [9] studied stability and 

bifurcation for the system derived from the Lorenz 

system while in [3] studied the problem of Slow 
Manifold Analysis and adaptive control for Liu 

system finally, [10] investigated the method for 

controlling the uncertain Liu system with known 

parameters k and h via backstopping control. In this 

paper, we study the stability and bifurcation for the 

Liu chaotic system by depended on the roots to 

determine the stability at origin, while depended on 

the Routh-Hurwitz method to determine the stability 

and bifurcation on other critical points, and found this 

system is unstable always at the origin also we find 

the critical value 0b  of this system.  
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Figure 1: the attractor of Liu system when 

1,4,5.2,40,10  khcba  
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Figure 2: the attractor of Liu system when 

1,4,5.2,68,10  khcba  

2- Helping Results: 

In the context of ordinary differential equations 

ODEs the word "bifurcation" has come to mean any 

marked change in the structure of the orbits of a 

system (usually nonlinear) as a parameter passes 
through a critical value[2].The theory of bifurcations 

of parameterized dynamical system is well known. 

One consider a vector field  
nRxRxfx  ,)( 

    (4) 

Depending on a parameter   the critical point of the 

vector field are those 00 ,x   such that 

.0)( 00 xf  

Perhaps the most important property of critical point 

is its stability. In the first approximation, which is 

determined by stability of its liberalized system  

around 00 ,x  

nRxRxfDx  0000 ,)( 
  (5) 

Where )( 00 xfD 
is the Jacobian matrix of   f  [1]. 

Theorem1 (Hopf Bifurcation theorem)[1] 
Suppose that the system 

nRxRxfx  ,,)( 
  has critical point 

),( 00 x ,then this system has a Hopf  bifurcation  if 

the following properties are satisfied: 

1- )( 00 xfD   has a simple pair of pure imaginary 

eigenvalues and no other eigenvalues with zero real 
parts. 

2-  0)))((Re(
03/2 


d

d

d





  

Remark 1[1]: 

Let 023  CBA    be the characteristic 

equation for a three-component system, where 

CA ,  indicate the trace and determinant rest, then 

a Hopf bifurcation takes place of the transit through 

the surface 

CBA .    if       0,, CBA   (6) 

This condition is a necessary condition for a Hopf 

bifurcation. 

3- Main result: 

Solving the three equations 0 zyx    we get 

that system (1) has three critical points  

,),,(,)0,0,0(
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Theorem 2: The critical point  )0,0,0(O   is always 

unstable. 

Proof:  At the critical point )0,0,0(O , is linearized, 

the Jacobian matrix of system (1) is defined as;  


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The characteristic equation is: 

0)()()( 23  abcabaccaf       (8) 

0r    0)(.)( 2  abac      (9) 

and three eigenvalues corresponding to the critical 

pointO   are: 

2

)4(
, 3,21

baaa
c





  

So, it's clear that if )4( baaa  , then 

0,0 32   , But this is impossible for 0b  

since when 

)4( baaa  )4(2 baaa  0 b  (C!) 

contraction ,while )4( baaa   then 

0,0 32   .consequently the critical point 

)0,0,0(O  is always unstable. This completes the 

proof. In the following, we consider the stability of 

the system (1) at the critical points A   and A  , 

Because the system is invariant under the 

transformation, so one only needs to consider the 

stability of any one of the both . The stability of the 

system (1) at critical point A  is analyzed in this 

paper. Under the linear transformation  

),,(),,( ZYXzyx  : 
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the system (1) becomes 
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The critical point A  of the system (1) is swiched to 

the new critical point )0,0,0(O of the system 

(11) under the linear transformation, in the following, 

the stability of system (11) at the critical point 

)0,0,0(O  is considered.The Jacobian matrix of 

the system (11) at )0,0,0(O  is:  
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and the characteristic equation is : 

0)( 23  CBAf     (13) 

Where 

abcC

acB

caA

2


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Theorem 3:  
The critical 

points
,),,(
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hk
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are: 

1)   Asymptotically stable        if     2)( cab  ,  

2)   Unstable  if     2)( cab   , 

3)  Critical cases (bifurcation) if    2)( cab   .  

Proof:  
Using Routh-Hurwitz criterion, the equation (13) has 
all roots with negative real parts if and only if the 

conditions are satisfied as follows  

0

0







C

CAB

A
   (14) 

Sinse   caA    and  a , b and c are a positive 

parameters, consequently 0A   always and 

0C  also , we must prove that  CAB   

therefore abcacca 2)(   

2)(2 cabbca   , the 

proof of first condition is completed, while if 

2)( cab     then one of Routh-Hurwitz 

conditions not satisfied, consequently the system (1) 

is unstable, finally if 2)( cab     then satisfied 

remark 1, hence the system (1) is critical case 

(bifurcation) the proof is completed. 

Proposition 1: Equation (13) has purely imaginary 

roots if and only if  
0

2
,0 b

ca
bb 




( 0b  is 

critical value of Liu system) . In this case the 

solutions of equation (13) are )(1 ca  , 

aci3,2   . 

Proof: If  iw3,2   are the complex solutions and 

1  the real solution of equation (13) then, from 

)(321 ca  )(1 ca  . This easily 

leads to 
2

)(
,0

ca
bb




  and 

)(1 ca , aci3,2 . 

We will use the following Corollary, which enables 

us to find the value b   directly without using 

transformation. 

Corollary1: 









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f
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b

    ,   where   0bb   a critical value of 

system (1) 

Hopf bifurcation may appear only at the critical 

points A  or A  .Due the symmetry of A  and A . 

the following we will prove that the system (1) 

display a Hopf bifurcation at the point A . For 

2

)(
0
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bb


  the point A  loses its stability. 

Theorem 4: If 
2

)( ca
b




 , equation (13) has a 

negative solution 0)(1  ca  together with a 

pair of purely imaginary roots aci3,2  such 

that 0))(Re( 0  bb , therefore the system (1) 

displays a Hopf  bifurcation at the point A   . 

Proof: If 
2

)( ca
b


  the equation (13) is 

transformed into  

    0)( 2  acca   

with solutions )(1 ca , aci3,2  
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 Substituting   aci3,2   , the real part and 

imaginary part of the )( 0bb  respectively are: 
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Consequently, the system (11) displays a Hopf 

bifurcation at )0,0,0(O , so the system (1) 

displays a Hopf bifurcation 

at
.),,(
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4 - Illustrative Example: 
Example: Investigate for stability and Hopf 

bifurcation of the following Liu system at A  

264
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xzxy

xyx
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
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 Solution:  

Stability at origin:  

31,4,2 0  bandbca   and the 

characteristic equation of Liu system is of the form: 
0866 23     , 

So 41   

313,2    therefore ,0,0 32   then the 

system (1) is unstable. 

Stability at A : 

the characteristic equation of Liu system is of the 

form: 01686 23    

then the system (1) is asymptotically stable since  

0bb     , by theorem 3, first condition . 

Hopf bifurcation at A : 

1f 33 0  bandb  and the characteristic 

equation is of the form: 04886 23      

then system (1) is a  Hopf bifurcation since  0bb     

, by theorem 3 ,third condition ,and the roots 

are 61  , 223,2 i   by proposition 1. 

5 - Conclusion: 
In this paper, a new three dimensional Liu chaotic 
system has been studied, there are obtained some 

information on stability and bifurcation. and we 

conclusion that this system is unstable at origin while 

has asymptotically stable under the condition 

2/)( cab   in the other critical points where a,b,c 

are a positive parameters of this system. We prove 

that Hopf bifurcation occurs when the bifurcation 
parameter passes through the critical 

value 2/)(0 cab  ,finally we found the parameters 

k and h do not effected on the stability and 

bifurcation.  
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 Liuالمضطرب نظام الاستقرارية والتشعب ل
 سعد فواز جاسم العزاوي

 جامعة الموصل , الموصل , العراق , كلية العلوم الحاسوب و الرياضيات , الرياضياتقسم 
( 7122/  21/  72   تاريخ القبول: ---- 7122/  3/  72   تاريخ الاستلام:)   

 الملخص
, و قمناا  4002فاي ااام  Liuالمكتشا  ماق قبال العاالم   Liu لإبعاد  هو نظاام في هذا البحث تم التطرق الى نظام مضطرب مستقل ذاتيأ ثلاثي ا

انادا نقطااة  ربدراساة النظاام الجدياد  ماك تركيبان ال ناي,  وحصالنا الاى بعاا المعلوماات فاي ااساتقرارية والتشاعب , لذ تبايق بااق النظاام  يار مساتق
)(2الأصل بينما يكاوق مساتقرا  محااذن انادا النقااط الحرجاة الأتارل تحات الشارط  cab    حياثa   ,b  ,c  هاي معااملات موجباة ل اذا

 وأتيرا تم لاطاء مثال توضيحي  . ,النظام وبالإضافة الى ذلك فاق النظام يملك نقطة تشعب 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


