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Abstract
This paper extended the notion of U-factorization to modules. Analogous to the ring case, it is define U-Unique
factorization modules, U-Bounded factorization modules and U-Finite factorization modules. It giyes an

example of a U-Unique factorization module and end by .ecasting the definition of a U-FF module over a
domain given by M. Axte ll .

Introduction
[2], [3] study the factorization ofnonunits in to atoms primitive element in a module is one that generates a

is a central theme in algebra . Classically the theory maximal cyclic sub module.
has concentrated on integral domains. Much of this Let S={irreducible, strongly irreducible,very strongly
theory generalized to the case ring with zero divisor ineducible, m-irreducible, prime) and T=
and modules. In [1],[7] study properties ofrings and {primitive,sfongly primitive, very strongly primitive,
domains are extended in to U-factorization property superprimitive) .

of rings, namely bounded factorizations ring and Definition 5
finite factorization ng . In this paper we study new A factorization m =ar a2. .. a '1 n, is an o-
way, in which factorization in modules. Most of the factorizartion of m if each ar is o, o € S. The same

these are well known and can be find in [6]. LetRbe factorization will be called a B-factorization ifn is p,

a commutative ring and let M be an R-module . 0 eT, and an (a ,9) - factorization if each q is c, a €S
Definition l[6] and n is p, p €T.
l-et m EM. A factodzation of m is m=a] az ,,, e-r ns We similarly define a o-U-factorization, p-U-
where S2l,ar,...a,r are nonunits of Randn.EM. factorization or (o,0) -U- factorization, i.e. U-
We do allow s=l in which case we have the triyial factorizations where every factor is ofthe appropriate
factorization m=m. type .

Delinition 2[7] Delirition 6
A factorization of m, m = ara2.,.qbrb:...hn is A factorization m:ar a2... a. [br b2... b1n] is called
a U-factorization if for i=1,2,...,s, aiRbr b:...btn= an essential o-U-factorization(resp., essential 0-U-
R b1 b2... b,n but for j =1,...,! bjR br br...b;... br factorization essential (a,p) -U-factorization) ifeach
n I R b1 b2... !-... b,n. In this case we write m: ar bi is o, a€S (resp., n is p, p €T, each b1 is o, o€S and

a2... a. hr b2... h ln. Here br,b:...br,n are called nisp,peT).
the essential factors and ar ,a2,... ,a. tie inessential \rye can use the notion of U-factorization to deline U-
factors. Note that we allow s or F0 , in which case atomicity ofa module.
we write m= [b, br...hn] or n= a1 a2... a.[n], Delinition 7
respectively. A R-module M is c-atomic (resp.,p-atomic, (o,B)-
Thus m= [ml is a U-factorization of m . We now atomic .

record some definitions that appea! in [4] and [5] . If each 0+ mE M has an o -factorizztion (resp., 0
Definition 3[4] factorization, (o,p)-factorization) . And M is q-U-
[,et a €R be a nonunit . Then a is ineducible (strongly atomic (resp., p-U-atomic, (o, p)-U-atomic) if each
ineducible, very strongly irreducible) if a=bc , then 0+ m € M has a a-U-factorization (resp. p- U-
either (a)=(b) or (a)=(c) (respectively, either a:ub or factorization, (c, p)-U-factorization) . The idea of U-
a:uc for some unit u of R, either (a)=(b) or (a)=(c) factorization in modules is a generalization of U-
andif a+ 0,thenoneofbor ccanonlybeaunit factorization in rings. In [1] the authors prove that
multiple ofa ). The no unit a is m-irreducible if (a) is any factorization ofa ring element can be reananged
a maximal element in the set of proper principal to b€ a U-factorization. The same property holds for
ideals of R . Definition 4. Let 0 + m EM. Then m is factorization ofa module element .

primitive (respectively, strongly primitive, very Theorem 8. A factoriution m=(a1 a2...a1) m can be
strongly primitive) if for ae R and n EM, m=an rearranged to be a U-factorization .

implies Rm=Rn (respectiyely, m=un for some unit u Proof. IfRal(a2... a) m = R(ar... a1) ft and
of\ Rm=tu1 if m*0 rhen n can only be a unit Radaj... aJm =R(a3...aJm then
multiple.ofm). Ard m is superprimitive ifbm=an for R(a1a, )(a1... aJm = R(ar... af fr . The following
a. b ER implies a lb inR. equations establish that.
We see [4] for comparison of the various forms of R(a1a2)(a3... ak)m = Rar(ar... a1) m:R(ar... a1)fii
irreducibility and [5] for a thorough discussion about = Raz(a3... a;) m = R(a3... aj ft And "t* ryu,1u,
associates and primitives in a module . For- the-sake ... aJ m = R(a3... a1)m because R(a1) 1a3... a) il _
ofthe current discussion it suffices to mention that a a, niar... a*)m = (ar) (ar... aJm = R(ar a:... ad fr

- R(a3... aj ft .
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The above calculations imply that we can test for
inessential factors one at a time.
Ifm:(a1 a2... a1) (b1 br... bt ) m with Ra,(br b, ... br)

rt =RGr b2... b1) fr for 15 i 5 k and we find R(b1

)(br... b1) tr= R(br... br) m thenR(ar Xb, ... br) m =
R(ar) Or br... h) m = R(br b, ... bD ft = R(b, ... b )
m.This implies that a, will remain an inessential
divisor for (b2... b1) fr .

Using the above we can rearrang€ the given
facloriz-ation to be a U-factorization.
Corollary 9. A (o,p)-atomic module is also (o,P)-U-
atomic .

The rearrangement is not unique. For example in 26
considered as a Z-module, we have 2 10.2. 1. Either
l0 nor 2 can be an essential divisor, while the other is
the inessential divisor .

Next we will deal with the issue of comparing U-
factorizations .

Two factorizations m= (a1 a2 ....af I br b, ... br] ft
and m= (a'1 a'z ....a'r.)[b'r b':... b'r.]n will be
called isomorphic if
fi1- n and l=l- and for some permutation o we
have b, - b'.11 .

Here ^, means that the two module elements generate
the same cyclic submodule and for ring elements it
means that the two nonunits generate the same
principal ideal. We could have used otler notions of
equivalent of elements to get more restrictive notions
ofisomorphism of U-factorizations . With a notion of
isomorphism in place, we can define the following.
U -(o,p)-UTM: A nonzero R-module M is called a U-
(o,p)-unique factorization module if M is (cr,p)
atomic and any two (o.p) factorizations are
isomorphic .

If we write just U-UFM , we intend U-(irreducible,
primitive)-UFM .

U-(o,p)-HFM: A nonzero R-module M is called a
U-(c,p)-half factorial module if M is (o,p) atomic
and any two (o,p) factorizations have the same
number of essential divisors.
U-BFM: A nonzero R-module M is called a U-
bounded factorization module if for each ml0, there
exists a positive integer N depending on m, such that
for any U-factorization of m the number of essential
divisors is less than N.
In the above terms, the ring R is implicitly
understood. We will not write that M is a U-UFM as

a R-module. butjust M is a U-UFM .

Theorem 10. If R is a PID, then a finitely generated

torsion R-module is a U-UFM .

Proot Let M be the finitely generated R-module.
Since R is a PID, any nonunit in R factors in to
primes. Also since M is finitely generated, it is a
Noetherian R-module, and hence satisfies ACCM
(ascending chain condition on cyclic submodule).
From this we conclude that primitive elements exist
in M and every element of M is a multiple of some
primitive elements . This establishes the atomicity of
the module . A finitely generated torsion module over
a PID has a decomposition as follows .

M = [R/(p,)"rr@... O R/(pl)''"]O...O I R/(pt)"*'
O ... O R/(pr)"K I .

For nonassociate primes pI, p2,...,pk and positive
integer n,,. Here s, gives the number of summands
which are annihilated by some power or p, .

Denote this decomposition as M = Ml (E Mz ...
@Mr with the submodule M; = M;1 O Mp ...
OM,., . So here M,, is R(p,)''r and Mi is the direct
summand ofM annihilated by some power ofpi. Note
that
p; : M, --rfr,t, gives by m, J pr m, is an automorphism
of M, as long as I +j. Also M, is a cyclic submodule.
M, has a finite number ofdistinct submodules given
by (pi)'Mij for c<=0,1,...,nr. Of course we could
have (p1)"M,, = (p) M, for different integers a, p ,
but if we restrict ourselves to the range(o, ...,nr) the
exponentc is uniquely specified by the submodule of
M,j under consideration
An element m, E M, can be written as m, . p, q, m,
with mi primitive in M1. Within M,, mi = (m1, mr, ...
, m1) is primitive if and only if some m1 is

primitive in Mr. The reason is that if all the mij were
non-primitive, we would be able to wrile fti= p,mi
By taking the projection of Rm, to M1 we conclude
that c1 is uniquely specified, by q and does depend
on the primitive element element m, .

In M, m = (mr, mr, ... , m1) is primitive iffeach mt
is primitive in M,. The reason is that if some fri were
not primitive we would be able to $rite m = p,m!,
and the submodule R m1 would be properly contained
in Rm'.
Now let m E M and let m=(a1...a1) m be a

factorization with a, prime and fr primitive. Let
( denote the list (ar, az, ..., ar).
L€t t denote the list of non-negative integers (ar,
s2,..., qJ, i.e. the li* ofexponents that we obtain by
projecting Rm onto the direct summands M,. The
primes pi appear in the list ( at least a, times. The
first cr appearances of p, constitute the essential
factors, the rest are inessential. The uniqueness of the
essential factors follows from the uniqueness of q.
Note that 26 as a Z-module is not a UFM as a Z-
module . The equation 3 = 3'.3 holds for any non-
negative integer n. However, 26 is a U-UFM as a Z-
module . The theorem shows that the class ofU-UFM
modules is larger than the class ofUFM modules.
Unfortunalely, the above result cannot be extended
even to UFD'S, as t}le following example shows.
Example .Let R be the UFD Z[x], the ring of
polynomials over Z. Let.M be the Z[x]-module Z[xl /
J where J is the ideal (x'+5) .

Now 6+J = 3.2. (1+ J) and 6+J = (l+x) (l-x).(l+J).
The factors 3,2, (l+x) and (l-x) are all prime ,
essential and nonassociate
The module element 6+J admits at least two non-
comparable atomic factorizations and hence M is
not a U-UFM .We will now define a nolion of finite
factorization modules in the framework provided by
U-factorizations .
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Surpisingly, the choice whether to include atomiciry
in the definition of a finite factorization module
makes a diffence .Definition ll. A module M is

called a U-FF (a) module if it is (irreducible,
primitive)-atomic and given 0+ m e M, there are
only a finite number of U-(irreducible, primitive)
factorizations of m up to associates and order on the
essential irreducible divisors and the primitive
element ofthe factorization .

A module M is called a U-FF(b) module if for every
given 0l m E M, there are only a finite number of U-
factorizations up to associates and order on the
essential divisors and the module element appearing
in the factorization. The first proposition we have is
that a U-FF (b) module is a primitive -atomic module
. Proposition l2.A U-FF(b) module satisifies the
ascending chain condition on cyclic submodule
(ACCM) and henc€ is primitive-atomic .

Proof. Suppose Rmr c Rm2 c ... is a strictly chain
ofcyclic submodules. Then m1 = cr mr = d2 m2 = ...
and so mr has an infinite number of distinct
fuctorizations .

If R is assumed to be an atomic ring then a U-FF(b)
module is also a U-FF(a) module. The converse
however in not true. Th€ Z-module Zo is a U-FF(a)
module, as it is a U-UFM by Theorem [0 . However,
2 =2-1=8-1=(61+2). I for any integer n. The ring
elements are all essential in the factorizations and so

2 has infinitely many distinct U-factorizations .

In [7], M. Axtell gives a definition of a U-FF module
over a domain D. We reproduce that definition here
and show that Axtell's definition is equiyalent to our
u-FF(b) .
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Definition 13.(.dxtell) Let D be an integral domain
and M a D-module. Let Dm={dm ldeO}, ttre cyclic
submodule generated by m. Given a unitary D-
module M, we say that Ddr dz ... d" m is a reduced
submodule factorization ifd, G D(U), ml0 and for no
cancelling and reordering of the q . s is it the case

that Dd1 d2...dnm=Dd1 d2... drm wheret(n.
The D-module M is said to be a U-FF module if for
every Olm€ M, there exist only finitely many reduced

submodule factorizations Dm = Dd1 d2 ... dn m;, up

to orders and associates on the d, , as well as up to
cyclic submodules on the mr. i.e. Dm, I Dmj for i
+j.
We will refer to the U-FF modules in definition 13

above as U-FF(ax) modules .

Proposition 14. Let D be an integral domain. A D-
module M, is a U-FF(ax) module if and only if is a U-
FF(b) module .

Proof. A ssume M is a U-FF (b) module.
Let0+mE M. Let Dm =D(r1r2...r) rt be a reduced

submodule factorization for Dm. Then m= r! (rr
r2...r") m for some r€D. Clearly, n is an inessential
divisor in this factorization ofm .

Also Dri (rr r: ... r,^ ... r. ) m I D(r1 r2... ri ... r,) m
as D (r1 r2...rn) il is a reduced submodule
factorization . So m= R' [r1 r2... r, ]m . This implies
that every reduced submodule factorization gives to a
U-factorization with the r, being essential factors.
Since there are only a finite number of U-
factorizations of m, m can have at most a finite
number ofreduced submodule factorizations .

The argument above can be reversed to giye the
converse .
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