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Abstract
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This paper extended the notion of U-factorization to modules. Analogous to the ring case, it is define U-Unique
factorization modules, U-Bounded factorization modules and U-Finite factorization modules. It gives an
example of a U-Unique factorization module and end by recasting the definition of a U-FF module over a

domain given by M. Axtell .

Introduction

[2], [3] study the factorization of nonunits in to atoms
is a central theme in algebra . Classically the theory
has concentrated on integral domains. Much of this
theory generalized to the case ring with zero divisor
and modules. In [1],[7] study properties of rings and
domains are extended in to U-factorization property
of rings, namely bounded factorizations ring and
finite factorization ring . In this paper we study new
way, in which factorization in modules. Most of the
these are well known and can be find in [6]. Let R be
a commutative ring and let M be an R-module .
Definition 1[6]

Let m €M. A factorization of m is m=a; a,... a;; ng
where S> 1, a,, ... a,; are nonunits of R and n; € M.
We do allow s=1 in which case we have the trivial
factorization m=m .

Definition 2[7]

A factorization of m, m= a; a, ...a;b; b,... byn is
a U-factorization if for i=1,2,...,s, aR b; by...bjn =
Rb; b,... bn but for j=1,....t, bRb b:...b"... b,
n#Rb;b,... b™... byn. In this case we write m= a,
;... 8, [b ba... b, In. Here b; ,b,... by , n are called
the essential factors and a, ,a, , ... ,a, the inessential
factors. Note that we allow s or =0 , in which case
we write m= [b; bs... byn] or n= a; a,... aJn],
respectively .

Thus m= [m] is a U-factorization of m . We now
record some definitions that appear in [4] and [5] .
Definition 3[4]

Let a €R be a nonunit . Then a is irreducible (strongly
irreducible, very strongly irreducible) if a=bc , then
either (a)=(b) or (a)=(c) (respectively, either a=ub or
a=uc for some unit u of R, either (a)=(b) or (a)=(c)
and if a # 0, then one of b or c can only be a unit
multiple of a ). The no unit a is m-irreducible if (a) is
a maximal element in the set of proper principal
ideals of R . Definition 4. Let 0 # m €EM. Then m is
primitive (respectively, strongly primitive, very
strongly primitive) if for a€ R and n EM, m=an
implies Rm=Rn (respectively, m=un for some unit u
of R, Rm=Rn if m # 0 then n can only be a unit
multiple of m). And m is superprimitive if bm=an for
a, b ER impliesa | b inR.

We see [4] for comparison of the various forms of
irreducibility and [5] for a thorough discussion about
associates and primitives in a module . For the sake
of the current discussion it suffices to mention that a
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primitive element in a module is one that generates a
maximal cyclic sub module .

Let S={irreducible, strongly irreducible,very strongly
irreducible, m-irreducible, prime} and T=
{primitive,strongly primitive, very strongly primitive,
superprimitive} .

Definition 5

A factorization m =a; a,. .. a ¢ ng is an o-
factorizartion of m if each a, is a, a € S. The same
factorization will be called a B-factorization if n is B,
B €T, and an (a ,B) - factorization if each a; is a, o €S
and n is B, p €T.

We similarly define a a-U-factorization, B-U-
factorization or (a,f) -U- factorization, i.e. U-
factorizations where every factor is of the appropriate
type .

Definition 6

A factorization m= a; a,... a, [b; by... byn] is called
an essential o-U-factorization(resp., essential B-U-
factorization essential (o,B) -U-factorization) if each
b; is o, €S (resp., n is B, p €T, eachb;is a, a€S and
nis B, BeT).

We can use the notion of U-factorization to define U-
atomicity of a module.

Definition 7

A R-module M is a-atomic (resp.,p-atomic, (a,B)-
atomic .

If each 0# mE€ M has an a -factorization (resp., p —
factorization, (a,B)-factorization) . And M is a-U-
atomic (resp., p-U-atomic, (a, P)-U-atomic) if each
0# m €M has a a-U-factorization (resp. B- U-
factorization, (a, B)-U-factorization) . The idea of U-
factorization in modules is a generalization of U-
factorization in rings. In [1] the authors prove that
any factorization of a ring element can be rearranged
to be a U-factorization. The same property holds for
factorization of a module element .

Theorem 8. A factorization m=(a, a,...a,) m can be
rearranged to be a U-factorization .

Proof. IfRal(ag... ak) m = R(az... a.k) m and

Raz(ag e ak)ﬁ = R(a;... ak) m then

R(aja; )(as... a)m = R(as... a,) M. The following
equations establish that .

R(alag) (33... a)m = Ra](ag... ak) m = R(a,... ak)fﬁ

= Ray(as... a) M= R(a;... ay) M And also R(a,)(a;
... &) M = R(a;... a,)M because R(a;) (a;... a,) M =
a; R(az... ay)m = (a)) (az... a)M = R(a; a5... a) m
=R(a;z... a) m.
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The above calculations imply that we can test for
inessential factors one at a time.

If m=(a1 ... ak) (b] bz-.. b[) m with Rﬂ,(bl b;!_ eae b])
m =R(b1 b2... bl) m for 1<i < k and we find R(b]
)(b2 b]) m= R(bz b]) m thenR(al )(b: b[) m=
R(a,)(b, bz... b{) m= R(b[ b2 bi) m= R(bg b])
m.This implies that a; will remain an inessential
divisor for (b,... b)) m.

Using the above we can rearrange the given
factorization to be a U-factorization.

Corollary 9. A (af)-atomic module is also (a,B)-U-
atomic .

The rearrangement is not unique. For example in Zg
considered as a Z-module, we have 2 =10.2. 1. Either
10 nor 2 can be an essential divisor, while the other is
the inessential divisor .

Next we will deal with the issue of comparing U-
factorizations .

Two factorizations m=(a; a; ....a;) [ by by ... by] m
and m= (a% a% ....a% )[b, b ... by ] i will be
called isomorphic if

m~n and I=" and for some permutation ¢ we
have bl' e b’aﬂ) i

Here ~ means that the two module elements generate
the same cyclic submodule and for ring elements it
means that the two nonunits generate the same
principal ideal. We could have used other notions of
equivalent of elements to get more restrictive notions
of isomorphism of U-factorizations . With a notion of
isomorphism in place, we can define the following.
U ~(a,B)-UFM: A nonzero R-module M is called a U-
(o,B)-unique factorization module if M is (o,p)
atomic and any two (a,p) factorizations are
isomorphic .

If we write just U-UFM , we intend U-(irreducible,
primitive)-UFM .

U-(a,B)-HFM: A nonzero R-module M is called a
U-(a,B)-half factorial module if M is (a,B) atomic
and any two (a,B) factorizations have the same
number of essential divisors.

U-BFM: A nonzero R-module M is called a U-
bounded factorization module if for each m#0, there
exists a positive integer N depending on m, such that
for any U-factorization of m the number of essential
divisors is less than N.

In the above terms, the ring R is implicitly
understood. We will not write that M is a U-UFM as
a R-module, but just M is a U-UFM .

Theorem 10. If R is a PID, then a finitely generated
torsion R-module is a U-UFM .

Proof. Let M be the finitely generated R-module.
Since R is a PID, any nonunit in R factors in to
primes . Also since M is finitely generated, it is a
Noetherian R-module, and hence satisfies ACCM
(ascending chain condition on cyclic submodule).
From this we conclude that primitive elements exist
in M and every element of M is a multiple of some
primitive elements . This establishes the atomicity of
the module . A finitely generated torsion module over
a PID has a decomposition as follows .
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M = [Ri(p)" @ ... ® RI(p)™]® ... [ R(p™
@ ... 0 RI(p)™ ] .

For nonassociate primes p;, ps....px and positive
integer n;. Here s; gives the number of summands
which are annihilated by some power or p; .

Denote this decomposition as M= M, @ M,
@M, with the submodule M; = M;; @ M;,
@M, . So here M is R/(p)™ and M, is the direct
summand of M annihilated by some power of p;. Note
that

p;: M; =M, gives by m; — p; m; is an automorphism
of M; as long as I #j. Also Mj; is a cyclic submodule.
M; has a finite number of distinct submodules given
by (p))*M; for «=0,1,...,n;. Of course we could
have (p;)*M; = (pi) M; for different integers a, B,
but if we restrict ourselves to the range(0, ...,n;) the
exponenta is uniquely specified by the submodule of
M;j; under consideration

An element m; € M; can be written as m; = p; o; m;
with m; primitive in M;. Within M;, m; = (im,, M,, ...
, My ) is primitive if and only if some m; is
primitive in M. The reason is that if all the m;; were
non-primitive, we would be able to write m; = p;m>;
By taking the projection of Rm; to M;; we conclude
that oy is uniquely specified, by m; and does depend
on the primitive element element m; .

In M, m=(m,, My, ..., My) is primitive iff each m;
is primitive in M;. The reason is that if some m; were
not primitive we would be able to write m = p;m,
and the submodule R m; would be properly contained
in Rm>.

Now let m €M and let m=(a;...ay) m be a
factorization with a, prime and m primitive. Let
{ denote the list (a;, a,, ..., aN) .

Let £ denote the list of non-negative integers (o,
0,..., 0), i.e. the list of exponents that we obtain by
projecting Rm onto the direct summands M;. The
primes p; appear in the list { at least o; times. The
first a; appearances of p; constitute the essential
factors, the rest are inessential. The uniqueness of the
essential factors follows from the uniqueness of ;.
Note that Z5 as a Z-module is not a UFM as a Z-
module . The equation 3 = 3".3 holds for any non-
negative integer n. However, Zsis a U-UFM as a Z-
module . The theorem shows that the class of U-UFM
modules is larger than the class of UFM modules.
Unfortunately, the above result cannot be extended
even to UFDss, as the following example shows.
Example .Let R be the UFD Z[x], the ring of
polynomials over Z . Let M be the Z[x]-module Z[x] /
J where J is the ideal (x’+5).

Now 6+] =3.2. (1+J)and 6+] = (1+x) (1-x).(1+J).
The factors 3,2, (1+x) and (I-x) are all prime ,
essential and nonassociate .

The module element 6+] admits at least two non-
comparable atomic factorizations and hence M is
not a U-UFM .We will now define a notion of finite
factorization modules in the framework provided by
U-factorizations .
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Surpisingly, the choice whether to include atomicity
in the definition of a finite factorization module
makes a diffence .Definition 11. A module M is
called a U-FF (a) module if it is (irreducible,
primitive)-atomic and given 0# m € M, there are
only a finite number of U-(irreducible, primitive)
factorizations of m up to associates and order on the
essential irreducible divisors and the primitive
element of the factorization .

A module M is called a U-FF(b) module if for every
given 0# m € M, there are only a finite number of U-
factorizations up to associates and order on the
essential divisors and the module element appearing
in the factorization . The first proposition we have is
that a U-FF (b) module is a primitive —atomic module
. Proposition 12.A U-FF(b) module satisifies the
ascending chain condition on cyclic submodule
(ACCM) and hence is primitive-atomic .

Proof. Suppose Rm; € Rm, C ... is a strictly chain
of cyclic submodules. Then m; =aym;= o, my = ...
and so m; has an infinite number of distinct
factorizations .

If R is assumed to be an atomic ring then a U-FF(b)
module is also a U-FF(a) module. The converse
however in not true. The Z-module Z; is a U-FF(a)
module, as it is a U-UFM by Theorem 10 . However,
2 =2.1=8.1=(6n+2).1 for any integer n. The ring
elements are all essential in the factorizations and so
2 has infinitely many distinct U-factorizations .

In [7], M. Axtell gives a definition of a U-FF module
over a domain D. We reproduce that definition here
and show that Axtell*s definition is equivalent to our
U-FF(b) .
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