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ABSTRACT: This study examined the fractional boundary value issue at flexible derivatives, focusing on 
establishing the existence of solutions and uniqueness. We introduce conditions that advance our understanding of 
this complex mathematical domain by capitalizing on the innovative framework of contraction principles. Moreover, 

the versatility of the proposed method is emphasized by its effectiveness in dealing with a wide set for compatible 
fractional differential equations characterized by diverse boundary conditions.  
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1. INTRODUCTION  
Since the 17th century, the calculus of fractions, a subfield of mathematics that applies a traditional idea of 

differentiation and integration to arbitrary orders, has had a long history. Mathematicians such as Leibniz, Euler, and 

Laplace explored the possibility of fractional derivatives and integrals, but significant progress was not made in this field 
until the 20th century. The fractional derivative is an extension of the conventional derivative, and several varieties of 

fractional derivatives have been introduced to date. Some of the earliest definitions of fractional derivatives include 
Riemann-Liouville Fractional Derivative which was introduced by Riemann and Liouville in the 19th century, is 
predicated upon the concept of fractional integration and Caputo Fractional Calculus Which was developed by Caputo in 

the 20th century, that is more suitable for physical applications, as it ensures that fractional derivatives of integer-order 
functions are also integer-order functions. [1-5].  

A novel approach to fractional calculus has recently emerged, gaining significant attention among scientists named 

conformable fractional derivatives. Introduced by Khalil et al. in 2014 [6, 7], these derivatives propose a more intuitive 
and straightforward technique for fractional calculus compared to traditional definitions for fractional Calculus like 

Riemann-Liouville, Caputo Conformable fractional derivatives defined using a limit-based approach, akin to the 
definition of the classical derivative.  

Boundary value problems (BVPs) pertaining to fractional differential equations have emerged as a pivotal area of 

research, driven by their extensive applications across diverse scientific and engineering domains. The ability of fractional 
calculus to model complex phenomena with memory and nonlocality has made it an invaluable tool for addressing a wide 
range of problems in fields such including physics, engineering, economics, and biology. In recent decades, a surge of 

research has focused on the existence, uniqueness, and positive solutions for various differential equations of fractional 
order. Scholars have employed various mathematical techniques and tools to investigate these problems, including fixed 

point theorems, variational methods, and topological degree theory [8-14]. A study of fractional BVPs has resulted in 
significant progress in our comprehension of complex systems and procedures. By capturing the non -integer order 
dynamics of these systems, fractional calculus provides valuable insights into phenomena that are difficult to model using 

traditional integer-order differential equations.  
Conformable fractional boundary value problems (CFBVPs), a specialized subset of boundary value problems 

involving conformable fractional derivatives, have witnessed a surge in interest. While their Riemann-Liouville and 

Caputo counterparts have been more extensively explored, CFBVPs offer a unique perspective due to the inherent 
simplicity and elegance of the conformable fractional derivative definition.  

The conformable fractional derivative, introduced in recent years, provides a more intuitive and direct approach to 

fractional calculus. This innovative definition has opened up new avenues for research and applications in various fields. 
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CFBVPs, in particular, have gained prominence due to their potential to model complex phenomena with greater accuracy 
and efficiency. Several notable studies have contributed to our understanding of CFBVPs. These include:  

Batarfi, et al. (2017)[15]: This study delved into solving a class of conformable fractional boundary values problems, 
where each solution is unique, is realisable.   

Dong et al. (2019)[16]: This research focused on a stability analysis for conformable fractional dynamical systems, 

providing valuable insights into the behavior of solutions.   
Zhong et al. (2018)[17]: This study explored the numerical solutions of conformable fractional differential equations, 

developing efficient algorithms for computational analysis.   
Zhou and Zhang (2019)[18] : This research investigated the controllability of conformable fractional control systems, 

addressing the problem of steering the system to a desired state.   

Faouzi (2020)[19]: This study examined a applications for conformable fractional calculus in modeling viscoelastic 
materials, demonstrating its potential in engineering and materials science.   

Ahmadkhanlu (2023) [20]: It investigated the existence as well as the distinctiveness of solutions for a particular 

class of adaptable differential equations with fractions with delay.   
These studies, among others, have significantly advanced our understanding of CFBVPs and their applications, 

paving the way for further research and development in this exciting field.  

Inspired by the research above with this article, this study examines the fractional boundary value problem.  

 

                                                              𝒯𝜁 𝜘(𝚤) = 𝜓(𝚤,𝜘(𝚤)),    0 ≤ 𝚤 ≤ 𝐴,                               (1.1) 

        

    𝜘′(0) = 0, 𝜛𝜘(0) + 𝜍𝜘(𝐴) = 𝛾, (1.2)  
  

Where is the order-conformable fractional derivative 1 < 𝜁 < 2, and𝜓: [0,1] × ℝ+ → ℝ+, is a function with features 

that will be discussed later.  
  

2. PRELIMINARIES  

To enhance reader comprehension, we introduce essential notation and lemmas employed with our subsequent proof.  
Definition 2.1 [7]: Let  𝜁 ∈ (0,1] the conformable derivative of 𝜑: ℝ≥0 → ℝ  of order 𝜁 is formulated as 

                                                                             𝐷𝜁𝜑(r) = lim
𝜖→0

𝜑(r+𝜖r1−𝜁)

𝜖
.                                           (2.1)  

If  𝐷𝜁 𝜑(r) exists on (0,𝑏) then 𝐷𝜁 𝑓(0) = limr→0𝐷𝜁𝜑(r).  

From Definition 2.2 to Lemma 2.6, we set 𝜁 ∈ (𝑘, 𝑘 + 1], 𝑘 ∈ ℕ.  

Definition 2.2 [7]: The conformable derivative of 𝜑: ℝ≥0 → ℝ is formulated as  

 𝐷𝜁𝜑(r) = 𝐷𝜍𝑓(𝑘) (𝑡), 
 where 𝜍 = 𝜁 − 𝑘.  

Definition 2.3 [7]: The conformable integral of 𝜑: ℝ≥0 → ℝ of order 𝜁 is given by  

 𝐼𝜁𝜑(r) =
1

𝑘!
∫

r

0
(r − 𝚥)𝑘𝚥𝜁−𝑘−1𝜑(𝚥)𝑑𝚥. 

Lemma 2.4 [7]: For each 𝑟 > 0,𝐷𝜁 𝐼𝜁 𝜑(𝑟) = 𝜑(𝑟) whenever 𝜑 is continuous on ℝ≥0.  

Lemma 2.5 [7] For all 𝑟 ∈ [0,1], 𝐷𝜁𝑟ℓ = 0 if ℓ = 1,… ,𝑘.  
Lemma 2.6  [7, 6] If 𝐷𝜁 𝜑(𝑟) is continuous on ℝ≥0, then  

 𝐼𝜁𝐷𝜁 𝜑(r) = 𝜑(r) + 𝐶1 + 𝐶2r2 + ⋯ + 𝐶𝑛r𝑛,  for some real numbers 𝐶.  
   

3. MAIN RESULTS  

In this section, we will present, rigorously demonstrate our primary findings. To lay the groundwork for these results, 
we will first establish several essential lemmas. 

Lemma 3.1  Assume 1 < 𝜁 ≤ 2 and 𝜚 ∈ 𝐶([0,𝐴]). Then the solution of is 

 
𝒯𝜁 𝜘(𝚤) = 𝜚(𝚤),

𝜘′(0) = 0,𝜛𝜘(0) + 𝜍𝜘(𝐴) = 𝛾,
 (3.1) 

 𝜘(𝚤) = ∫
𝚤

0
(𝚤 − 𝚥)𝚥𝜁−2𝜚(𝚥)𝑑𝚥−

𝜍

𝜛+𝜍
∫

𝐴

0
(𝐴 − 𝚥)𝚥𝜁−2𝜚(𝚥)𝑑𝚥 +

𝛾

𝜛+𝜍
 (3.2) 

 
Proof.  To establish our results, we utilize Lemma 2.6 to transform a boundary value problem (3.1) into an equivalent 

integral equation. 

 𝜘(𝚤) = ∫
𝚤

0
(𝚤 − 𝚥)𝚥𝜁−2𝑑𝚥+ 𝛾1 + 𝛾2𝚤. (3.3) 

 
 



Ali Alaydei, Al-Salam Journal for Engineering and Technology Vol. 4 No. 1 (2025) p. 150-155    

  

152    

 By differentitating from relation  we have  

 𝜁′(𝚤) = ∫
𝚤

0
𝚥𝜁−2𝜚(𝚥)𝑑𝚥+ 𝛾2, 

 From the first boundary condition we have  

 𝜘′(0) = 𝛾2 = 0, 
 also  

 𝜘(𝐴) = ∫
𝚤

0
(𝐴 − 𝚥)𝚥𝜁−2𝜚(𝚥)𝑑𝚥+ 𝛾1 , 

 so from the second boundary condition we have  

 𝜛𝜘(0) + 𝜍𝜘(𝐴) = 𝜛𝛾1 + 𝜍 ∫
𝐴

0
(𝐴 − 𝚥)𝚥𝜁−2𝜚(𝚥) + 𝛾1 = 𝛾, 

 hence  

 (𝜛 + 1)𝛾1 + 𝜍 ∫
𝐴

0
(𝐴 − 𝚥)𝚥𝜁−2𝜚(𝚥)𝑑𝚥 = 𝛾, 

 so  

 𝛾1 =
−𝜍

𝜛+𝜍
∫

𝐴

0
(𝐴 − 𝚥)𝚥𝜁−2𝜚(𝚥)𝑑𝚥 +

𝛾

𝜛+𝜍
. 

 Consequently  

 𝜘(𝚤) = ∫
𝚤

0
(𝚤 − 𝚥)𝚥𝜁−2𝜚(𝚥)𝑑𝚥−

𝜍

𝜛+𝜍
∫

𝐴

0
(𝐴 − 𝚥)𝚥𝜁−2𝜚(𝚥)𝑑𝚥 +

𝛾

𝜛+𝜍
. (3.4) 

  

Now we are ready to use some fixed-point theorems to prove the existence results. To establish our initial findings, 
we will employ the powerful Banach fixed point theorem. Before applying this theorem, we will introduce the following 
assumptions:   

i For every 𝜘,𝜉 ∈ ℝ and 𝚤 ∈ [0,𝐴], there exists a constant Θ > 0 such that  

|𝜓(𝚤, 𝜘) − 𝜓(𝚤,𝜉)| ≤ Θ|𝜘 − 𝜉|. 
ii The function 𝜓 ∈ 𝐶([0,𝐴] × ℝ,ℝ),  
iii iii ∀ 𝜄 ∈ [0,𝐴],   ∀  𝜘 ∈ ℝ,   ∃ 𝒦, |𝜓(𝚤, 𝜘) |≤ 𝒦 

 

Theorem 3.2  Let the condition (𝑖) hold and (
𝛩𝐴𝜁[1+

|𝜍|

|𝜛+𝜍|
]

𝜁(𝜁−1)
) < 1, then the conformable fractional boundary value 

problem (1.1)-(1.2) has only one solution.  
Proof. At first, changing the conformable fractional boundary value problem (1.1)-(1.2) to a fixed point problem is 

necessary. We define the operator  

 𝒢(𝜘)(𝚤) = ∫
𝚤

0
(𝚤 − 𝚥)𝚥𝜁−2𝜓(𝚥,𝜘(𝚥))𝑑𝚥−

𝜍

𝜛+𝜍
∫

𝐴

0
(𝐴 − 𝚥)𝚥𝜁−2𝜓(𝚥,𝜘(𝚥))𝑑𝚥+

𝛾

𝜛+𝜍
. (3.5) 

To establish the existence of a unique solution for the conformable fractional boundary value problem (1.1)-(1.2), 
we will employ the powerful Banach contraction principle. It is evident that the fixed points of the operator 𝒢 correspond 

directly to the solutions of this problem. Therefore, by demonstrating that 𝒢 is a contraction mapping, we can guarantee 

the existence of a unique solution. 
Assume 𝜘,𝜉 ∈ 𝐶([0,𝐴],ℝ) and 𝚤 ∈ [0,𝐴] be an arbitrarry quantity, then  

 |𝒢(𝜘)(𝚤) − 𝒢(𝜉)(𝚤)| ≤ ∫
𝚤

0
(𝚤 − 𝚥)𝚥𝜁−2|𝜘(𝚥) − 𝜉(𝚥)|𝑑𝚥 

 +
|𝜍|

|𝜛+𝜍|
∫

𝐴

0
(𝐴 − 𝚥)𝚥𝜁−2|𝜘(𝚥) − 𝜉(𝚥)|𝑑𝚥 

 ≤ Θ ∥ 𝜘 − 𝜉 ∥ ∫
𝚤

0
(𝚤 − 𝚥)𝚥𝜁−2𝑑𝚥 

 +
|𝜍|Θ∥𝜘−𝜉∥

|𝜛+𝜍|
∫

𝚤

0
(𝐴 − 𝚥)𝚥𝜁−2𝑑𝚥 

 ≤ (
Θ𝐴𝜁[1+

|𝜍|

|𝜛+𝜍|
]

𝜁 (𝜁−1)
) ∥ 𝜘 − 𝜉 ∥∞. 

 So  

 ∥ 𝒢(𝜘) − 𝒢(𝜉) ∥≤ (
Θ𝐴𝜁[1+

|𝜍|

|𝜛+𝜍|
]

𝜁 (𝜁−1)
) ∥ 𝜘 − 𝜉 ∥∞. 

 Thus because of the assumption of the theorem, the operator 𝒢 is a contraction mapping. By leveraging the powerful 

Banach fixed point theorem, we can confidently assert that the operator 𝒢 possesses a unique fixed point. This, in turn, 

guarantees a unique solution to the conformable fractional boundary value problem we are investigating. 
Now for the second result we will use Schaefer’s fixed point theorem [21]. Let us to intorduce the following Lemmas.  
Lemma 3.3  Suppose (𝑖𝑖) − (𝑖𝑖𝑖) hold, then 𝒢 is a continuous operator.  

Proof. Assume 𝜘𝑛 be a sequence with the property 𝜘𝑛𝜘 in 𝐶([0,𝐴],ℝ) and 𝚤 ∈ [0,𝐴] 

 |𝒢(𝜘𝑛)(𝚤) − 𝒢(𝜘)(𝚤)| ≤ ∫
𝚤

0
(𝚤 − 𝚥)𝚥𝜁−2|𝜓(𝜘𝑛(𝚥)) − 𝜓(𝜘(𝚥))|𝑑𝚥 

 +
|𝜍|

|𝜛+𝜍|
∫

𝐴

0
(𝐴 − 𝚥)𝚥𝜁−2|𝜓(𝜘𝑛(𝚥)) − 𝜓(𝜘(𝚥))|𝑑𝚥 

 ≤∥ 𝜓(. , 𝜘𝑛(.)) − 𝜓(. , 𝜘(.)) ∥ ∫
𝚤

0
(𝚤 − 𝚥)𝚥𝜁−2𝑑𝚥 
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 +
|𝜍|∥𝜓(.,𝜘𝑛(.))−𝜓(.,𝜘(.))∥

|𝜛+𝜍|
∫

𝚤

0
(𝐴 − 𝚥)𝚥𝜁−2𝑑𝚥 

 ≤ (
𝐴𝜁[1+

|𝜍|

|𝜛+𝜍|
]

𝜁(𝜁−1)
) ∥ 𝜓(. , 𝜘𝑛(.)) − 𝜓(. , 𝜘(.)) ∥∞. 

 From the continuity of the function 𝜓, we conclude  

 ∥ 𝒢(𝜘𝑛) − 𝒢(𝜘) ∥≤ (
Θ𝐴𝜁[1+

|𝜍|

|𝜛+𝜍|
]

𝜁 (𝜁−1)
) ∥ 𝜓(. , 𝜘𝑛(.)) − 𝜓(. , 𝜘(.)) ∥∞. 

Since ∥ 𝜓(. , 𝜘𝑛(.)) − 𝜓(. ,𝜘(. )) ∥∞. tends to 0 as 𝑛 → 𝑖𝑛𝑓𝑡𝑦,. So ∥ 𝒢(𝜘𝑛) − 𝒢(𝜘) ∥∞= 0 and this complete the 

proof.  
Lemma 3.4  Suppose (𝑖𝑖) − (𝑖𝑖𝑖)  hold, then 𝒢 mapps bounded sets into bounded sets in 𝐶([0,𝐴],ℝ).  
Proof. Assume 𝜌∗ > 0 be a constant then ℬ𝜌∗ = {𝜘 ∈ 𝐶([0,𝐴],ℝ)| ∥ 𝜘|∞ ≤ 𝜌∗}, let 𝜘 ∈ ℬ𝜌∗. In view of (𝑖𝑖𝑖) for all 

𝚤 ∈ [0,𝐴] we have  

 |𝒢(𝜘)(𝚤)| ≤ ∫
𝚤

0
(𝚤 − 𝚥)𝚥𝜁−2|𝜓(𝚥,𝜘(𝚥))𝑑𝚥 

 +
|𝜍|

|𝜛+𝜍|
∫

𝐴

0
(𝐴 − 𝚥)𝚥𝜁−2|𝜓(𝚥,𝜘(𝚥))𝑑𝚥+

|𝛾|

|𝜛+𝜍|
 

 ≤ 𝒦 ∫
𝚤

0
(𝚤 − 𝚥)𝚥𝜁−2|𝑑𝚥 

 +
|𝜍|𝒦

|𝜛+𝜍|
∫

𝐴

0
(𝐴 − 𝚥)𝚥𝜁−2|𝑑𝚥+

|𝛾|

|𝜛+𝜍|
 

 ≤
𝒦𝐴𝜁

𝜁(𝜁−1)
+

𝒦𝐴𝜁|𝜍|

𝜁(𝜁−1)|𝜛+𝜍|
+

|𝛾|

|𝜛+𝜍|
: = 𝜂 

That is ∥ 𝒢(𝜘) ∥≤ 𝜂 and this completes the proof.  

Lemma 3.5  Suppose (𝑖𝑖) − (𝑖𝑖𝑖)  hold, then 𝒢 mapps bounded sets into equicontinuous sets in 𝐶([0,𝐴],ℝ).  
Proof. Assume 𝚤1, 𝚤2 ∈ (0, 𝐴], such that 𝚤1 < 𝚤2 and ℬ𝜌∗ ⊂ 𝐶([0,𝐴],ℝ) be a bounded set. Let 𝜘 ∈ ℬ𝜌∗. We have  

 |𝒢(𝜘)(𝚤2) − 𝒢(𝜘)(𝚤1)| ≤ |∫
𝚤1

0
[𝚤2 − 𝚤1]𝚥𝜁−2𝜓(𝚥,𝜘(𝚥))𝑑𝚥+ ∫

𝚤2

𝚤1
(𝚤2 − 𝚥)𝚥𝜁−2𝜓(𝚥,𝜘(𝚥))𝑑𝚥| 

 ≤
𝒦𝚤1

𝜁−1

𝜁−1
(𝚤2 − 𝚤1) +

𝒦

𝜁(𝜁−1)
[𝚤2

𝜁
− 𝚤1

𝜁
]. 

 Because of the above relation, we see that the right-hand side of the relation tends to zero if 𝚤1 tends 𝚤2 . That is 𝒢 

mapps bounded sets into equicontinuous sets in 𝐶([0,𝐴],ℝ).  
Theorem 3.6 Suppose (𝑖𝑖) − (𝑖𝑖𝑖)  hold, then conformable fractional boundary value problem (1.1)-(1.2) has at least 

one solution on [0,𝐴].  
Proof.  

Consider  

 Δ = {𝜘 ∈ 𝐶([0,𝐴],ℝ)|𝜘 = 𝛿𝒢(𝜘);     0 < 𝛿 < 1}. 
 We claim that Δ is bounded. Assume 𝜘 ∈ Δ, then there exist 0 < 𝛿 < 1 such that 𝜘 = 𝛿𝒢. So for all 𝚤 ∈ [0,𝐴] we 

have  

 𝜘(𝚤) = 𝛿(∫
𝚤

0
(𝚤 − 𝚥)𝚥𝜁−2𝜓(𝚥,𝜘(𝚥))𝑑𝚥 

 −
𝜍

𝜛+𝜍
∫

𝐴

0
(𝐴 − 𝚥)𝚥𝜁−2𝜓(𝚥,𝜘(𝚥))𝑑𝚥 +

𝛾

𝜛+𝜍
) 

 Now by (𝑖𝑖𝑖) for every 𝚤 ∈ [0,𝐴] we get  

 |𝒢| ≤ ∫
𝚤

0
(𝚤 − 𝚥)𝚥𝜁−2|𝜓(𝚥,𝜘(𝚥))|𝑑𝚥 

 +
|𝜍|

|𝜛+𝜍|
∫

𝐴

0
(𝐴 − 𝚥)𝜓(𝚥,𝜘(𝚥))𝑑𝚥 +

|𝛾|

|𝜛+𝜍|
 

 ≤ 𝒦 ∫
𝚤

0
(𝚤 − 𝚥)𝚥𝜁−2𝑑𝚥 +

|𝜍|𝒦

|𝜛+𝜍|
∫

𝐴

0
(𝐴 − 𝚥)𝑑𝚥+

|𝛾|

|𝜛+𝜍|
 

 ≤
𝒦𝐴𝜁

𝜁(𝜁−1)
+

𝒦𝐴𝜁|𝜍|

𝜁(𝜁−1)|𝜛+𝜍|
+

|𝛾|

|𝜛+𝜍|
. 

 
The relation above states that the set Δ is bounded. This is a crucial assumption for applying Schaefer’s fixed point 

theorem. The theorem states that if an operator is completely continuous and has a fixed point property (meaning there 

exists a point 𝜘 such that 𝒢(𝜘) = 𝜘), then it has at least one fixed point [21]. 
In this case, the operator 𝒢 is completely continuous given Lemmas 3.3-3.5, and maps bounded sets into bounded 

sets. Therefore, by Schaefer’s fixed point theorem, we can conclude that 𝒢 has at least one fixed point. This fixed point 

corresponds to a solution of the conformable fractional boundary value problem (1.1)-(1.2). Therefore, the existence of 
at least one solution for this problem is guaranteed. 
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4. EXAMPLE  

To underscore the efficacy of our findings, here is an example to help illustrate: Reflect on the fractional boundary 

value problem: 

𝒯𝜁 𝜘(𝚤) = 𝜓(𝚤, 𝜘(𝚤)), 𝚤 ∈ [0,1],𝜁 ∈ (1,2] 

 𝜘(0) + 𝜘(1) = 0, 𝜘′(0) = 0, (4.1) 

 where 𝜓(𝚤, 𝜘(𝚤)) =
|𝜘(𝚤)|(sin(𝚤)+2𝑒−𝚤)

(5+|sin𝚤|(1+|𝜘(𝚤)|)
. This example showcases the applicability and effectiveness of our proposed 

methods in addressing a concrete problem within the realm of conformable fractional calculus. 

 

 |𝜓(𝚤, 𝜘) − 𝜓(𝚤, 𝜉)| ≤
sin𝚤+2𝑒−𝚤

5+|sin𝚤|
|

𝜘

1+𝜘
−

𝜉

1+𝜉
| 

 ≤
sin𝚤+2𝑒−𝚤

5+|sin𝚤|

|𝜘−𝜉|

(1+𝜘)(1+𝜉)
 

 ≤
sin𝚤+2𝑒−𝚤

5+|sin𝚤|
|𝜘 − 𝜉| 

 ≤
1

10
|𝜘 − 𝜉|. 

 So the assumption (𝑖)  is satisfied with Θ =
1

5
. Now we check the hypothesis of the theorem 3.2. In this problem 

𝜛 = 𝜍 = 𝐴 = 1, hence for 𝜁 =
3

2
, 

 (
Θ𝐴𝜁[1+

|𝜍|

|𝜛+𝜍|
]

𝜁 (𝜁−1)
) =

1
5

[1+
1
2

]

3
2

1
2

=
2

5
. 

 Consequently all conditions of the theorem 3.2 are hold and the conformable fractional boundary value problem 

(4.1) has a unique solution. 

  

5. CONCLOSION  

 In this work, we studied a class of conformable fractional boundary value problems with two -point boundary 
conditions. Using the Banach contraction mapping principle and Shaefer’s fixed point theorem, some necessary and 

sufficient conditions imposed the right-hand side function of the conformable fractional equation to guarantee the 
problem's solution. Two examples were presented to illustrate the efficiency of the main results. This work has shown 

that a class of fractional boundary value problems under some conditions can have a unique solution, such as a natural 
order boundary value problem. 
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