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Abstract 
In this paper, new combined extended conjugate gradient and variable metric  method is  proposed  for 

unconstrained optimization. This method is based on exact  line searches and compared numerically with 

standard CG algorithms using a number of test functions with different dimensions, it also obtains encouraging 

numerical results.      

1.  Introduction: 
The Conjugate Gradient method is an effective 
method for symmetric positive definite systems. It is 

the oldest and best known of the nonstationary 

methods discussed here. The method proceeds by 

generating vector sequences of iterates (i.e., 

successive approximations to the solution), residuals 

corresponding to the iterates, and search directions  

used in updating the iterates and residuals. Although 

the length of these sequences can become large, only 

a small number of vectors needs to be kept in 

memory. In every iteration of the method, two inner 

products are performed in order to compute update 

scalars that are defined to make the sequences satisfy 
certain orthogonality conditions. On a symmetric 

positive definite linear system these conditions imply 

that the distance to the true solution is minimized in 

some norm, [16]. 

To summarize the standard CG-algorithm as follows: 

Standard CG Algorithm: 

Step (1)= Set 
nRx 0

,  , n ( initial point, scalar, 

termination). 

Step (2): for  k=1, 
kk gd   

Step (3): Compute 
111   kkkk dxx   

where 1k is obtained from the line search 

procedure. 

Step (4): Calculate the new direction 

         
1 kkkk dgd          

where k  is the conjugacy coefficient and it has the 

following formula: 
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This form is considered a general form for the 

classical CG-method. 
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Step (5): Check for convergence 

             If kg , then stop          

Step (6): Check for restarting criterion 

             If k = n, then stop, Otherwise set k = k +1 

and go to step (3).                 

2.Review of the Extended Conjugate Gradient 

and Self- Scaling VM Method: 
a) Extended conjugate gradient methods (ECG) 

The CG-methods discussed so far assume a local 

quadratic representation of the objective function. 

However, quadratic models may not always be 

adequate to incorporate all the information which 

might be needed to represent the objective function 
successfully. Also in problems where the quadratic 

representation is not good. A non-quadratic model 

may be better represent the objective function and 

that leads to speculation on a better way to choose a 

type of  a non-quadratic model. 

In boland [9], it was observed that q(x) and F(q(x)) 

have determined the same search direction so that the 

finite termination property is satisfied. 

Many Authors have suggested special models to 

determine 
k  where  

k  is defined as follows: 
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 Where f   is defined as follows: 

     
F

dq

dF
xqFf  )),((

  0  and )(xq   0  … (2) 

And F is an increasing monotonic function, which is 

better represent the objective function and q is a 

quadratic function.                                    

 i)  ,))((())(( xqxqF   0 nRx    by  [14]  … (3)                                     
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iii)  ),1)((log))((  xqxqF   0    by [5]  … (5)                                                     
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v)  ))((coth))(( 1 xqxqF    by [1]  … (7) 

Now we are going to list down the outline of the 

extended CG-algorithm by using model [1]  .   

(ECG) Algorithm:  

Given nRx 0
the initial point, and scalar  . 

Step (0): Set 
 gd   

Step (1): For k = 1,2,… 

Compute 
111   kkkk dxx   

where 1k is the minimizer of f on  
1kd . 

Step (2): Check for convergence 

           If kg , then stop, Otherwise continue. 
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Step (3): Calculate   
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Step (5): Check if 10  k , then go to step(6). 

Otherwise set 1k  and go  

            to step(6). 

Step (6): Calculate the new direction 

        
1 kkkk dgd    , 

where k is defined in section (1)  

 Step (7): Check for restarting criterion 
        If k = n, then stop, Otherwise set k = k +1 and 

go to step (1).       

b) Self-Scaling VM Method 

To alleviate the family of VM updating, it is useful to 

multiply each 
kH by some scale factor 0k  

before using the update formula with exact line 

searches, this can be shown to present the conjugacy 

property in the quadratic case, although we may no 

longer have 1 GHK
. However, the focus here is to 

improve the single-step rather than n-step 

convergence behavior of the algorithm. Methods that 

automatically prescript scale factor in a manner such 

that, if the function is quadratic then the eigenvalues 

of  
1Kk

T

k GHd  tend to be spread above and below are 

called self-scaling methods [7]. 

In the 1970’s the self-scaling VM algorithms were 

introduced, showing significant improvement in 

efficiency over standard VM-methods. In particular, 

in a series of papers by Oren, [17], Oren and 

Luenberger, [18], Oren and Spedicato, [19], Al-

Bayati, [2], Al-Bayati and Al-Salih, [4], algorithms 

for minimizing an unconstrained non-linear function 

f(x) were developed. Given an initial estimate 1x  to 

the minimizer 
x  and with  numerical estimate 1H  

if the inverse Hessian matrix )(1 xG . VM algorithms 

generate a sequence of points kx by: 

111   kkkkk gHxx       … (8) 

And  1H  is updated by: 
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Where 
i ,

i  are scalers. The updating is performed 

so that to satisfy the QN condition  

kkkk vyH 1
   … (10) 

This condition is commonly satisfied with 1 k
, 

with this restriction on (9) we have the (Broyden 

family) of algorithms see [12]. The most successful 

version of Broyden family is BFGS (Broyden, 

Fletcher, Goldfarb, and Shanno), which corresponds 

to a choice of 1K . 

     We can now summarize the scaled  BFGS 

algorithm due to Al-Bayati,[2]: 

 (AL-Bayati) Algorithm: 

Start with an initial point 1x  

Step (1): set k=1 and choose IH 1
, where I is the 

identity matrix. 

Step (2): Determine the step-size k that minimizes 

)( kk dxf   where  

            
kkk gHd  , and obtain  

111   kkkk dxx    

Step (3): Update 
kH by 

1kH by using Al-Bayati’s 

update as follows: 
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          Where  1k , and  
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And kw is a vector defined earlier in (9b). 

Step (4): set k=k+1 and repeat. 

     Self-Scaling VM algorithms possesses the 
following properties for a quadratic function: 

i) Since all kd are mutually conjugate (with respect 

to G) in self-scaling VM algorithms, then the solution 

is obtained in at most n iterations. 

ii) If 1k  for all k, then the algorithm converges 

(two-step super linearly), i.e. 
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iii) They are globally convergent. 
     The proofs of these properties can be found in (Al-

Bayati, [2], and Oren, [20]). 

3. New Combined Extended CG and Self-

Scaling VM     Method: 
Both CG and VM methods are relatively successful at 

minimizing smooth non linear functions of several 

variables. In particular CG-methods require less 
storage to implement than VM algorithms and are 

therefore preferred when storage limitations occur. 

However, they have a slower rate of convergence, so 

there have been some attempts to combine CG and 

VM algorithms in order to obtain good convergence 

properties and low storage requirements see [12]. 

The most successful algorithms in this field are: 

shanno and Phua, [22]; and Al-Bayati, [3]. 

In this section, we shall describe a new algorithm 

which effectively interleave the extended CG-
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algorithm in [1] with the Al-Bayati’s [2] Self-Scaling 

VM steps.  

New Combined Algorithm: 

Step (1): set k=1 and 
kkk gHd  . 

Step (2): do a line search: 
111   kkkk dxx     

Step (3): If kg , then stop, Otherwise continue.   

Step (4): if k>n or   
11  k

T

k gd > 
18.0  kg  is 

satisfied then go to step(8) 

Step (5): compute 
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Step (6): set the new direction 
            

kkkkk dgHd   11
 

         where 
k is defined by: 
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Step (7): set k=k+1 and go to step(2) 

Step (8): update kH by using Al-Bayati’s update in 

equation (11) 

Step (9): set 1xxk  and go to step(1)          

4.  Numerical Computation 
The comparison tests involve thirty well-known test 

functions with different dimensions (see Appendix). 

All the results were obtained using (Pentium 4 

computer) using programs written in "FORTRAN". 

The comparative performance of the algorithms are 

evaluated by considering both the total number of 
iterations (NOI) and total number of function 

evaluations (NOF). The stopping criterion is taken to 

be: 

      5

1 105 

 kg  

The line search routine employed is the cubic fitting 
technique which uses function values and their 

gradients. The actual program used is an adoption of 

the routine published in [10]. 

Two algorithms were tested, namely  

1) Standard CG-algorithm using H/S formula 

2) New combined algorithm 

To solve thirty test functions with dimensionally 

varies between 4002  n . 

Our numerical results are presented in the following 

two tables.  

Table (1) compares between the standard CG-

algorithm and the new combined algorithm for small 

dimensionally test functions 802  n . Fifteen non-

linear test problems are used for this purpose. While 
Table (2) deals with the large dimensionality test 

functions 400100  n , with the same sort of 

comparison.  

It is clear that the new algorithm out perform the 

standard CG-algorithm as a result of this comparison.   
 

 

Table (1) 
H/S n Test Function 

Standard CG 
NOI(NOF) 

New 
NOI(NOF) 

72(158) 46(128) 04 Powell 

33(230) 29(192) 4 Cantreal 

27(72) 17(44) 4 Rosen 

16(42) 13(32) 4 Cubic 

48(101) 28(67) 2 shallow 

49(99) 34(69) 80 Wolfe 

43(141) 29(65) 40 Bigg 

10(48) 9(42) 10 OSP 

18(123) 18(124) 20 Cantreal 

52(107) 43(72) 20 Wood 

32(67) 27(39) 2 Dixon 

24(79) 20(69) 04 OSP 

23(56) 24(56) 04 Rosen 
48(101) 50(102) 04 Wood 
22(46) 18(36) 10 Dixon 
517(1470) 405(1137) Total NOI(NOF) 

 

Table (2) 
H/S n Test Function 

Standard CG 
NOI(NOF) 

New 
NOI(NOF) 

129(263) 89(193) 044 Powell 

19(137) 15(79) 244 Cantreal 

23(56) 16(37) 100 Rosen 

14(37) 10(25) 100 Cubic 

17(67) 15(54) 100 OSP 

45(142) 29(65) 044 Bigg 

85(175) 52(107) 044 Wood 

120(860) 75(702) 044 Dixon 

6(17) 5(13) 244 Shallow 
29(65) 29(65) 244 Bigg 

24(59) 12(29) 044 Rosen 

53(107) 31(62) 044 Wolfe 

398(661) 183(389) 044 Powell 

12(35) 9(25) 400 Cubic 
86(176) 67(121) 044 Wood 

3034(6737) 1756(4137) Total NOI(NOF) 
 

Indeed, it is clear from table (1) that taking the 

standard CG-algorithm as 100% NOI; NOF yields: 
 

Table (3) 

New Standard H/S-CG Measure 

78% 

77% 

100% 
100% 

NOI 

NOF 

It is obvious that  new combined algorithm improves 

the standard CG-algorithm in about 22% NOI: 23% 

NOF. 

Now from table (2) taking the standard CG-algorithm 

as 100% NOI; NOF yields: 
 

Table (4) 

New Standard H/S-CG Measure 

71% 

67% 

100% 
100% 

NOI 

NOF 
          

 It is obvious that  new combined algorithm improves 

the standard CG-algorithm in about 29% NOI: 33% 
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NOF. This will agree the fact that the Self-Scaling 

VM-updates will improve the behavior of CG-method 

for high dimension test function. 

5.  Appendix (Test functions) 
1- Bigg Function: 
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3- Dixon Function: 
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4-Generalized Cantreal Function: 
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5-Oren and Spedicato Power  Function (OSP): 
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6-Rosenbrock Function: 
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7-Generalized Powell Function:  
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8-Wolfe Function:  
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9-Shallow Function: 
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10-Wood Function (generalized form): 
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 القياس المتغير ذاتي يالمتر  تحديث ربط خوارزمية التدرج المترافق الموسع مع
 في الامثلية غير المقيدة 

 فاطمة زين العابدين احمد،  ادهم عبدالوهاب علي
 ، كركوك ، العراق كوكجامعة كر ، كمية العموم 

 ( 1101/  1/  01تاريخ القبول:  ---- 1100/  01/  9 ) تاريخ الاستلام: 
 الملخص  

خوارزمية جديدة تداخمية تربط خوارزمية التدرج المترافق الموسع مع خوارزميات المتري المتغير ذاتي القياس في الامثمية تم استحداث  في هذا البحث
 القياسية.   CGغير المقيدة، الخوارزمية الجديدة تستعمل خط البحث التام. الحسابات العددية أثبتت كفاءة الخوارزمية الجديدة مقارنة مع خوارزمية 

 


