On Almost J - injectivity and J – Regularity of Rings

Raida Dawood Mahmood

Department of Mathematics, College of Computer Science and Mathematics, Mosul University, Mosul, Iraq (Received: 18/3/2012 ---- Accepted: 16/9/2012)

Abstract

As a generalization of right J- injective rings, we introduce the notion of right almost J-injective rings, that is if for any $a \in J(R)$, there exists a left ideal X_a of R such that $lr(a) = Ra \oplus X_a$. In this paper, we give some characterizations and properties of almost J-injective rings and it is show that R is J-regular if and only if R is a right almost J-injective and JPP ring. We also prove that, if R is right quasi duo, then R is J-regular if and only if every simple right R-module is almost J-injective.

1. Introduction

Throughout this paper, R will be an associative ring with identity, and all modules are unitary right R - module. For $a \in R$, r(a) (res. l(a)) denote the right (res.left) annihilator of a, respectively. We write J(R), N(R), Z(R) (Y(R)) for the Jacobson radical of R, the set of nilpotent elements of R the left (right) singular ideal of R respectively. $X \le M$ denoted that X is a submodule of a module M.

Generalization of injectivity have been discussed in many papers (see [1], [2], [13]). A ring R is called principally injective (or p-injective), if every homomorphism from a principally right ideal of R to R can be extended to an endomorphism of R. Equivalently $l_R(r_R(a)) = Ra$ for all $a \in R$. They also continued to study rings with some other kind of injectivity, namely, nil-injective rings [9]. A ring R is called right nil-injective, if for each $a \in N(R)$,

 $l_R(r_R(a)) = Ra$. In [5], Zhao and Du introduced an almost nil-injective module . Let M be a module with $S = End(M_R)$. The module M is called right almost nil-injective , if for any $k \in N(R)$ there exists an S-submodule X_k of M such that $l_M r_R(k) = Mk \oplus X_k$ as left S-modules. If R is almost nil-injective R-module then we call R a right almost nil-injective ring . In [6] Zhao and Zhou introduced an J-injective module . The module M_R is called right J-injective , if every right R- homomorphism from a principal right ideal aR with $a \in J(R)$ to M extends to one from R to M. R is called a J-injective ring , if R_R is right J-injective .Equivalently $l_R(r_R(a)) = Ra$ for any $a \in J(R)$. Note that right p-injective rings is J-injective .

In [3] introduced an AP-injective, let M be a right Rmodule with $S = End(M_R)$. The module M is called AP-injective, if for any $a \in R$, there exists an Ssubmodule X_a of M such that $l_M r_R(a) = Ma \oplus X_a$ as left S-modules. If R_R is AP-injective, then we call R a right AP-injective ring.

In this paper , we consider rings which are more general than J-injective rings, an idea parallel to the notion almost nil-injective rings . In the second section , we give some characterizations of almost J-

injective rings, for example : let R be a right almost J-injective ring, if $a \in J(R)$ and $(aR)_R$ is projective, than aR=eR with $e^2=e\in R$. In the third section, we study regularity of right almost J-injective rings. For example : If every simple right R-module is almost J – injective, then R is a right J - weakly regular ring.

2. Almost J - Injective Rings Definition 2.1

Let M_R be a module with $S = End(M_R)$. The module M is called right almost J-injective , if for any $a \in J(R)$, there exists an S-submodule X_a of M such that $l_M r_R(a) = Ma \oplus X_a$ as left S-module . If R_R is almost J-injective then we call R is a right almost J-injective ring.

Remark :

Every J-injective ring is almost J-injective . But the converse is not true as the following example : **Example :**

1) The ring Z of integers is a right J-injective which is not P-injective .

2) Let
$$R = \begin{bmatrix} 0 & Z_2 \\ 0 & Z_2 \end{bmatrix}$$
, where Z_2 is a field. The

Jacobson radical of R is $J(R) = \begin{bmatrix} 0 & Z_2 \\ 0 & 0 \end{bmatrix}$, Let

$$a = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, Ra = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ and } lr(a) = R \neq Ra$$

Therefore R is not J-injective but Ra+R=lr(a) and $Ra \cap R=(0)$, therefore $lr(a)=Ra \oplus R$, so R is right almost J-injective.

The following proposition gives a necessary and suffient condition for a ring to be almost J-injective . **Proposition 2.2**

The following conditions are equivalent for a ring R: 1) R is a right almost J-injective ring .

2) If $a \in J(R)$, then $lr(a) = Ra \oplus X_a$.

3) If $k \in J(R)$, $a \in R$, then $l(aR \cap r(u)) = (X_{ka})_l + Rk$ with $ka \in J(R)$ and $(X_{ka}:a)_l \cap Rk \subset l(a)$ for all $a \in R$, where $(X_{ka}:a)_l = \{x \in R : Xa \in X_{ka}\}$ if $Ka \neq 0$ and $(X_{ka}:a)_l = l(aR)$ if Ka = 0. **Proof.**

$$1 \rightarrow 2$$
 is clear.

 $2 \rightarrow 3 \text{ and } 3 \rightarrow 1$; it can be proved by the same method as [5,Theorem 2.3] .

Before we introduce the next theorem we must recall the following lemma :

Lemma 2.3 [7]

Suppose M is a right R-module with $S = End(M_R)$.

If $l_M r_R(a) = Ma \oplus X_a$, where X_a is a left Ssubmodule of M_R . Set $f: aR \to M$ is a right Rhomomorphism, then f(a) = ma + x with $m \in M$,

$x \in X_a \cdot \blacksquare$

Theorem 2.4

If R is a right almost J-injective , then the following statements hold :

1) If $a \in J(R)$, and $(aR)_R$ is projective, then aR = eR with $e^2 = e$.

2) $J(R) \subset Y(R)$.

Proof.

1) Since aR is projective, r(a) = fR, $f^2 = f \in R$ [6].By hypothesis, $R(1-f) = l(fR) = lr(a) = Ra \oplus X_a$. Write (1-f) = ba + x, where $x \in X_a$ and $b \in R$. Then a = a(1-f) = aba + ax, $(a - aba) = ax \in Ra \cap X_a = 0$, so a = aba. Let e = ab, then a = ea, $e^2 = e$ and aR = eR.

2) If there exists $b \in J(R)$ with $b \notin Y(R)$. Then there exists anon zero right ideal I of R such that $I \cap r(b)=0$. Let $0 \neq a \in I$, then $ba \neq 0$. Evidently $ba \in J(R)$. So $lr(ba) = Rba \oplus X_{ba}$ where X_{ba} is a right ideal of R. Set $baR \rightarrow R$ via $bar \rightarrow ar$, $r \in R$. Then f is a well defined right R- homomorphism, thus a = f(ba) = uba + x by **Lemma 2.3**, where $u \in R$, $x \in X_{ba}$ and so ba = buba + bx, $(1-bu)ba = bx \in Rba \cap X_{ba} = 0$. Hence (1-bu)ba = 0, but (1-bu) is invertible, thus ba = 0, which is a contradiction. Hence $J(R) \subseteq Y(R)$.

Recall that an right R-module M is said to be Wjcpinjective [9], if for each $a \notin Y(R)$, there exists a positive integer n such that $a^n \neq 0$ and every Rhomomorphism from $a^n R$ to M can be extended to one of R to M. If R is Wjcp-injective, we call R is a right Wjcp-injective ring.

We recall the following lemma before we introduce the next result .

Lemma 2.5 [9]

If R is a right Wjcp-injective, then $Y(R) \subseteq J(R)$. From **Theorem 2.4** and **Lemma 2.5** we get the following result :

Corollary 2.6

If R is a right Wjcp - injective and almost J-injective , then Y(R) = J(R) .

3. J - regular Rings

(Von Neumann) regular rings have been studied extensively by many authors (for example, [12] and [14]). A ring R is called regular if for any $a \in R$,

there exists $b \in R$ such that a = aba.

Definition 3.1 [6]

R is called J-regular, if for any $a \in J(R)$, a is regular element.

Cleary, every regular ring is J-regular.

Following [11], a ring R is called a right JPP ring, if for any $a \in J(R)$, aR is projective.

A ring R is called right pp if every principal right ideal is projective. It is clear that right pp ring are right Jpp, but the converse is not true as example : **Example :[11]**

Let
$$R = \begin{pmatrix} Z & Z \\ 0 & Z \end{pmatrix}$$
. Then $J = e_{12}R$, where $e_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Note that Z/2Z is not a projective Z-module . Hence R is not a right pp ring. Let $0 \neq x \in J(R)$. Then it is easy to verify that $r(x) = e_{11}R$ is a summand of R_R ,

where
$$e_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
. So R is a right Jpp ring

Remark :

Every J-regular is JPP ring , but the converse is not true [**Example 2.12**, **9**].

A ring R is called ZI [1], if for every $a, b \in R$, ab = 0 implies aRb = 0.

It well know that R is a ZI ring if and only if l(a)(r(a)) is an ideal of R for every $a \in R$ [1]. A ring R is called abelian if every idempotent of R is central [1].

Lemma 3.2

Let R be an abelian ring and $a \in J(R)$. Then :

1) If M is a maximal left ideal of R such that $l(a)+Ra \subseteq M$, then M is essential.

2) If K is a maximal right ideal of R such that $r(a)+aR \subseteq K$, then K is essential.

Proof.

It can be proved by the same methods in [4, Lemma 2.3].

Theorem 3.3

Let R be a ZI ring . The following conditions are equivalent :

1) J - regular.

2) Every maximal essential left ideal of R is J – injective .

3) Every maximal essential right of R is J – injective . **Proof**.

Clearly $1 \rightarrow 2$ and $1 \rightarrow 3$.

 $2 \rightarrow 1$, Let $a \in J(R)$ such that $l(a) + Ra \neq R$, then there exists a maximal left ideal M of R containing l(a) + Ra. Since a ZI ring is abelian by Lemma 3.2

, M is essential, so that by hypothesis M is J injective. Therefore for any $a \in J(R)$ and every left R - homomorphism from Ra to M extended to one

from R to M. It follow that there exists some $b \in R$ such that a=ab. This gives $1-b \in r(a) \subseteq M$ which yields $1 \in M$, a contradiction. Therefore all $a \in J(R)$

, l(a)+Ra=R. This proves that R is J – regular.

Similarly $3 \rightarrow 1$.

The following is characterization for almost J-injective ring.

Theorem 3.4

Let R be a ring . Then R is J-regular if and only if R is a right almost J-injective and JPP ring . **Proof**.

Let $a \in J(R)$. Since R is right JPP ring, r(a)=eR,

 $e^2 = e$. Since R is a right almost J-injective ,

 $lr(a) = Ra \oplus X_a$. Hence (1-e)R = lr(a), (1-e) = ra + x,

where $r \in R$, $x \in X_a$. So a = a(1-e) = ara + ax, $(1-ra)a = ax \in Ra \cap X_a = 0$ and a = ara. Hence R

is J-regular.

Conversely :

By [6, Theorem 3.2].

Recall that a ring R is called right quasi duo [1], if every maximal right ideal of R is a two sided ideal. A ring R is called reduced if R has no non zero nilpotent element.

Proposition 3.5

If R is a right quasi duo ring. Then the following statements are equivalent :

1) R is J-regular.

2) Every simple right R-module is almost J-injective.

Proof.

 $1 \rightarrow 2~$ is obvious by [6~ , Theorem 3.2] .

2 → 1 ; If there exists $0 \neq a \in J(R)$ such that $aR+r(a)\neq R$, then there exists a maximal right ideal M containing aR+r(a). Thus R/M is almost J-injective, and $l_{R/M} r_R(a) = (R/M)a \oplus X_a$, $X_a \leq R/M$. Let $f:aR \rightarrow R/M$ be defined by f(ab) = b + M, then f is a well defined R-homomorphism so there exists $b \in R$, $x \in X_a$ such that 1+M=ba+M+x, $1-ba+M=x \in R/M \cap X_a=0$. Hence $1-ba \in M$. Since $a \in M$ and R is right quasi duo, then $ba \in M$, hence $1 \in M$, a contradiction. Therefore a is regular element.

In the next theorem ,we show that in the class of quasi_duo ring the following conceps are equivalent : **Theorem 3.6**

If R is right quasi duo , the following condition are equivalent for a ring R :

- 1) Every right R-module is J-injective.
- 2) Every right R-module is almost J-injective.
- 3) Every cyclic right R-module is almost J-injective

4) Every simple right R-module is almost J-injective.

- 5) Every element of J(R) is strongly regular.
- 6) R is J-regular.

Proof.

Obviously $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ and $4 \rightarrow 6$ (Theorem 3.3). Now, we prove that $4 \rightarrow 5$. For any $0 \neq a \in J(R)$,

we will show that aR+r(a)=R. Suppose not, then there exists a maximal right ideal K of R containing aR+r(a). Since R/K is almost J-injective, Let $l_{R/K} r_R(a) = (R/K) a \oplus X_a$, $X_a \leq R/K \cdot$ $f:aR \rightarrow R/K$ be defined by f(ab) = b + K. Since $aR+r(a) \subset K$, f is a well defined R-homomorphism so there exists $c \in R$, $x \in X_a$ such that Lemma 2.3, by 1+K=ca+K+x $1-ca+K=x\in R/K\cap X_a=0, 1-ca\in K$ and $ca\in K$ (R is quasi duo) and so $1 \in K$, which is a contradiction. Therefore aR+r(a)=R. In particular ax+b=1, $x \in R$, $b \in r(a)$, so $a^2x + ab = a$. So a is strongly regular element .

 $5 \rightarrow 6$ is trivial.

 $6 \rightarrow 1$ by [6, Theorem 3.2].

A ring R is called SXM if , for any $a \in R$ there exists

a positive integer n such that $a^n \neq 0$ and $r(a^n) = r(a)$,

 $l(a^n) = l(a) \cdot [10]$

Theorem 3.7

If R is a SXM right almost J-injective ring , then R is J-regular .

Proof.

For any $a \in J(R)$, then $a^2 \in J(R)$. Since R is right SXM, $r(a^2)=r(a)$. By almost J-injective, there exists a left ideal X of R, such that $Ra \oplus X = l(r(a)) = l(r(a^2)) = Ra^2 \oplus X$. Hence $a \in l(r(a)) = l(r(a^2)) = Ra^2 \oplus X$, then $a = ba^2 + x$ for any $b \in R$, $x \in X$. Therefore $a^2 = aba^2 + ax$, which implies that $a^2 - aba^2 = ax \in Ra \cap X = 0$. Hence $a^2 = aba^2$, and so $(1-ab) \in l(a^2) = l(a)$. Thus we have that a = aba. Therefore R is J-regular.

Following [9], a left ideal L of a ring R is a generalized weak ideal (GW- ideal), if for every $a \in L$, there exists a positive integer n such that $a^n R \subseteq L$. A right ideal K of R is defined similarly to be generalized weak ideal.

By [8], we have that { ideal } \subseteq { one side - ideal }, and GW- ideal need not be ideal, one side - GW - ideal.

Lemma 3.8 : [4]

The following conditions are equivalent for a ring R :

1) l(e) is a GW- ideal of R for every $e \in I(R)$ (set of all idempotent elements).

2) r(e) is a GW- ideal of R for every $e \in I(R)$ (set of all idempotent elements).

Proposition 3.9

Let R be a ring such that l(a) is GW-ideal of R for every $a \in R$. If R satisfies one of the following conditions, then J(R) is reduced :

1) Every simple singular left R-module is almost J-injective .

2) Every simple singular right R-module is almost J-injective .

Proof.

1) If J(R) not reduced, then there exists $0 \neq b \in J$ such that $b^2 = 0$ and a maximal left ideal such that $l(b) \subset M$. By Lemma 3.8 and Lemma 3.2, M is essential and so R/M is simple singular left Rmodule . By hypothesis , R/M is almost J-injective , so $l_{R/M} l_R(b) = b(R/M) \oplus X_b$, $X_b \le R/M$. Let $f: Rb \rightarrow R/M$ be defined by f(rb) = r + M. Note that f is a well defined R-homomorphism $(l(b) \subset M)$. Then 1+M = f(a) = bc + M + x, $c \in \mathbb{R}$, $x \in X_{b}$, $1-bc \in M = x \in R/M \cap X_{b} = 0, \quad 1-bc \in M$. If $bc \notin M$, then M + Rbc = R which gives z + ybc = 1for some $z \in M$, $y \in R$. Since $cyb \in l(b)$ and l(b) is a GW-ideal of R, there exists a positive integer n such that .Therefore $(cyb)^n c \in l(b)$

 $(1-z)^{n+1} = (ybc)^{n+1} = yb(cyb)^n c \in M$. It follows that $1 \in M$, A contradiction to $M \neq R$. Hence J is reduced.

2) Suppose that $0 \neq b \in J$ such that $b^2 = 0$. Then there exists an right ideal K of R such that $r(b) \subseteq K$. By **Lemma 3.8** and **Lemma 3.2**, K is essential. Then proof is similar to that of (1) we get $1 - cb \in K$. Now l(b) is GW – ideal of R and $b \in l(b)$, so there exists a positive integer n such that $(cb)^n c \in l(b)$. Then, similar to the proof of [**4**, **Proposition 2.6(2**)] we can complete proof.

Before we end this section , we present the connection between almost J-injective and J-weakly regular .

Reference

[1] Nam, S.B. Kim , N. K. and Kim , J. Y. (1999); On simple singular GP-injective modules , Comm. Algebra , 27(5), pp. 2087 - 2096.

[2] Nicholson , W.K. and Yousif , M. F. (1995) ; Principally injective rings , J. Algebra , Vol. 174 , pp. 77-93 .

[3] Stanley, S. and Yiaqiang, Z. (1998); Generalizations of Principally injective rings , J. of Algebra , Vol. 206 , pp. 706 – 721 .

[4] Subedi , T. (2012) ; On strongly regular rings and generalizations of semicommutative rings , Inter. Math. Forum , Vol. 7 , No. 16 , pp. 777-790 .

[5] Zhao, Yu-e and Du Xia. (2011) ; On almost nilinjective rings , Inter. Elec. J. of Algebra, Vol. 9 , pp. 103-113.

[6] Zhao , Yu-e and Zhou , sh. (2011); On JPP rings, JPF rings and J-regular rings , Inter. Math. Forum, Vol. 6, No. 34, pp. 103-113.

Following [1], a ring R is said to be right(left) weakly regular, if for every $a \in R$, $a \in aRaR$ ($a \in RaRa$).

Definition 3.10

R is called right J- weakly regular, if for any $a \in J(R)$, a is right weakly regular element.

Remark :

A weakly regular rings is clearly J – weakly regular, but J – weakly regular ring need not be weakly regular.

Example :

Let Z be the ring of integers . Then R is J-weakly regular but not weakly regular .

Theorem 3.11

If every simple right R-module is almost Jinjective, then R is a right J-weakly regular ring. **Proof**.

We will show that RaR+r(a)=R for any $a \in J(R)$. Suppose that RbR+r(b)=R for any $b\in J(R)$, then there exists a maximal right ideal M of R containing RbR+r(b). Thus R/M is almost Jinjective, then $l_{R/M} r_R(b) = (R/M)b \oplus X_b, X_b \le R/M$. Let $f:bR \rightarrow R/M$ be defined by f(bz) = z + M for every $z \in R$. Note f is a well defined. So 1+M = f(b) = cb + M + x $, c \in R$ $, x \in X_h$, $1-cb+M=x\in R/M\cap X_a=0, \quad 1-cb\in M.$ Now $cb \in RaR \subseteq M$, where $1 \in M$. This is a contradiction. Hence RaR+r(a)=R for any $a \in J(R)$ and so a = adfor some $d \in RaR$. Hence a is right weakly regular. Therefore R is J-weakly regular ring. **Corollary 3.12**

Let R be a ZI ring . If every simple right R-module is almost J-injective , then R is J-weakly regular ring

[8] Wang , X. and Zhou , H. (2004) ; SF – rings and regular rings , J. of Math. Ress. And Exp. , Vol. 24(4) , pp. 679 – 683 .

[9] Wei , J.C. and Chen , J.H. (2007) ; Nil-injective rings , Inter . Elec. J. of Algebra , Vol. 2 , pp. 1-21 .

[10] Wei, J. C. (2007), On simple singular YJinjective modules, Sov. Asian Bull. Of Math.31,pp. 1-10

[11] Wenting, T., Nanging, D. and Lixin, M. (2005)
; Now characterizations and generalizations of pp rings, Viet. J. of Math., Vol. 33(1), pp. 97 – 110.
[12] Yue Chi Ming, R. (1978) : On Von Neumann

[12] Yue Chi Ming, R. (1978) ; On Von Neumann regular rings (III) , Monatsh. für Math. 86 , pp. 251-257.

^[7] Zhao, Yu-e (2011); On simple singular APinjective modules, Inter. Math. Forum, Vol. 6, No. 21, pp. 1037-1043.

[13] Yue Chi Ming , R.(1974) ; On simple p-injective modules , Math. Japonica, Vol. 19 , pp. 173-176 .

[14] Yue Chi Ming, R.(1986) ; On semi-prime and reduced rings , Riv. Math. Univ. Parma , Vol. 4 , No. 12 , pp. 167-175 .

حول الحلقات الغامرة من النمط - J التقريبية والمنتظمة من النمط - J

رائدة داؤد محمود

قسم الرياضيات ، كلية علوم الحاسوب والرياضيات ، جامعة الموصل ، الموصل ، العراق (تاريخ الاستلام: 18 / 3 / 2012)

الملخص

كتعميم لمفهوم الحلقات الغامرة من النمط – J اليمنى ، قدمنا تعريف الحلقات الغامرة من النمط - J التقريبية اليمنى، لأي (A (R) ⇒ ف فإنه يوجد مثالي أيسر _a للحلقة R بحيث إن R ⊕ X_a المرع = *Ir*(*a*) = *Ra* ل البحث ، قدمتُ تميزاً لبعض الخواص للحلقات الغامرة من النمط - J التقريبية وأثبتُ إنه تكون R حلقة منتظمة من النمط – J إذا وفقط إذا كان كل مقاس أيمن في R غامراً من النمط – J تقريبياً وحلقة من النمط JP وكذلك أثبتُ إن ، إذا كانت R حلقة كوازي ديو فإنه تكون R حلقة منتظمة من النمط – J إذا وفقط إذا كان كل مقاس أيمن النمط – J و

	57
210	$ \langle \rangle$
 210	