Contra-Continuous Functions in Bitopological Spaces

Payman M. Mahmood¹, Khawlah A. Mustafa², Jaufar M. Mohammed¹

¹ Dep. of Statistics, College of Administration and Economics, Kirkuk University, Kirkuk, Iraq

² Dep. of Mathematics, College of Science, Kirkuk University, Kirkuk , Iraq

(Received: 26 / 12 / 2011 ---- Accepted: 13 / 3 / 2012)

Abstract

The aim of this paper is to define and study contra-continuous functions and some other forms of continuity such as perfect continuity, LC- continuity and RC- continuity in bitopological spaces and investigate the relations between contra-continuity and these kinds of continuity and their effects on some kinds of spaces such as locally indiscrete space, semi locally indiscrete and pre- locally indiscrete in bitopological spaces.

Key words: ij-contra-continuous function, ij-perfectly continuous function, ij-LC- continuous function, ij-RC- continuous function, ij- locally indiscrete space, ij-semi locally indiscrete space and ij-pre- locally indiscrete space.

1. Introduction

In 1963, J.C. Kelly [9] was first introduced the concept of bitopological spaces, where X is a nonempty set and τ_1, τ_2 are topologies on X. In 1992, F. H. khedr and S. M. Al.Areefi [8] introduced the concept pairwise precontinuous functions and pairwise semi precontinuous functions. In 1996, J. Dontchev [4] introduced the concept of contracontinuity in topological spaces.

In this paper we introduced and study new concept of a contra-continuity in bitopological spaces and some other forms of continuity such as perfect continuity, LC- continuity and RC- continuity in bitopological spaces. Finally we study and investigate the relations between contra-continuity and these kinds of continuity and their effects on some kinds of spaces such as locally indiscrete, semi locally indiscrete and pre- locally indiscrete in bitopological spaces.

2. Preliminaries

Let (X, τ_1, τ_2) or simply X be a bitopological space. For any subset $A \subseteq X$, $\tau_i - int(A)$ and

On each statement above, $i \neq j$ and i, j = 1, 2.

Definition 2.3: [8] Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be a bitopological space. A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

(a) pairwise continuous if $f^{-1}(U)$ is τ_i — open set in (X, τ_1, τ_2) for each σ_i — open set U of $(Y, \sigma_1, \sigma_2), i = 1, 2,$

(b) pairwise semi continuous if $f^{-1}(U)$ is $\tau_i \tau_j$ – semi open in (X, τ_1, τ_2) for each σ_i – open set U of (Y, σ_1, σ_2) , $i \neq j$ and i, j = 1, 2, $\tau_i - cl(A)$ denote the interior and closure of a set A with respect to the topology τ_i , respectively.

Definition 2.1: A set A of a bitopolgical space (X, τ_1, τ_2) is called

(a) $\tau_1 \tau_2$ - semi open [1] if $A \subseteq \tau_2 - cl(\tau_1 - int(A))$ and $\tau_1 \tau_2$ - semi closed if $\tau_2 - int(\tau_1 - cl(A)) \subseteq A$.

(b)
$$\tau_1 \tau_2$$
 - preopen [8] if $A \subseteq \tau_1 - \operatorname{int}(\tau_2 - cl(A))$
and $\tau_1 \tau_2$ - preclosed if $\tau_1 - cl(\tau_2 - \operatorname{int}(A)) \subseteq A$.

(c)
$$\tau_1 \tau_2 - \beta$$
 - open or $\tau_1 \tau_2$ - semi preopen [8] if
 $A \subseteq \tau_2 - cl(\tau_1 - int(\tau_2 - cl(A)))$ and $\tau_1 \tau_2 - \beta$ - closed or
 $\tau_1 \tau_2$ - semi preclosed if $\tau_2 - int(\tau_1 - cl(\tau_2 - int(A))) \subseteq A$.
(d) $\tau_1 \tau_2$ - regular open [3] if $A = \tau_1 - int(\tau_2 - cl(A))$
and $\tau_1 \tau_2$ - regular closed [3] if $A = \tau_1 - cl(\tau_2 - int(A))$.
(e) $\tau_1 \tau_2$ - locally closed [2] if $A = G \cap F$ where G

is τ_1 – open and F is τ_2 – closed.

Remark 2.2: [8] The following implications hold:

$$\tau_i \tau_j$$
 – semi open (semi closed)

 $\tau_i \tau_j$ – semi preopen (semi preclosed)

(c) pairwise precontinuous if $f^{-1}(U)$ is $\tau_i \tau_j$ – preopen in (X, τ_1, τ_2) for each σ_i – open set U of (Y, σ_1, σ_2) , $i \neq j$ and i, j = 1, 2,

(d) pairwise semi precontinuous or pairwise β - continuous if $f^{-1}(U)$ is $\tau_i \tau_j$ - semi preopen in (X, τ_1, τ_2) for each σ_i - open set U of $(Y, \sigma_1, \sigma_2), i \neq j$ and i, j = 1, 2.

Remark 2.4: [8] The following implications hold:

Definition 2.5: [7] А function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is called ij-perfectly continuous or ij-strongly continuous if $f^{-1}(U)$ is both τ_i - closed and τ_i - open in (X, τ_1, τ_2) for each σ_i – open set U of (Y, σ_1, σ_2) , $i \neq j$ and i, j = 1, 2.

3. Pairwise Contra-Continuous Functions

First we recall the following known definitions. **Definition 3.1:**

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is called (a) pairwise *LC* – continuous if $f^{-1}(U)$ is $\tau_i \tau_i$ - locally closed in (X, τ_1, τ_2) for each σ_i - open set U of (Y, σ_1, σ_2) , $i \neq j$ and i, j = 1, 2. RC – continuous if $f^{-1}(U)$ is (b) pairwise $\tau_i \tau_j$ - regular closed in (X, τ_1, τ_2) for each σ_i - open set U of (Y, σ_1, σ_2) , $i \neq j$ and i, j = 1, 2.

Definition 3.2: function А $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is called ij-contracontinuous if $f^{-1}(U)$ is τ_i - closed set in (X, τ_1, τ_2) for each σ_i – open set U of $(Y, \sigma_1, \sigma_2), i \neq j \text{ and } i, j = 1, 2.$

f is said to be pairwise contra-continuous if it is both ij-contra-continuous and ji-contra-continuous . Example 3.3:

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{b\}, \{a, b\}\}, \tau_2$. $= \{ \phi, X, \{b, c\} \}$

 $Y = \{1, 2, 3\}, \sigma_1 = \{\phi, Y, \{1\}\}, \sigma_2 = \{\phi, Y, \{2\}\}$. Let $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ be a function defined by f(a) = 1, f(b) = 3, f(c) = 2. Then f is pairwise contra-continuous.

Remark 3.4: In fact ij-contra-continuous and jcontinuity are independent notions. Example 3.3 above shows that ij-contra-continuous function need not be j-continuous while the reverse is show in the following example.

Example 3.5: A j-continuous function does not imply ij-contra-continuous function. Let $X = \{a, b, c\} \,, \, \tau_1 = \{\phi, X \,, \{a\}, \{a, c\}\} \,, \, \tau_2 = \{\phi, X \,, \{c\}\}$, $Y = \{1, 2, 3\}$, $\sigma_1 = \{\phi, Y, \{1\}\}$, $\sigma_2 = \{\phi, Y, \{2\}\}$. Let $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ be a function defined by f(a) = 1, f(b) = 3, f(c) = 2. Then f is 1continuous but not 21-contra-continuous, since $\{1\}$ is σ_1 -open set in Y but $f^{-1}(\{1\}) = \{a\}$ is not

Pairwise semi precontinuity

 τ_2 - closed in X and 2-continuous but not 12contra-continuous, since $\{2\}$ is σ_2 -open set in Y but $f^{-1}(\{2\}) = \{c\}$ is not τ_1 - closed in X. Theorem 3.6:

A function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$, the following are equivalent for:

- (1) f is ij-contra-continuous.
- (2) For each $x \in X$ and each σ_i closed set V in Y with $f(x) \in V$, there exists an τ_i – open set U in X such that $x \in U$ and $f(U) \subset V$.
- (3) The inverse image of each σ_i closed set in Y is τ_i – open set in X.

On each statement a above, $i \neq j$ and i, j = 1, 2. **Proof:** (1) \rightarrow (2): Let $x \in X$ and V be σ_i - closed set in Y with $f(x) \in V$, then V^c is σ_i – open set in Y. Since f is ij-contra-continuous, we have $U^{c} = f^{-1}(V^{c}) = (f^{-1}(V))^{c}$ is τ_{i} - closed set in X. Hence, $U = f^{-1}(V)$ is τ_i - open set in X such that $f(U) \subset V$ and $x \in U$.

 $(2) \rightarrow (3)$: This is obvious.

(3) \rightarrow (1): Let V be σ_i – open set in Y, then V^c is σ_i - closed set in Y. Therefore, by our assumption, $f^{-1}(V^c) = (f^{-1}(V))^c$ is τ_i – open set in X . Hence, $f^{-1}(V)$ is au_i - closed set in X , f is ijcontra-continuous.

 $(2) \rightarrow (1)$: This is obvious.

 $(1) \rightarrow (3)$: Let U be σ_i - closed set in Y, then U^c is σ_i – open set in Y. Since f is ij-contracontinuous, we have $f^{-1}(U^c) = (f^{-1}(U))^c$ is τ_i - closed set in X. Consequently, $f^{-1}(U)$ is τ_i – open set in Χ.

Lemma 3.7: [12] Every τ_i – open (τ_i – closed) subset of X is an $\tau_i \tau_i$ – locally closed set.

Lemma 3.8: For a subset A of (X, τ_1, τ_2) , the following are equivalent:-

(1) A is $\tau_1 \tau_2$ – regular closed,

(2) A is $\tau_1 \tau_2$ – preclosed and $\tau_2 \tau_1$ – semi open.

Proof: (1) \rightarrow (2): Let A be $\tau_1 \tau_2$ - regular closed, then $A = \tau_1 - cl (\tau_2 - int (A))$. This implies that $\tau_1 - cl (\tau_2 - int (A)) \subseteq A$ and $A \subseteq \tau_1 - cl (\tau_2 - int (A))$. Hence A is $\tau_1 \tau_2 - preclosed and <math>\tau_2 \tau_1 - semi$ open. (2) \rightarrow (1): This is obvious.

Theorem 3.9: The following implications are valid

Proof: (1) ij-RC-continuous \rightarrow ij-contracontinuous

Let $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ be ij-RCcontinuous. Let U be σ_j - open set in Y, j=1,2. Since f is ij-RC-continuous, $f^{-1}(U)$ is $\tau_i \tau_j$ - regular closed in X, $i \neq j$ and i, j = 1,2. Since every regular closed set is closed, then $f^{-1}(U)$ is τ_i - closed in X, i=1,2. Therefore, f is ijcontra-continuous.

(2) ji-perfectly continuous \rightarrow ij-RC-continuous

Let $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ be ji- perfectly continuous. Let U be σ_j - open set in Y, j=1,2. Since f is ji- perfectly continuous, $f^{-1}(U)$ is both τ_i - closed and τ_i - open in X, i=1,2, then $f^{-1}(U)$ is $\tau_i \tau_j$ - regular closed in X, $i \neq j$ and i, j = 1,2. Therefore, f is ij-RC-continuous. (3) **ji-perfectly continuous** \rightarrow **jj-contra**-

(3) ji-perfectly continuous \rightarrow ij-contracontinuous

Let $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ be ji- perfectly continuous. Let U be σ_j - open set in Y, j=1,2. Since f is ji- perfectly continuous, $f^{-1}(U)$ is both τ_i - closed and τ_i - open in X, i=1,2. Hence $f^{-1}(U)$ is τ_i - closed in X, i=1,2. Therefore, fis ij-contra-continuous.

(4) ij-contra-continuous \rightarrow ji-LC-continuous

Let $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ be ij-contracontinuous. Let U be σ_j - open set in Y, j=1,2. Since f is ij-contra-continuous, $f^{-1}(U)$ is τ_i - closed in X, i = 1,2. By lemma 3.7, $f^{-1}(U)$ is $\tau_j \tau_i$ - locally closed in X, $i \neq j$ and i, j = 1,2. Therefore, f is ji-LC-continuous. (5) j-continuous \rightarrow ji-LC-continuous

Let $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ be j-continuous. Let U be σ_j - open set in Y, j=1,2. Since f is jcontinuous, $f^{-1}(U)$ is τ_j - open in X, j=1,2. By lemma 3.7, $f^{-1}(U)$ is $\tau_j\tau_i$ - locally closed in X, $i \neq j$ and i, j = 1,2. Therefore, f is ji-LCcontinuous.

(6) ji-perfectly continuous \rightarrow j-continuous

Let $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ be ji-perfectly continuous. Let U be σ_j - open set in Y, j=1,2. Since f is ji-perfectly continuous, $f^{-1}(U)$ is both τ_i - closed set and τ_i - open set in X, i=1,2. Therefore, f is j-continuous.

(7) ji-perfectly continuous \rightarrow ji-LC-continuous

Let $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ be ji-perfectly continuous. Let U be σ_j - open set in Y, j=1,2. Since f is ji-perfectly continuous, $f^{-1}(U)$ is both τ_i - closed set and τ_i - open set in X, i=1,2. By lemma 3.7, $f^{-1}(U)$ is $\tau_j\tau_i$ - locally closed in X, $i \neq j$ and i, j = 1,2. Therefore, f is ji-LCcontinuous.

The converse of theorem 3.9 is not true in general. The following counter examples show the cases. **Example 3.10:**

Let $X = Y = \{a, b, c\},\$ $\tau_1 = \{\phi, X, \{a\}, \{a, c\}\},\$ $\tau_2 = \{\phi, X, \{c\}, \{b, c\}\},\$ $\sigma_1 = \{\phi, Y, \{a\}, \{a, b\}\}, \sigma_2 = \{\phi, Y, \{b\}\}.\$ (a) Let $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is 12-contra-continuous but not 21- perfectly continuous, since $\{b\}$ is σ_2 - open set in Y but $f^{-1}(\{b\}) = \{b\}$ is not τ_1 - open set in X. (b) Let $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ as in (a). Then f is 12-contra-continuous but not 2-continuous, since $\{b\}$ is σ_2 - open set in Y but $f^{-1}(\{b\}) = \{b\}$ is not τ_2 - open set in X.

(c) Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ as in (a). Then f is 12-contra-continuous but not 12-RCcontinuous, since $\{b\}$ is σ_2 – open set in Y but $f^{-1}(\{b\}) = \{b\}$ is not $\tau_1\tau_2$ – regular closed in X. (d) Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ be defined by f(a) = f(c) = a, f(b) = c. Then f is 1continuous but not 12- perfectly continuous, since $\{a\}$ is σ_1 – open set in Y but $f^{-1}(\{a\}) = \{a,c\}$ is not both τ_2 – closed set and τ_2 – open set in X. (e) Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ as in (d). Then fis 1-continuous but not 21-RC-continuous, since $\{a\}$ is σ_1 – open set in Y but $f^{-1}(\{a\}) = \{a,c\}$ is not $\tau_2\tau_1$ – regular closed in X.

(f) Let $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ as in (a). Then f is 12- LC-continuous but not 1-continuous, since $\{a,b\}$ is σ_1 -open set in Y but $f^{-1}(\{a,b\}) = \{a,b\}$ is not τ_1 -open set in X.

(g) Let $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ as in (a). Then f is 12- LC-continuous but not 12- perfectly continuous, since $\{a,b\}$ is σ_1 -open set in Y but $f^{-1}(\{a,b\}) = \{a,b\}$ is not τ_2 - open set in X.

(h) Let $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ as in (a). Then f is 12- LC-continuous but not 21-RC-continuous, since $\{a,b\}$ is σ_1 - open set in Y but $f^{-1}(\{a,b\}) = \{a,b\}$ is not $\tau_2\tau_1$ - regular closed in X.

(i) Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ as in (d). Then f is 21- LC-continuous but not 12-contracontinuous, since $\{b\}$ is σ_2 -open set in Y but $f^{-1}(\{b\}) = \{c\}$ is not τ_1 -closed set in X. Example 3.11:

 $\tau_2 = \{\phi, X, \{a\}, \{a, c\}\},\$ $Y = \{1, 2\},\$ Let $\sigma_1 = \{\phi, Y, \{2\}\}, \sigma_2 = \{\phi, Y, \{1\}\}$ defined by $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ be f(a) = f(c) = 1, f(b) = 2. Then f is 21-RCcontinuous but not 12- perfectly continuous, since {2} is σ_1 -open set in Y but $f^{-1}(\{2\}) = \{b\}$ is not both τ_2 – closed set and τ_2 – open set in x. Theorem 3.12: If а function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is ji-contra-continuous and ij- β – continuous, then f is ij-semi continuous. **Proof:** Let U be σ_i – open set of Y, i = 1, 2. Then $f^{-1}(U)$ is τ_i - closed set and $\tau_i \tau_i$ - semi preopen in X, $i \neq j$ and i, j = 1, 2, since f is jicontra-continuous and ij- β -continuous. We have $f^{-1}(U) \subseteq \tau_j - cl(\tau_i - int(\tau_j - cl(f^{-1}(U)))), \text{ since } f^{-1}(U) \text{ is}$ τ_i - closed set then $f^{-1}(U) \subseteq \tau_i - cl(\tau_i - int(f^{-1}(U)))$. This show that $f^{-1}(U)$ is $\tau_i \tau_j$ – semi open in X, $i \neq j$ and i, j = 1, 2. Therefore, f is ij-semi continuous.

Theorem 3.13: If a function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is ji-contra-continuous and ij-precontinuous, then f is i- continuous.

Proof: Let U be σ_i - open set of Y, i = 1, 2. Then $f^{-1}(U)$ is τ_j - closed set and $\tau_i \tau_j$ - preopen in X, $i \neq j$ and i, j = 1, 2, since f is ji-contracontinuous and ij-precontinuous. We have $f^{-1}(U) \subseteq \tau_i - \operatorname{int}(\tau_j - cl(f^{-1}(U))) =$

 $\tau_i - \operatorname{int}(f^{-1}(U))$. This show that $f^{-1}(U)$ is $\tau_i - \operatorname{open}$ in X, i = 1, 2. Therefore, f is i-continuous. **Theorem 3.14:**

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is ij-RCcontinuous if and only if it is ij-contra-continuous and ji-semi continuous.

Proof: "Necessity". Since every ij-RC-continuous function is ij-contra-continuous and every $\tau_i \tau_j$ – regular closed set is $\tau_j \tau_i$ – semi open, ij-RC-continuous functions are ji-semi continuous, $i \neq j$ and i, j = 1, 2.

"Sufficiency". Let U be σ_j -open set of Y, j=1,2. Then $f^{-1}(U)$ is τ_i -closed set and $\tau_j\tau_i$ -semi open in X, $i \neq j$ and i, j = 1,2, since f is ij-contra-continuous and ji-semi continuous. Since every τ_i -closed set is $\tau_i\tau_j$ -preclosed set then $f^{-1}(U)$ is $\tau_i\tau_j$ -preclosed and $\tau_j\tau_i$ -semi

open in X, $i \neq j$ and i, j = 1,2. We have $\tau_i - cl(\tau_j - int(f^{-1}(U))) \subseteq f^{-1}(U) \subseteq \tau_i - cl(\tau_j - int(f^{-1}(U)))$. Therefore, we obtain $\tau_i - cl(\tau_j - int(f^{-1}(U))) = f^{-1}(U)$, this implies that $f^{-1}(U)$ is $\tau_i \tau_j$ – regular closed and hence f is ij-RC-continuous.

Corollary 3.15: A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is ij-RC-continuous if and only if it is ij-contra-continuous and ji- β -continuous.

Proof: This is obvious by theorem above and every $\tau_i \tau_i$ – semi open is $\tau_i \tau_i$ – semi preopen.

Theorem 3.16:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is icontinuous if and only if it is ij-precontinuous and ij-LC-continuous.

Proof: "Necessity". This is obvious.

"Sufficiency". Let U be σ_i - open set of Y, i = 1,2. Then $f^{-1}(U)$ is $\tau_i \tau_j$ - locally closed ($f^{-1}(U)$ is τ_i - open and $f^{-1}(U)$ is τ_j - closed) and $\tau_i \tau_j$ - preopen in X, $i \neq j$ and i, j = 1,2, since f is ij-LC-continuous and ij-precontinuous. We have $f^{-1}(U) \subseteq \tau_i - \operatorname{int}(\tau_j - cl(f^{-1}(U))) = \tau_i - \operatorname{int}(f^{-1}(U))$.

Then $f^{-1}(U)$ is τ_i – open in X. Therefore, f is i-continuous.

Definition 3.17: A bitopolgical space (X, τ_1, τ_2) is called

(a) ij-locally indiscrete if every τ_i - open set of X is τ_i - closed set in X, $i \neq j$ and i, j = 1, 2,

(b) ij-semi locally indiscrete if every $\tau_i \tau_j$ – semi open set of X is τ_j – closed set in X, $i \neq j$ and i, j = 1, 2,

(c) ij-pre-locally indiscrete if every $\tau_i \tau_j$ – preopen set of X is τ_j – closed set in X, $i \neq j$ and i, j = 1, 2.

Example 3.18: Let $X = \{1,2,3\}$, $\tau_1 = \{\phi, X, \{1\}\}$ and $\tau_2 = \{\phi, X, \{2,3\}\}$. Then (X, τ_1, τ_2) is ij-locally indiscrete space, $i \neq j$ and i, j = 1, 2.

The space (X, τ_1, τ_2) in Example 3.10 is not ijlocally indiscrete space, $i \neq j$ and i, j = 1, 2, since $\{a, c\}$ is τ_1 -open set in X but it not τ_2 -closed set in X and $\{c\}$ is τ_2 -open set in X but it not τ_1 -closed set in X. **Theorem 3.19:** Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and $g:(Y,\sigma_1,\sigma_2) \rightarrow (Z,\mu_1,\mu_2)$ be two functions such that $g \circ f:(X,\tau_1,\tau_2) \rightarrow (Z,\mu_1,\mu_2)$. Then

(a) $g \circ f$ is ji-contra-continuous, if g is ji-contracontinuous and f is j-continuous.

(b) $g \circ f$ is ji-contra-continuous, if g is i-continuous and f is ji-contra-continuous.

(c) $g \circ f$ is ji-contra-continuous, if f is j-continuous and g is i-continuous and Y is ij-locally indiscrete.

On each statement a above, $i \neq j$ and i, j = 1, 2.

Proof: (a) Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be jcontinuous and $g: (Y, \sigma_1, \sigma_2) \to (Z, \mu_1, \mu_2)$ be ji-contracontinuous. Let U be μ_i – open set in Z, i = 1, 2. Since g is ji-contra-continuous, $g^{-1}(U)$ is σ_j – closed set in Y. Since f is j-continuous, $(g \circ f)^{-1} = f^{-1}[g^{-1}(U)]$ is τ_j – closed set in X. Therefore, $g \circ f$ is ji-contra-continuous.

(b) Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be ji-contracontinuous and $g: (Y, \sigma_1, \sigma_2) \to (Z, \mu_1, \mu_2)$ be icontinuous. Let U be μ_i - open set in Z, i = 1, 2. Since g is i-continuous, $g^{-1}(U)$ is σ_i - open set in Y. Since f is ji-contra-continuous, $(g \circ f)^{-1} = f^{-1}[g^{-1}(U)]$ is τ_j - closed set in X. Therefore, $g \circ f$ is ji-contra-continuous.

(c) Let $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ be j-continuous and $g:(Y,\sigma_1,\sigma_2) \to (Z,\mu_1,\mu_2)$ be i-continuous. Let U be μ_i - open set in Z, i=1,2. Since g is icontinuous, $g^{-1}(U)$ is σ_i - open set in Y. Since Yis ij-locally indiscrete, $g^{-1}(U)$ is σ_j - closed set. Since f is j-continuous, $(g \circ f)^{-1} = f^{-1}[g^{-1}(U)]$ is τ_j - closed set in X. Therefore, $g \circ f$ is ji-contracontinuous.

Example 3.20: The composition of two ij-contracontinuous functions need not be ij-contracontinuous, $i \neq j$ and i, j = 1, 2.

Let
$$X = Y = Z = \{a, b, c\},$$
 $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\},$
 $\tau_2 = \{\phi, X, \{b\}, \{b, c\}\},$ $\sigma_1 = \{\phi, Y, \{a\}\},$
 $\sigma_2 = \{\phi, Y, \{c\}\},$ $\mu_1 = \{\phi, Z, \{a, b\}\},$
 $\mu_2 = \{\phi, Z, \{b, c\}\}.$

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is 21-contra-continuous.

Let $g:(Y,\sigma_1,\sigma_2) \to (Z,\mu_1,\mu_2)$ be the identity function. Then *g* is 21-contra-continuous.

But $(g \circ f)^{-1}(\{a,b\}) = f^{-1}[g^{-1}(\{a,b\})] = \{a,b\}$ is not τ_2 - closed set in X. Hence $g \circ f$ is not 21contra-continuous.

Theorem 3.21:

If a function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is icontinuous and X is ij-locally indiscrete, then f is ji-contra-continuous.

Proof: Let U be σ_i - open set of Y, i = 1, 2. Then $f^{-1}(U)$ is τ_i - open set in X since f is icontinuous. Since X is ij-locally indiscrete, $f^{-1}(U)$ is τ_j - closed set, $i \neq j$ and i, j = 1, 2. Therefore,

f is ji-contra-continuous.

Theorem 3.22:

If a function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is ij-semi continuous and X is ij-semi locally indiscrete, then f is ji-contra-continuous.

Proof: Let U be σ_i – open set of Y, i=1,2.

Then $f^{-1}(U)$ is $\tau_i \tau_j$ - semi open in X, $i \neq j$ and **Deferences**

References

[1] S. Bose, Semi open sets, Semi continuity and Semi open mapping in bitopological spaces, Bull Calcutta Math. Soc., 73 (1981), 237-246.

[2] K. Chandrasekhara Rao and K. Kannan, S*g-Locally closed sets in bitopological space, Int. J. Comtemp. Math. Sciences, Vol. 4(12) (2009), 597-607.

[3] K. Chandrasekhara Rao and K. Kannan, Regular generalized star closed sets in bitopological space, Thai Journal of Mathematics, Vol. 4(2) (2006), 341-349.

[4] J. Dontchev, Contra-continuous function and strongly S-closed spaces, Internat. J. Math. & Math. Sciences, Vol. 19(2) (1996), 303-310.

[5] J. Dontchev, Survy on preopen sets, The Proceedings of the Yatsushiro topological conference (1998), 1-18.

[6] J. Dontchev and T. Noiri, Contra-semicontinuous functions, Math. Pannon., Vol. 10(2) (1999), 159-168.

i, *j* = 1,2, since *f* is ij-semi continuous. Since *X* is ij-semi locally indiscrete, $f^{-1}(U)$ is τ_j – closed set, $i \neq j$ and i, j = 1, 2. Therefore, *f* is ji-contracontinuous.

Theorem 3.23:

If a function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is ijprecontinuous and X is ij-pre-locally indiscrete, then f is ji-contra-continuous.

Proof: Let U be σ_i – open set of Y, i = 1, 2. Then $f^{-1}(U)$ is $\tau_i \tau_j$ – preopen in X, $i \neq j$ and i, j = 1, 2, since f is ij-precontinuous. Since X is ij-pre-locally indiscrete, $f^{-1}(U)$ is τ_j – closed set, $i \neq j$ and i, j = 1, 2. Therefore, f is ji-contracontinuous.

[7] F. H. Khedr and A. M. Alshibani, On pairwise super continuous mappings in bitopological spaces, Internat. J. Math. & Math. Sci., Vol. 14(4) (1991), 715-722.

[8] F. H. Khedr and S. M. Al-Areefi, Precontinuity and semi-continuity in bitopological spaces, Indian J. pure appl. Math., Vol. 23(9) (1992), 625-633.

[9] J. C. Kelly, Bitopological spaces, Proc. London, Math. Soc., 13 (1963), 71-89.

[10] M. Ganster and I. L. Reilly, locally closed sets and LC-continuous function, Internat. J. Math. & Math. Sci., Vol. 12(3) (1989), 417-424.

[11] S. Jafari and T. Noiri, On contra-precontinuous functions, Bull. Malays. Math. Sci. Soc., (2) 25(2) (2002), 115-128.

[12] M. Jelic, On pairwise LC-continuous mappings, Indian J. pure appl. Math., Vol. 22(1) (1991), 55-59.

بيمان مجيد محمود¹ ، خولة علي مصطفى² ، جعفر موسى محمد¹

¹ قسم الإحصاء ، كلية الإدارة والاقتصاد ، جامعة كركوك ، كركوك ، العراق ²قسم الرياضيات ، كلية العلوم ، جامعة كركوك ، كركوك ، العراق

(تاريخ الاستلام: 26 / 12 / 2011 ---- تاريخ القبول: 13 / 3 / 2012)

الملخص

الفكرة الأساسية لبحثنا هو تعريف ودراسة الدوال ضد المستمرة وبعض الصيغ الأخرى للاستمرارية كالاستمرارية النامة ، استمرارية – LC و استمرارية – RC في الفضاءات الثنائية التبولوجية ونتحرى العلاقات بين ضد الاستمرارية وهذه الأنواع من الاستمرارية وتأثيراتيهم على بعض أنواع الفضاءات كفضاء غير مبعثر محلياً ، شبه غير مبعثر محلياً وقبلي غير مبعثر محلياً في الفضاءات الثنائية التبولوجية .

