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1. Introduction 

One of the most important fields of engineering practice and theory for software reliability is software reliability 

growth models (SRGMs), so all types of software systems have dominated our current environment as a result of the 

advancement of computer technology, including watches, phones, and appliances for the home, and even more such 

as buildings, cars, planes, and more important locations where they  play an increasingly greater part [1]. Software 

reliability is an important feature that affects the overall reliability of a system.  Reliability models are a typical method 

for quantitatively evaluating software reliability [2]. Producing highly effective software that meets end-user 

expectations is an essential challenge in designing such software systems. As a result, academics are increasingly 

concerned about software reliability. The software system’s reliability can be defined as “the possibility that software 

will operate without fault for a specified period in a given environment” [1][2]. Hence, software reliability is a major 

concern. The software development team and management can use the reliability value to schedule software 

milestones. System engineering, product management, reengineering, and software development evaluation are all 

associated with software dependability measurements [2]  [3]. To assess software reliability, several SRGMs  are 

applied. For every SRGM, calculating attributes is a routine activity as part of reliability estimation. The connections 

between the parameters of an SRGM determine the optimal calculation of such attributes. Consequently, parameter 
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estimation approaches are used in SRGMs [3]. SRGMs have been extensively researched in the literature, and their 

construction has been explored by many writers. Many models were considered, however, those that such as the power 

(POW) model, the S-shaped model (Yamada S-shaped model), the exponential model (Goel–Okumoto [G-O] model), 

the logarithmic model, and the inverse polynomial model all have two parameters and were the most widely utilized 

in the literature [4]. Several models are introduced throughout this article. The technique of the decision tree (DT) 

algorithm is introduced to indicate its role in parameter estimation to creating a model that predicts the value of a target 

variable by learning simple decision rules inferred from data features. The second algorithm is support vector machine 

(SVM) that is also used in classification and regression to find a hyperplane that predicts the target variable. The third 

algorithm is K-nearest neighbor (K-NN) that uses closeness for predictions or classifications about the cluster of an 

individual data point. 

The contribution of these paper is calculating the parameters of SRGMs using the three algorithms, namely, machine 

learning (ML) DT, SVM, and K-NN by using three datasets (software for monitoring and real-time control). 

The remainder of this article is arranged as follows: Section 2 reviews relevant literature. Section 3 focuses on the 

SRGMs. Section 4 describes the data set used in this paper. Section 5 presents the ML algorithm applied. Section 6 

explains the estimate evaluation and results. Section 7 presents the conclusion and future works. 

 

2.  Review of Literature 

Software reliability models refer to a typical method for quantitatively evaluating software reliability, and much 

research has been conducted about this subject. They include different algorithms from ML and deep learning 

techniques that have been used throughout time. Several of these algorithms are described in the section’s first 

paragraphs below. 

In 2016, Begum Momotaz and Tadashi Dohi [5] focused on a common multilayer perceptron neural network prediction 

problem to determine the prediction interval for the overall number of software failures during sequential testing. They 

built prediction intervals using the delta approach and well-known feed-forward neural network back propagation 

algorithm. Regarding coverage rate, prediction interval, and average relative error, four real data sets from software 

development projects were subjected to this technique, and the results could cover the point prediction and the actual 

data in their regions. 

In 2017, Ramasamy and Lakshmanan [6] suggested a traditional nonhomogeneous Poisson process (NHPP) model in 

combination with an infinite test effort function. They utilized data on software failures to train a suggested model 

using artificial neural networks (ANNs). To clarify historical failure data fully, they obtained a large set of weights for 

the same model and applied the ML approach to determine the proper weights for the model that will precisely describe 

past and future data. The results showed the proposed logpower testing effort function (TEF) that depends on SRGM, 

which uses the ML technique, enhances the accuracy of the goodness of fit performance 

In 2018, Jaiswal and Malhotra [7] proposed a method to predict software reliability by using  several methods ML 

(“neuro fuzzy inference,” “general regression neural network,” “feed forward backpropagation neural network,” 

“multilayer perceptron,” “support vector machines,” “linear regression,” “instance-based learning,” and “cascading 

forward backpropagation neural network”). They evaluated these techniques using specific performance criteria, and 

“neuro fuzzy inference” produced the best result. 

In 2019, Hanagal and Bhalerao [8] used an SRGM for  overall extended inverse Weibull finite failures. They explained 

the failure occurrence rate fault’s increasing and decreasing behavior by using the hazard of the generalized extended 

inverse Weibull distribution, which considers the hazard function’s increasing and decreasing features. They suggested 

a finite failure NHPP for SRGMs and obtained unknown model parameters for interval domain data using the 

maximum likelihood method. They evaluated the suggested model using mean square error (MSE), predictive ratio 

risk, and Akaike information criteria,  Considering the sum of squares attributable to error, compared with earlier 

techniques, this dependability estimating method produced satisfactory results. 

In 2020, Da Hye Lee et al. [9] proposed a new SRGM that assumes related software failures. They executed 

experiments on real-world datasets and used several evaluation criteria. They evaluated the model’s recommended 

goodness-of-fit to the results of previous NHPP SRGMs using these criteria. Furthermore, Wald’s test of sequential 

probability ratio (SPRT) was used to assess the reliability of the software. The results illustrated the excellent 

performance of the suggested model. 

https://doi.org/10.25195/ijci.v49i2.417
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In 2021, Liya Li [10] produced a new method of endless evaluation execution with the recommended data to apply 

ANN to previous models of programming model disappointment using NHPP. SRGM employed common-sense 

information programming to create a disappointed pointer that displayed the suggested number of TEF and SRGM. 

Additionally, this research effectively demonstrated disappointment in extensive information, ML, and ANN. 

In 2022, Shoichiro Miyamoto  et al. [ 11] proposed a method for a deep learning-based reliability assessment Open 

Source Software (OSS) that people with no previous experience with deep learning may use. The method combines 

general and specialized data to estimate OSS reliability. This method illustrated that certain types of data that have 

different features from general data are valuable as explanatory variables. 

 In 2023, Lee et al. [12] suggested a model that depends on dependent breakdowns as well as unpredictable operating 

conditions for evaluating software reliability by applying SPRT. This paper realized the goal of a premature reliability. 

In the same year, Youn Su Kim et al. [13] used similarity in shape between deep learning (sigmoid function) and 

software reliability model to produce a deep learning model for software dependability that substitutes software 

reliability function for activation function and sigmoid function. They used 10 criteria to compare and analyze two 

datasets, and the results verified the superiority of the suggested deep learning software reliability model. 

 

3. Software Reliability Growth Models 

Software for reliability is one of the most important customer-oriented qualities of software quality [14] [15]. Effective 

ways to developing reliable software, as well as objectively estimating software reliability, are critical [15]. Thus, the 

primary goal of the software industry is to create superior quality, error-free software. By providing mathematical 

models based on simulated testing oriented environments, software reliability growth models assist industry in 

producing required quality goods [16]. 

Over the past three decades, SRGMs have been developed and can offer a great deal of information on how to increase 

reliability. Through SRGM, essential parameters facilitate determining the duration, quantity of unrepaired defects, 

mean time between failures, and mean time to failure [17]. Two main kinds of viewpoints focus on how to organize 

reliability models [4] [18]: 

Defect Density Models (DDMs) estimate reliability based on design variables. To assess the number of flaws in 

software, DDMs use code features such as input/output, external references, code lines, and loop nesting. SRGMs 

assess software reliability using test results. These models establish a statistical connection between defect detection 

data and well-known functions, such as an exponential function. For example. as soon correlation is sufficient, the 

known function can be utilized to predict future behavior. In this paper, the models listed below are examined: 

1)  Exponential Model (G-O Model) [4] [19-22]: 

In the topic of software reliability, the G-O model is a well-known basic model. The exponential distribution is 

assumed as the lifetime distribution per defect in this model. As a result, the rate at which problems occur is 

constant. Goel and Okumoto presented a nonhomogeneous Poisson-based stochastic model for software failure, 

which uses an exponential curve to represent failure observation phenomena. Following the introduction of 

software systems, the software systems employed in development-testing settings are identical to or comparable 

with those used in field environments. NHPP can be used to represent the finite failure G-O model. The expectation 

of the model can be written as Eq. (1,2): 

                                           𝜇(𝑡) = 𝑎 × (1 − 𝑒−𝑏×𝑡),                                                (1) 

                                            𝜇(𝑡) = 𝑎 × 𝑏 × 𝑒−𝑏×𝑡,                                                (2) 

where (a) is the initial prediction of the total failure, (b) is the fault detection rate, and (t) is the time of failure. The 

number of flaws that need to be found (a) treats the observed value as a random variable that depends on the test 

and other environmental factors. This model differed fundamentally from earlier ones that treated the quantity of 

errors as a constant variable [4]. 

2) The Power Model [4] [22]: 

The model calculates the hardware system’s reliability during testing. The NHPP model was used to build the 

model. The following equations describe the relationship between time t and µ(t) and λ(t), as shown in Eq. (3,4): 

https://doi.org/10.25195/ijci.v49i2.417
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            𝜇(𝑡) = 𝑎 × 𝑡𝑏                                                                     (3) 

             𝜇(𝑡) = 𝑎 × 𝑏 × 𝑡 × 𝑒𝑏−1                                                   (4)    

3)  The Yamada Delayed S-Shaped Model [4] [23]: 

The gamma distribution class includes the delayed S-shaped model. However, the model uses Musa and Okumoto’s 

categorization scheme and several Poisson-type failures per period rather than a binomial type. Because the 

exponential model has been improved, the model represents learning based on the project team’s developing 

experience. This paradigm of failure is also finite. The system equations for μ (t) and λ (t) are shown as Eq. (5,6): 

𝜇(𝑡) = 𝑎(1 − (1 + 𝑏𝑡) × 𝑒−𝑏×𝑡                                                         (5) 

𝜇(𝑡) = 𝑎 × 𝑏2 × 𝑡−𝑏×𝑡                                                                          (6) 

4. Description of Dataset 

In this paper, three datasets were used (software for monitoring and real-time control). The sample in Table 1 comprises 

the measured fault (xk) reading, the total number of test workers (twk), and the accumulated faults (yk) shared in the 

procedures for evaluation [24]: 

TABLE I. Part of datasets (software for monitoring and real-time control) 

Days Xk yk Twk 

1 4 4 1 

2 0 4 1 

3 7 11 1 

4 10 21 1 

5 13 34 1 

6 8 42 1 

7 13 55 1 

8 4 59 1 

9 7 66 1 

10 8 74 1 

 

Dataset 1 includes 109 measurements. The program is used in a middle-level language to assess and debug the data of 

an application for real-time control utilizing 870 kilo lines of code (KLOC) in size [24].   

Dataset 2 includes 111 measurements. The program uses report data to assess or troubleshoot a real-time program. The 

program system has 200 modules, and each module has 1 KLOC [24]. 

Dataset 3 includes 46 measurements. The data gathered through the testing are limited. This small number of data 

makes correct parameter estimation difficult at times [24].  

For each program, the dataset was divided into training data and testing data to construct a reliability paradigm. To 

predict the model’s parameters, 80% of the measurements were used assess the developed model, 20% of the dataset 

was used. 

5. Machine Learning  

Because ML can examine large, complicated data sets and detect patterns that are difficult to find with 
traditional statistical methods, it has been used to forecast dependability growth patterns. Furthermore, ML 
models can predict future reliability growth more accurately because they can anticipate complicated data and 
predict accuracy by learning from previous reliability data. They can forecast how a system’s dependability 
will increase over time by considering several variables, including historical failures, solutions that have been 
deployed, and usage trends. ML handles complicated data, captures nonlinear correlations, and learns 
continually from fresh data to enhance the forecasting power of reliability growth models. ML results in models 
that are more precise, adaptable, and flexible, which eventually improves software. 

  5.1 Decision Tree 

DT is a preferred supervised learning technique that is utilized in machine learning and data mining for tasks 
including regression and classification. This structure is similar to a flowchart, where each internal node 

https://doi.org/10.25195/ijci.v49i2.417
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represents a “test” on an attribute, each branch displays the result of the test, and each leaf node represents a 
class label (in classification) or a numerical value (in regression). DT typically works for the following: 

1)  Feature Selection: The algorithm selects the best feature from the dataset that best splits the data into subsets. 
Various criteria such as Gini impurity, entropy, or information gain are commonly used to measure the quality 
of a split. 

2) Splitting: The dataset is divided into smaller subsets according to the values of the selected characteristic. 

3) Recurve: This procedure for deciding which trait is the best, and separating the dataset is recursively employed 
for each subset until the criteria for stopping is satisfied. A minimum improvement in impurity, a minimum 
number of samples needed to divide a node, or a maximum depth for the tree could all be examples of stopping 
criteria. 

Once the stopping criteria are met, the final subsets become the leaf nodes of the tree, and each leaf node is 
assigned a class label or a regression value, as shown in Figure 1 [25].  

5.2 Support Vector Machine 

A supervised learning algorithm used for regression and classification tasks is called SVM. SVM is widely 
utilized in ML for categorization and is especially successful in high-dimensional spaces. The key idea behind 
SVM is to find the hyperplane that best separates the data points into different classes, as shown in Figure 2, 
optimizing the margin, it is the distance among hyperplane and the nearest data points from each class, is called 
support vectors, it works for the following: 

1) Given a set of labeled training data, where each data point belongs to one of two classes, SVM finds the 
optimal hyperplane that separates these classes. 

 2) SVM uses the kernel function to points has maximum values features of input data to find linear boundary 
which nearest features from points. 

3) The algorithm searches for the hyperbolic level that is chosen to separate the data points with the maximum 
possible margin between the two classes, which expressed mathematically in Eq. (7). 

𝐻0 =  𝑏0 + 𝑤0. 𝑥 = 0,                                                            (7) 

      where x is the input vector, w is the weight, and b is the bias value. 

4) Once the boundary and hyperplane are defined, any new point can be classified by calculating on which side 
of the hyperplane the data points closest to the hyperplane are called support vectors [25].  

 

 

 

 

 

 

 

 

 

Fig. 1. Decision tree                                                                                                      Fig. 2. Support vector machine 

 

 

5.40 K_Nearest Neighbor  

K-NN is a supervised learning ML algorithm that has been widely used in classification problems. K-NN is most 
commonly used for classification and prediction due to its many interesting features, including its efficiency and 
easy implementation. The algorithm steps are listed as follows: 

Step 1: The algorithm stores a training dataset. 

https://doi.org/10.25195/ijci.v49i2.417
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Step 2: K that represents the quantity of nearby neighbors is determined.  

Step 3: The Euclidean distance between the test points and the trained points is computed using Euclid’s law 
through Eq. (8), as shown below: 

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2,

𝑛

𝑖=1

                                         (8) 

   where d is the distance between any two points; xi and yi are data points in the search space. 

Step 4: The nearest neighbors of the K points are taken according to the Euclidean distance computed in Eq. 
(8). 

Step 4: The number of data points for each class among these K neighbors is calculated. 

Step 5:  The class with the most neighbors is given the maximum data points. Figure 3 illustrates the K-NN 
algorithm [26]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. K-nearest neighbor boundaries 

6. Estimation of the Software Reliability Growth Model Parameters Using Machine Learning 

The proposed work applied ML algorithms to describe the time-dependent nature of N (t).  The algorithm was 
applied to three SRGMs and three databases. Figure 4 shows an activity diagram for ML algorithms to determine 
the best parameters for SRGMs. When applying a DT for SRGM, initially, the initial tree is created with the 
following properties: training size=0.8, testing size=0.2, random state=42, max_depth=23, and 
criterion=entropy. The tree’s root node, which contains the integral data set, is formed, then the best feature in 
the data set is searched, and the information entropy of samples is measured. If all samples belong to the same 
class, its value is 0. If the samples are evenly divided into different classes, its value is 1. New DTs are recursively 
created using subsets, and the discovered values are applied to the SRGMs. This process is continued until a 
point when the nodes cannot be sorted further, and the final node is called the leaf node to determine the best 
parameters for SRGM. When applying  the second K-NN algorithm, its properties are as follows: training 
size=0.8, testing size=0.2, random state=42, and K=5. The number of neighbors that equals (5) is determined, 
the Euclidean distance of the number K between the points is calculated, and then the nearest neighbors are 
determined according to the Euclidean distance that represents the data points for each category to obtain best 
parameters for the SRGMs. 

The third algorithm, namely, SVM applied to the SRGM with properties of training size=0.8, testing size=0.2, 
random state=42, kernel=rbf, and c=165. SVM iteratively creates the hyperplane to best separate the classes and 
then selects the hyperplane that correctly separates the classes. 

 

 6.1 Evaluation and Results 

https://doi.org/10.25195/ijci.v49i2.417
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The efficiency of DT, SVM, and K-NN algorithms that are used to solve the problem of parameter estimation in 
SRGMs, which have been applied in MATLAB 2018 to find the best parameters, is computed by using following 
two metrics on three datasets: 

1- Root Mean Square Error (RMSE) as shown in Eq. (9) [24]: 

RMSE=√
1

𝑁
∑ (𝑦𝑖 − 𝑌𝑖)2 ,𝑁

𝑖=1                                                        (9) 

2- Mean Squared Error (MSE) as shown in Eq. (10) [27]: 

MSE=
1

𝑁
∑ (𝑦𝑖 − 𝑌𝑖)

2 𝑁
𝑖=1 ,                                                              (10) 

where 𝑦𝑖  the actual failure number in time i, and  𝑌𝑖 is the failure rate calculated using the ML algorithm in 
SRGM in time i. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Activity diagram for machine learning algorithms to find the best parameters for the software reliability growth models 

The proposed algorithms were compared using three datasets taken corresponding with those that other 
academics have referred to as follows: 

1) The first case study (Dataset 1) [24] includes 109 measurements with daily collected data. The predicted 
model parameters (a and b) that depend on the DT, SVM, and KNN algorithms in the search space in these 
dataset cases were [0, 750] and b [0, 1]. Table 2 displays the SRGMs’ parameters:  RMSE and MSE. Figure 

https://doi.org/10.25195/ijci.v49i2.417
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5 presents the actual and estimated accumulated failures for the best result (SVN algorithm) using the 
SRGMs.   

 

TABLE II. SRGM parameters (RMSE and MSE) using Dataset 1 

 
Model 

Algorithm  A B RMSE MSE 

G-O  DT 1670.9987 0.0051 67.9757 4620.69 

K-NN 717.098 0.01495539 28.7056 824.01147 

SVM 705.046 0.015353 28.704 823.919616 

POW DT 10.1655 0.92338 113.478 12877.25 

K-NN 24.541 0.684974 71.2465 5076.06 

SVM 25.750 0.6681 70.5187 4972.88 

DSS DT 596.729 0.045927 19.7213 388.929 

K-NN 562.3995 0.04947323 14.9117 222.358  

SVM 565.75 0.0490 14.9105 222.323 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. the actual and estimation accumulated failure using dataset1 

2. The second case study (Dataset 2) includes 111 measurements with daily collected data. The predicted model 
parameters (a and b) that depend on machine learning in the search space in this dataset case were a [0, 
550] and b [0, 1]. Table 3 displays the SRGMs’ parameters: RMSE and MSE. Figure 6 shows the actual 
and estimated accumulated failures for the best result (SVN algorithm) using the SRGMs.   
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TABLE  III SRGM parameters (RMSE and MSE) using Dataset 2 

Model Algorithm  A b RMSE MSE 

G-O  DT 696.7171 0.017 49.5443 2454.6 

K-NN 538.6468 0.0256 28.1024  789.744 

SVM 542.785 0.0252 28.10197 789.7207 

POW DT 21.7567 0.73627 109.237 11932.7 

K-NN 30 0.684974 74.2117 5507.37 

SVM 54.0405 0.4747 71.6299 5130.8 

DSS DT 502.571 0.0635 19.7598 390.449 

K-NN 486.3256 0.0669 18.0853 327.078 

SVM 488.487 0.0664 18.0588 326.121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. the actual and estimation accumulated failure using dataset2 

3.  The third case study (Dataset 3) includes 46 measurements with daily collected data. The predicted a and b 
in the search space in these dataset cases were a  [0, 450] and b [0, 1]. Table 4 displays the SRGMs’ 
parameters: RMSE, and MSE. Figure 7 shows the actual and estimated accumulated failures for the best 
result (SVN algorithm) using the SRGMs.   

  

TABLE IV. SRGM parameters (RMSE and MSE) using Dataset 3 

Model Algorithm  A B RMSE MSE 

G-O  DT 382.4057 0.0261 13.1212 172.1658 

K-NN 422.5453 0.02324815 12.1613 147.897 

SVM 399.75 0.0251 12.1493 147.60549 

POW DT 14.9701 0.776 44.556 1985.2 

K-NN 16.4506 0.74628 43.6507 1905.4 

SVM 25.75 0.5970 41.8778 1753.75 

DSS DT 216.3715 0.136 30.3951 923.862 

K-NN 280.2617 0.09711093 18.5828 345.32  

SVM 300.75 0.0879 19.2699 371.329 
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Fig. 7. Actual and estimated accumulated failure using Dataset 3 

 

7. Conclusions and Further Work  

This paper proposes a methodology to predict the parameters of SRGMs depending on three ML algorithms, 
namely, DT, SVM, and K-NN. The development of the software for the proposed work aims to reduce the 
variation between the number of actual failures and the total number of predicted failures using three basic 
SRGMs: the S-shaped model, the POW model, and the exponential model. All models were applied to the three 
datasets. 

The algorithms used to find the best-parameterized SRGMs are based on the failures accumulated during testing 
activity in a software system. After execution for the G-O model on Dataset 1 using SVM, the results of 
RMSE=28.704 and MSE=823.919616 were the best for DT and K-NN. After execution for the POW model on 
Dataset 1 using SVM, the results based on RMSE=70.5187 and MSE=4972.88 were the best for DT and K-NN. 
After execution for the DSS model on Dataset 1 using SVM, the results based on RMSE=14.9105 and 
MSE=222.323 were the best for DT and K-NN. 

When applying the algorithm to Datasets 2 and 3, SVM achieved the best performance based on two measures 
(MSE and RMSE) of the results, where the proposed SVM technique was the most successful in predicting the 
parameters of SRGMs. 

In further works, ensemble learning methods can be applied to find the best parameters of SRGMs. 
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