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Abstract

We perform group classification of one class of nonlinear wave equations with two independent variables and
one dependent variable. It is shown that there are one, four and eighteen equations admitting (invariant) one, two

and three dimensional Lie algebras respectively.

1- Introduction

The problem of group classification (determining the
arbitrary functions) are known as the group
classification problem [3], of differential equations is
one of the central problems of modern symmetry
analysis of differential equations [5]. Many papers on
this problem of such equations have been published:

U, =u,, +F(xuu,) [9]1 &[12]
ul :uXXX +F(tlxru7ux'uxx) [5]
Uy =U,, +F(t,x,u,u,) [10]

u, =F(xuu)u, +G(tu,u,) 1
u, =F(xuu,u,)u,,, +6(t xuu,,u,) [2]

' X XX

u, =F( xu,u)u,, +G(txu,u,) [1]

v, =y, +Fltx .y w,w) [13]
Uy, =9(t, x)u, + f(t,x,u),g, =0, f,, =0 [10]

! uu

u, = f(t,x,u), f,, =0 [10]

1 uu
un :_ﬂ‘uxx +F(U,UX) [7]
In this article, we consider a class of nonlinear wave
equation in the form of

ul!:F(X’ux)uxx+G(Xlux) !
The approach that will be used in the present article is
that presented in[12] , being a synthesis of the

standard Lie algorithm for finding symmetries and
the use of canonical forms for partial differential
generators obtained with the equivalence group of the
equation at hand. The following notation will be used
through out this paper A,  =<Q', Q2 .. Q">,

denotes a Lie algebra (a vector space on which there
is an additional structure, called a commutator which
has the properties of bilinearity, anticommutativity
and Jacobi identity ). of dimension
k, Q'(j=12, ..,k are its basis elements, and the

index | denotes the number of the class to which the

given Lie algebra belongs [4] .

2- Group Classification

To classify the nonlinear wave equation
uttzF(X!ux)uxx+G(X!ux) (l)

that admits Lie algebras of dimension upto three. We

start from equation admitting one—dimensional Lie

algebras, then extending these Lie algebras to

describe the admitted of two—, three—dimensional Lie

algebras.

2.1 The Most General Infinitesimal Generator

The first step of group classification of partial

differential equation (1) is to find the general form of

the infinitesimal generator of the Lie group admitted
(invariant) by (1), which is according to the Lie
algorithm [3] & [4] is of the form:

)

Q:r(t,x,u)%+§(t,x,u)§+77(t,x,u)%
where t, X are independent variables and
u = (t,x) Is the dependent variable. Note that

r,¢, n are real-valued smooth functions. The

criterion condition for equation (1) [4] & [6] to be
invariant with respect to (2) reads as:

Ny ~(CFe 1 Fux)uxx =Ny F =6 G, —1yGy, =0, ®)
2.2 Theorem 1:

The infinitesimal generator of the symmetry group of
the equation (1), has the following form:

(4

0 0 o
Q=a(t)5+b(x)&+ f(t,x,u)a,
where a ;
f = (?+ c (x)]u+ d(t,x)

a(t) b(x),c(x) and d(t, x) are arbitrary smooth
functions which satisfy the following classifying
equations :
f.. +(f, —2a)G —bG, +[(b"— f,)u,
- f.16,, +["-2f,)u, ~f,, JF =0
206~ &)F —bF, +[0'~ f,)u, ~ f,IF, =0 ()
2.3 The Equivalence Group
There are two different ways for construction the
equivalence group, the direct method and the
infinitesimal method [6]. But we will use the first one
because it gives us enough information about the
Jacobi conditions. In order to construct the
equivalence group of the class of partial differential
equations (1), one has to select from the set of
invertable changes of variables of the vector space
[6]:
t=T(t,xu) , X=X (t,x,u) , t=U(t,xu), (6)

Tl Tx Tu
where D@ XU _ X, X, X, =0, @
D(t, x,u)
U, U, U,

be those changes of variables which don’t alter the
form of the class of partial differential equations (1).
2.4 Theorem 2:

The equivalence group of the class of partial
differential equations (1) reads as

t=T(t),x=X(x), t=U(t,xu), (8a)
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where dl: =0’ dl:x'¢0 and U, =0,
dt dx
(8b)
F(x a0 = F(x ux)[(x )2]
u, - (8¢

In order to obtain the functions F(x, o ;) and
G (X, Uy ), itsuffices to express

t,x and uviat,X and T from the equations

(8 @)and substitute in (8 b,c).

2.5 Group Classification of the Equation (1)

Here we classify equations of the form (1) that admit
symmetry Lie algebras of dimensions one—, two-and
three. We start from describing equations admitting
one—dimensional Lie algebras, and then proceed to
the investigation of the ones invariant with respect to
two-and three—dimensional Lie algebras. An
intermediate problem which is being solved, while
classifying invariant equations of the form (1), is
describing all possible realizations of one—two-and
three—dimensional Lie algebras by infinitesimal
generators (4) within the equivalence relation .

2.5.1 One-dimensional lie algebras

All inequivalent partial differential equations (1)
admitting one—dimensional symmetry Lie algebras
having the basis elements of the form (4) are given by
the following theorem:

2.5.2 Theorem 3:

There are equivalence transformations (8a) that
reduce infinitesimal generator (4) to one of the
following generators

9
o0 o 2 ,420,0 0O
ot O0x oOu ot ox
Proof: see [8]
It is clear that the generators
& o o & o cannot be transformed
_—, —, —and —+—.
ot Ox du ot oOXx

to each other. From these generators we hence can
construct four inequivalent one-dimensional Lie
algebras namely Al A2, A’and A} having the

basis elements of the form (9) ( see the appendix).
2.5.3 Nonlinear Wave Equations Invariant under
One- Dimensional Lie Algebras

The corresponding invariant equations for each of the
Lie algebras ALAL A& A from the class (1) are
obtained by inserting the coefficient of these Lie
algebras in the classifying equations (5), and then one
can solve them for the arbitrary elements F andG .
For example, when , this means that,
oX

h=land a=f=0. Substituting in (5) gives
that F =G =0, thatis, the following class of partial
differential equations

Uy = FU)UL+ G(u)r
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admit the one — dimensional Lie algebra _o 8
o X

well as > o -While all the equations in the

<—+——>
ot ox
class admit the one—dimensional Lie algebra
<2
ot

and _ 0 and this is clear because the variables

ou

t and U don’t appear explicitly in the equation
). _ - o
Thus, the class is classified into two inequivalent
subclasses, which vyield that the corresponding
invariant equations from class (1) have the form.

0
Al2 :<5>:utt = F(ux)uxx+G(ux)

2.5.4 Two-Dimensional Lie Algebras
As it is well known, there are abstract two-—
dimensional Lie algebras [1] namely, the
commutative Lie algebras o -<q' @2, [0*, Q?]=0
and the solvable one

A2.2:<Q1a Q2>r [le QZ]:QZ
So the problem of describing partial differential
equations (1) admitting two-dimensional Lie
symmetry algebras contains as a subproblem the one
of solving the commutation relations above within the
class of infinitesimal generator (4) up to the
equivalence relation (8a).
Next, one should solve (4) for each realization
obtained. Having done this the following theorem is
obtained.

2.5.5 Theorem 4:
The list of inequivalent realizations of two-
dimensional Lie algebras with the infinitesimal

generator (4) and defined within the equivalence
transformation (8a) are the Lie algebras

ALLAZ LA GAL AL L, AL (see the appendix).
Proof: [8]

Now we drive all nonlinear wave equation (1), that
admit two—-dimensional Lie algebras as symmetry Lie
algebra. Doing this we have to insert the coefficients
of the obtained realizations in (5), then solving the
later for the arbitrary functions F, G . To this end we

have the following nonlinear wave equations
corresponding to their realizations

Ag.z: Uy =e™ F(UX)UXX+GZXG(UX),

Ag.z: U, = c! (Ux )_2 Uyx c? '

AY,: u, =F(u,e)u, +u, G(u,e"),

A12%2: utt :Cl(ux )_2 uxx+C2 (ux)z .
2.5.6 Three-Dimensional Lie Algebras
The set of abstract three—dimensional Lie algebras are
divided into two classes as it was fixed in [1]. The
first class contains those Lie algebras which are
direct sums of lower dimension ones. The remaining
Lie algebras are included into the second class.
The first class of Lie algebras contains two non-

isomorphic Lie algebras, namely, A , A, .what

is more,
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A=<Q", Q% Q" > [Q", Q'1=0;(i,j=1,2,3), that

IS, pcn@a®a —3a . A0 A o g gias

where (o' 0?1202, [Q', Q°1=[Q?, Q*]=0, that
1S, A=A, @A -
2.5.6.1 The Lie algebra A,
For describing all inequivalent realizations of this Lie
algebras, we use the results of theorem 4 on
classification of inequivalent realizations of the Lie
algebras  A,, , namely of the realizations,
Al i=1,2,..,9.
Let <i’i>,andleth,Q2,Q3of
ot ox
Ay=<Q",Q%,Q*>[Q',Q']=0  (i,j=12,3), to be:
22 Aty L b0t t(txou) L respectively
ot ox ot OX ou
using the two commutation relations
[Q", Q*1=[Q?, Q°]=0 of [Q', Q'] above, we get
that Lo

o o
S=c' —+c? —+ f (u)—/—
Q ot O X ( )Bu

To find the canonical form for @3 under the
equivalence transformations (8a). However, we must
now use only those equivalence transformations (8a)
which preserve the form of both o |, ©2. As we

— 1 _
21— A2.1_

know the equivalence transformations

t=t+4, X=X(x) , u=U(x,u) preserves the form

of @* . Thus we require that oz _, 5= with
Q2=X'i+u °o_2

ax *au ox’
which yields that x._;  —g -
Hence we take:
t=t+41, X=x+A' , 0=U(u). (10)
Under this type of transformations, we find:
N3 73_ 1i 2i i
Q° »>Q°’=c 8f+c 6Y+ f(u)u, o0
Taking into account the considerable four cases,
Where ¢ o i_c2_o.ct—0.c? 0.1 -0 WeODtain
;c?=0,c'=-0,f =0 and c'=0,c? =0,
f=0 in Q°
therealizations AL , A2, , A3, & Az (see
the appendix).

Applying the above mentioned same procedure to the
Lie algebras A' , i=2,3,...,9, we will end with the

21

A3, AS

realizations &,
appendix).
2.5.6.2 The Lie algebra A,

At last, the corresponding nonlinear wave equations
(1), that admit three—dimensional Lie algebras

Aj,,i=12,...,21 as symmetry Lie algebra are all

repeated or are contradicting the condition F, #0 of

> AZL (see the

equation (1) Let us turn now to the analysis of the
realizations of the Lie algebra A, ,=A,, @ A . In

order to describe these, we use the realizations

ISSN: 1813 - 1662

Al,.i=12,..11;0f the two-dimensional Lie

algebra A, , obtained in theorem 4.

Consider first the case when s o o
2.2 :Azz:<_tava>
let and
1 __ . O 2_ 9
Q =t ot’ Q ot

o o o
® =a(t) —+b(x) —+ f (t,x,u)—
Q a()at+(X)ax+ (@ Xu)au

Of A3.2:<Q11 QZ 1Q3> 1 [er QZ]ZQ2 v[Qli Qg]:[Q2| Qs] :0
. Solving the second commutation relations, yields
that a-at=0 , -tf,=0 and form the third

commutation relations that a' =0, f, =0, and hence

1

s b0y 9
Q 7b(x)ax+ f(x,u)au

then
d3sz’%+(bux+f(x,u)uu)% :

where the equivalence transformations preserve both
Q, Q2 are

t=t , x=X(x) , U=U(xu) 11

There are two cases to be considerd, namely,
h=0,f#0 ; b0, f=0, and thus, we get the
realizations a1 & a2 (see the appendix).

Applying the same approach for the remaining two—
dimensional Lie algebras, we get the three-
dimensional realizations A2, A% ,...,A2%( see

the appendix). The corresponding nonlinear wave
equations (1) that admit the above three—dimensional
Lie algebras a1 , A2 _,..., 29, asasymmetry Lie

algebra are all leading to
contradiction.

Now we turn to those three—dimensional real Lie
algebras A, —<Q', @2, @*> that cannot be
decomposed into a direct sum of lower dimensional
Lie algebras. The list of these Lie algebras is given in
2.5.6. While constructing inequivalent realization of
these Lie algebras within the class of infinitesimal
generators (4), one can use whenever possible the
classification results obtained for the lower
dimensional Lie algebras.

2.5.6.3 The semi-simple Lie algebra A,

Consider first the semi-simple Lie algebras
A=Ay, AL[QN,Q%1=-2Q7
[Q"Q%]1=Q", [Q*,Q’]=Q°
Since [o*,0?1=q!, one forms a basis of two-
dimensional Lie algebra isomorphic to A, ,.S0

repeated or are

choosing o — g2, o2 — — ot ,we see that
[Q'.Q?1=-[Q%,.Q']=Q! —=q? - Thus one can use the results
on classification of the Lie algebra A, , . According
to those results studying the realization of the Lie
algebra A, , reduces to finding the form of the
infinitesimal generators Q?® for each pair of the
infinitesimal generators o o2 given below:
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0 0 0
1_0 2 0 Q== | Q=t—-—'
Q=5 g Ty Ty
o _ 2 or 122,
ot ’ ot ox
1_0 o 0! 1_0 2_,0 9 7
Q- Q *ox Q ox ox ou
1 0 2 0 0 ’ 0 o )
= = X— 1_ 9 2 _y 2
Q ox Q ot ox Q ou ' Q You
_6 2 _ 0 ’ 0 o 1
Q= Q=i T ol oyl
ou ot du Q ou ax+ ou
R Q1:E+i . Q? -t% 0 (12)
a aata at " ox ot ox

Again one can simplify the form of infinitesimal

generator  Q°

transformations.
We consider for example the first pair of (12), where

by using suitable equivalence

o . L8
=, —t =
at 0 Qo

we proceed to find the allowable form of Q2 . So put

Ql

s _am 2 9 9 -
Q° =af(t) 6t+b(x)6x+ f(t, x,u)au
Then it follow from the commutation relations

[@4.Q°1=-2Q° ,[Q".Q°]=Q" -
that , 0
Q' =- %

We used equivalence transformations (11), which

preserve both ot — o2 .Thus the realization is
yielded A% (see the appendix).

The remaining realizations AZ_, A% ..., A%  of

the Lie algebra A,, can be obtained in a similar

way( see the appendix).
Again the corresponding nonlinear wave equations
that admit the Lie algebra A, as symmetry Lie

algebra are all
contradiction.
2.5.6.4 The semi-simple Lie algebra A,

Turn now to the semi-simple Lie algebra A . One

repeated or are leading to

can observe that it does not contain a two-—
dimensional Lie subalgebra 5 or o, , sowe use
the classification results for one-dimensional Lie
algebras A1, a2 A2, & A%
Given the infinitesimal generator . o , we

ot
verify that there are no infinitesimal generators
Q2, Q° of the form (4) satisfying together with Q*
the commutation relations

[@.Q%=Q",[Q*Q']=Q", [Q",Q']=Q" -

Consequently, the class of infinitesimal generators (4)
does not contain infinitesimal generators @2, Q°
that extend a realization of the one—dimensional
Lie algebra Al =<Q'> to a realization of the Lie

algebra | . The same assertation holds true for the

remaining  realizations of the infinitesimal

ISSN: 1813 - 1662

generatorQ* . In a nutshell, one can conclude that
there is no partial differential equation of the form (1)
whose symmetry Lie algebra contains a three—
dimensional Lie algebra isomorphicto A _, .
2.5.6.5 The nilpotent Lie algebra A _
Now turn to the  nilpotent Lie algebra
As=<Q',Q",Q’> [0, Q10 [¢", Q’]=Q", which contains
the commuting Lie subalgebra having the basis
infinitesimal generators Q*, Q2 .Since the latter is
isomorphic to the Lie algebra A, ,we can use the
results of theorem 4. In view of these we conclude
that there are realizations of the Lie algebra A, ,
which might be the admitted Lie algebra by the
differential equation (1), namely,

AL, i=12,.,9. (13)
Therefore, while considering the Lie algebra A __,

we can suppose that o 2 are given by one of

the formulas (13). In order to simplify the form of the
infinitesimal generator Q=*, we can use a suitable
transformations
Let us take the first pair of (13), where
1 o 2 o ,and
ot Tax
a )
aou
then analyzing the corresponding commutation
relations , yields that the class of infinitesimal
generators (4) does not contain an infinitesimal
generator o= which forms together with o2 o2 a

|EtQ3=a(t)%+b(x)%+ f (t,x,u)

basis of the Lie algebra A, . .The same result will be

arising, if we provided that o o

(?1:5 , Qz :a
Treating with the second pair of (13) in the same
approach, where ) , & ,Wwearriveto
ot Tau
the same result of the first pair. But, if we put in
second pair lei Q2 _ o , then analyzing
ou ot

the commutation relations, we get that:
3 _ 1& ﬂ i
Q’=c 6t+b(x)ax+(t+f(x))au

Next we transformation
transformations

t=t+4 ,x=X(x) ,0=u+U(x) ,
which preserves both o1, o2 , we will be left with

Q?® by the equivalence

. 0 - 0
f=c' —+bX'=+(bU, +T+f (x))—
Q ot ox (bU, ())aU

Now, there are six cases to be considered. First,
c'=0,b=f=0 in Q°?° , this gives us that

- B
=t —
Q oua

Thus we get the realization A _ ( see the appendix).
The other five cases, namely, when
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¢'#0,b=f=0: b#0,c' =1=0;
gives rise to realizations o2 _, a2 _

f£0,¢"=b=0;
, ..,Ag's(see the
appendix). Turn to the remaining pairs of (13), we
get the realizations AL ,ASS, ’A]é.75( see the
appendix).The  corresponding  nonlinear  wave
equations (1) that admit the Lie algebra A,  as

symmetry Lie algebra are all repeated or end with
contradiction.
2.5.6.6 The solvable Lie algebras o, j=6 ..., 11

Finally, we consider the solvable Lie algebras
Aser AL, Agg 1Agg 1Az 1 Agyy These Lie
algebras have a common feature, namely, they
contain  commutative  two—dimensional Lie
subalgebras with basis infinitesimal

generators Q! Q2 . That is why; analysis of these
Lie algebras is similar to that of the Lie algebra A, . .
Realization of these Lie algebras
are A;.s’ e Ag.s , AJI;.? (N A;57 , A;.s e A;.s ;
AL, - AL2 (see the appendix).

Note that A_ . A,,,

that checking the commutation relations yields that
there are no infinitesimal generators of forms (4)

do not exist, which means

which enable extending the Lie
algebrasAl, , i=12,...,9; to the Lie
algebras o, v A, .-

2.5.6.7 The list of nonlinear wave equations
At last, we list the nonlinear wave equations (1) that
admit the Lie algebrasA, . ,A,, A, A, 2S

symmetry Lie algebras:
AUy =(U) P F U, +(U) TG (X))
AU =(u) R (e ), +(u,) MG ue ™)
Adsiu,=c'e?™ u, +c’e™
A u, =F(ue™)u, +(u)’e™
Algiu,=c’ (u)™
Alu, =) F(X) u, +(u,)*G(x)

UXX +Cz (uX)_2 J

Asei Uy =(U )Z(F(Uxex))2 U, + ()’ (Gu,e)

ASgiu, =ctu,u, +c’(u, )2
A;B: U, = F(Ux) Uy

201 2
Aéezuu:Ci(uxy 4 Uy "’CZ(ux)q , 0<|gl<l,
AZgiu,=C'(u, )2‘1"” U, +C3Uu)™, 0<|ql<l

-2 2

Adgiuy=(u) e F(x)u +(u,) ¢ G(x) ,0<|gl<y,
Afgily = (U)X F(u, + (u)™6(x) ,0<|ql<L,

_2 1 92 1
A=) * (F(U) €))7 u, + ) * (6()7 ™))" 0<ql<1
Alyiuy = () (F(U,e™)) ™ U, +(0,) 2 (Gu,e™) ™, 0<|ql<],
_2 9
Alyiu=ci(u,) 0 b, +c? (u)"T, 0<]ql<L,
2q 1

AU =c'(U,) U, +e7(u,) 7, 0<|gl<],

Ayt =t u) ™ U, +¢* (u)"*, 0<|q|<L.
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b=0,c'#0,f#0 and f For@mgthegoroceeding section, we are in the position to

state the following theorem:

2.5.6.8 Theorem 5:
The list of inequivalent realizations of three
dimensional Lie algebras, such that they are

symmetries of the nonlinear wave equation (1) are the
realizations

A319 9A§JivAl 9A202;A333
A35! 1Aé751AJéG! 1A§61A37)
A;B andABQ’ A§39
Conclusion

We have derived the preliminary group classification
for the nonlinear wave equation of the form (1). One
of the evident conclusions is that the complete group
classification (description of all possible forms of the
functions F, c that (4) admits a non-trivial

symmetry group) of equation (1) still remain open.
We hope to return to it in a forthcoming paper.
However, the full solution of this problem needs
more  powerful algebraic techniques like Live-
Maltsev theorem properties of simple, semi—simple
and solvable Lie algebras.

* Ag3 EARES)

N 1
i3 AJ3‘.57 ’ A3.8 10y

Appendix
List of Realizations
A}=<£>, Af=<£>‘ Af=<£> and Af=<7+;>
ot OX ou o ox
R T R A
=<—,—> —,—> =<, —t—>
A ot ox Aaa=< ot ' ou R at'ot du
(3 0 y
—<— —+— —, —>
A ot ot Ox ' A= ox ' ou
6 0 0 & _ 4 . 8 o o )
=<, —+—> =<, 242
Ao ox ' 6x ou Aex “ox 't ox
g __0 0 o o o
=<—",0(t,x) —> S .Y Y, Y9
Pa ou o )au Ar=<5u ot T ox
el 0 b 00 g 0,00
et at @t> R ha= ot ot
4 ___, 0 0O )
Fop=< *ox ox
Moeex 0 00 200,
2 ax  ou'ox 277 8t ox ox
0 0
<2 L5 .9 _,0 9
Aoz ou ou Aoz =< ot “auau”
0 o 0 6 0 o0 0 1
=< — —u—,—> 10 o 99 _,9 o
Ae=< 5y Yauan” Ai< ot Tax “auou
- & & B
A, =<—t —at X —8 —,} +—ax >
1 _ 00 0 2 00 0 0
6t 'ax ou T 0t0x ox ou”
3 0 0 0 0 4 00 0 0 0
TS T > Ay S et
ot ox ot ou ot ox ot ox ou
0 0 0
AS = 7’7’g(x)7> VAP =< 00 0 0
T 5t 0 au A= <Grana Wa >
M=l L0, 0, e 20,00, o -
ot ou ot ox 37 76t'0t ou’ot
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o3
D
-
D
-
+
)
>
D
>
D
=

+—_
ox ot

ox’ ot

u_ o
317

5} 5} 5}
+ +

0 0
ot
ot ot

o 0 0
S =SS o 9()*>

0
—+
x' ot

ox 0x Odu

18 0600

1T 555t Tax'ax  ou

o O o
+

o 0 o
+

o

_— >
ou

k3

+—— —t— >
OX ot oOx oOu

0

0o

7+7
OX Ou

+——.g(t- )7 > .

O X
o o O

ot’' ot du

o o o

A, =<-t—, —, —>

0
Al =<—t—+
82 ot

0

A, =<—t—+—

ot

0

Al =<—t—+
3.2 6t

ot

8 _
Aj,=<-X

0

o _
AL, =<-X—+

' X

6 o 0

= U—y—
ot ou du ot
o

AY,=<——-u—, —,e
ot ou ou

o o0 0 o

o

ot
2 _y

o X
o

20 _
A=<

21 __
Azr =<

Eat

ot at O X
0

o 0 o
ou’ at’ ox

>
ax' at’ au

ox’ ot'ax adu
o 0 o

ax'ox’ au

0 0 0
—  ~ alt)—=—
ou’ ox g()au

<X —, —, — >,

o 0

,g()f>

) f +——
ou ou ot ox

o o o

ou’ du’ ot
o o o

A=< — —U—, —,— >
ou’ du’ ox

o X
o

23
A, =<—-U—,—

oX

o 0
ou’ au’

e g 2 >
9()au >

>
ou

o

A=< —+— —u

ot
0

1]
X

0

A® =< —+— —u
3.2 at

0

27 _
Az, =<

0

A =< —+— —u

ot

ot

o
oX ou’
0 0
7_u7
oX ou
o _,0 2
o0X

ot ox ot

o 0
= =€
ou ou
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1

8x oX

A =< —t— X ——, — >

0

0o 0

Al =< —+—,t

ot 0x

1 _
Az =<

2
Ass=

11 _
A3.5 -

0 0
Az-c 9 9
%577 ou’ax

13

357

14 _
35~

=<
ot’ at

'

<
ou ot

ot ox’ ot

o .0 —()

o 0

-, —(t )2—+(2t+e

é’u

o o

ox' T ax

0 0
oxX au

9
' ot

0 0
7’74_
ou ot
o0 0 0
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