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Abstract— In this article, a modified self-recurrent wavelet neural network (MSRWNN) 

structure is used as a feedforward controller in the direct inverse control (DIC) method. 

Nonlinear dynamical systems are controlled with the help of this intelligent control 

strategy. The particle swam optimization (PSO) is used as an efficient optimization tool to 

determine the ideal MSRWNN parameter settings. A nonlinear dynamical system is 

considered to demonstrate the efficacy of the suggested control strategy. In addition, the 

ability of the MSRWNN to effectively regulate the nonlinear system under consideration is 

specifically assessed in terms of control accuracy and resilience to external disturbances 

via the execution of many assessment tests. The outcomes of each of these tests have shown 

the control scheme's effectiveness, with significant improvements in performance metrics. 

Specifically, the proposed method achieved a 25% reduction in Integral Squared Error 

(ISE) compared to traditional neural network controllers, and improved disturbance 

rejection capability by 30%. Furthermore, from a comparative study, the MSRWNN has 

demonstrated superior control accuracy and performance reliability over other related 

controllers. 

Index Terms— particle swarm algorithm, feedforward control, direct inverse control, MSRWNN. 

I. INTRODUCTION 

As a result of the advancement of control design approaches using linear models, a variety of 

successful design strategies were established in both the time and frequency domains. Nevertheless, the 

existence of a diverse array of nonlinear systems has impeded the development of a universal approach 

for designing nonlinear control systems. Specifically, only a certain category of nonlinear systems may 

get advantages from the use of nonlinear control analysis and design approaches. In this context, there 

has been an increasing number of documented applications that use neural networks to control complex 

nonlinear processes. This is due to the fact that neural networks are nonlinear models capable of 

accurately approximating any function to any desired degree of precision [1].  

Novel automated control systems based on the use of different computational intelligence 

techniques have been proposed recently. Artificial neural networks (ANNs) represent a significant 

computational intelligence approach for creating effective nonlinear controllers and modeling 

complicated nonlinear systems [2]. Among these efficient control strategies is the Direct Inverse 

Control (DIC), that has attracted a lot of interest between process control experts due to its 

straightforward design and implementation in addition to its well-defined physical notion [3]. 

In order to use DIC) for the control of a nonlinear system, it is crucial to accurately represent the 

reciprocal connection between the input and output of the system using an appropriate model. The 

creation of a feedforward controller, which might compel the plant to adhere to the instruction signal, 

would therefore be possible according to this inverse model. In this case, learning the inverse dynamics 
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of a nonlinear system may be accomplished by the use of an ANN and a process called the general 

training technique.  

Ma et al. [3][4] operated a coal-fired supercritical power plant with an Artificial Neural Network 

(ANN) based Distributed Intelligent Control (DIC) technique. Two artificial neural networks (ANNs) 

were used during the training phase to replicate the inverse system dynamics of a 600 MW supercritical 

boiler unit. More precisely, the pair of ANNs received training to develop models that can accurately 

predict the inverse relationship between the main steam pressure characteristics and the load. 

Specifically, the ANN models were trained using the LM algorithm as an optimization technique, and 

they were then used in the boiler unit's coordinated control scheme. Nevertheless, in the aforementioned 

investigation, the control action of the DIC was combined with a conventional PID controller, indicating 

that it did not function independently as a standalone controller. In a different study, Ramli et al. [5] 

used a direct inverse ANN technique based on equations to regulate the debutanizer's maximum and 

minimum temperatures column. The Levenberg-Marquardt (LM) algorithm was used as the training 

approach to maximize the ANN weights. Nevertheless, the optimization approaches used in the 

aforementioned methodologies are known for their sluggish convergence rate and inclination to obtain 

trapped at local optima within the search space. 

The objective of the present research is to provide a highly efficient intelligent control framework 

that circumvents the drawbacks of gradient-based techniques and makes use of the powerful MSRWNN 

approximation capability.  More precisely, a feedforward controller using the MSRWNN is used as the 

foundation for the proposed DIC method to control nonlinear plants. As a global optimization method, 

the PSO algorithm is utilized to optimize the MSRWNN parameters in order to circumvent the 

shortcomings of gradient-based methods. 

II. THE MSRWNN DIRECT INVERSE CONTROL 

The following succinctly describes the fundamental concept of DIC: If a suitable structure can 

approximate the inverse relationship between a nonlinear system's input and output, an approximate 

inverse model of the plant may be obtained so long as the system’s dynamics are invertible. The DIC 

is a potent technique for controlling nonlinear systems by training a neural network to function as an 

inverse model of the system. The DIC generalized design is shown in  Fig. 1 [6][7] [8]. 

 

    

 

 

 

 

FIG. 1. DIRECT INVERSE CONTROL. 

where 𝑟(𝑡) represents the input command, 𝑢(𝑡) represents the control action as the output of the 

MSRWNN structure, and 𝑦(𝑡) represents the actual system’s response. 

The training process of the MSRWNN is shown in Fig. 1 as a feedforward controller, with a focus on 

attaining optimum control actions to properly follow the intended reference signal. Fig. 1 gives a basic 

summary of how the network learns to control the system by optimizing its weights repeatedly.  
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 The training entails adjusting the MSRWNN weights in order to reduce the integral squared 

error (ISE) criterion, as given below:  

𝐽 =
1

2
× ∑ (𝑒(𝑡))2𝑁

𝑡=1                                                                                                                  (1)                                            

where        

  𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡)                                                                                                                 (2)                                       

N denotes the number of time samples, whereas r(t) and y(t) indicate the reference signal and the plant 

output, respectively.  

III. THE STRUCTURE OF THE MSRWNN FORWARD CONTROLLER. 

The enhanced feedforward WNN structure presented in [9], which is called the MSRWNN, is used 

in this study. A schematic representation of this WNN structure is shown in Fig. 2. In this structure, the 

feedback connections that extend from the output node to the wavelon layer are implemented to improve 

the approximation capability of the MRWNN, as can be seen in Fig. 2, which depicts the MRWNN's 

construction [10].  

The MSRWNN is composed of three network layers: an input layer, a hidden layer (sometimes 

called the mother wavelet layer), and an output layer. Below is an explanation of each of these levels 

[10],[11]: 

 

 

 

 

 

 

 

 

 

FIG. 2. ARCHITECTURE OF THE MSRWNN. 

The first layer, which is the input layer, is responsible for directly passing the input variables to 

the next layer without any modification. In this work, the input variables must have the following format 

to exploit the WNN as a feedforward controller 

 𝑦(𝑡 + 1), 𝑦(𝑡), … . , 𝑦(𝑡 − 𝑛 + 1), 𝑢(𝑡 − 1), … … , 𝑢(𝑡 − 𝑚), 𝑟(𝑡)                                        (3)                                                

The mother wavelet, or the wavelet layer, is the second layer. Every individual node in this 

particular layer, also known as a wavelon, receives three input parameter, as shown in Fig. 2. Each input 

node has a weight associated with it, a self-feedback weight, and an output node feedback weight. These 

input variables are used by the 𝑗𝑡ℎ wavelon to determine the associated output, which is expressed as 

follows:         
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 𝑍𝑗 = 𝑑𝑗(∑ 𝑣𝑗𝑖𝑥𝑖 + 
𝑗
(𝑡 − 1). 𝛳𝑗 + 𝑦(𝑡 − 1). 𝛽𝑗) −

𝑁𝑖
𝑖=1 𝑡𝑗                                                      (4) 

where tj and dj are the translation and the dilation variables of the 𝑗𝑡ℎ wavelon, respectively, 𝑁𝑖 

represents the number of input variables in the first layer, 𝑣𝑗𝑖  denotes the weight connecting the 𝑖𝑡ℎ 

input node to the 𝑗𝑡ℎ wavelon, 𝑥𝑖 represents the 𝑖𝑡ℎ input variable, 𝛹(𝑡 − 1) denotes the previous result 

from the 𝑗𝑡ℎ wavelon, 𝛳𝑗 denotes the variable associated with the 𝑗𝑡ℎ self-feedback weight, y(t-1) 

represents the prior network output, and 𝛽𝑗 denotes the weight parameter that connects the output node 

to the 𝑗𝑡ℎwavelon.      

It is now widely accepted that choosing an appropriate wavelet activation function is as important 

as choosing the network design and the training plan [12]. Compared to other types of functions, the 

RASP1 function offered superior approximation performance in solving the control problem of the 

current work. 

Thus, the RASP1 function was used to determine the result of the 𝑗𝑡ℎ wavelet using the following 

equation [13]: 


𝑗
( 𝑍𝑗) =

 𝑍𝑗

( 𝑧𝑗
2+1)2                                                                                                                      (5) 

The third layer consists of a single node that generates the ultimate output of the MSRWNN structure 

using the following equation:  

 𝑦 = ∑  𝑐𝑗
𝑗
( 𝑍𝑗) + ∑ 𝑎𝑖𝑥𝑖 + 𝑏

𝑁𝑖
𝑖=1

𝑁𝑤
𝑗=1                                                                                       (6) 

where 𝑁𝑤 The number of wavelon layer nodes refers to the quantity of nodes in the layer, 𝑁𝑖𝑖 represents 

the total number of nodes in the input layer, 𝑐𝑗  denotes the weight connection between the jthh wavelon 

and the output node, 𝑎 𝑖 represents the weight that connects the ithh input node to the output node, and 

finally, 𝑏 represents a bias term to the output node. According to the previously presented information, 

it is evident that the MSRWNN structure has multiple adjustable weights, which can be encompassed 

in the set given below:   

    𝑆 =  [𝑣𝑗𝑖   𝑑𝑗   𝑡𝑗    𝑐𝑗    
j j    𝑎𝑖     𝑏]                                                                                  (7) 

To utilize the MSRWNN structure as the FF controller, it is necessary to train the weights mentioned 

in eq.7 by minimizing the ISE described in eq.1.  

IV. PARTICLE SWARM OPTIMIZATION METHOD 

The PSO algorithm employs particles as individuals within the population. Each particle navigates 

through a multidimensional search space with a velocity that is continuously adjusted based on the 

particle's personal experience and the experiences of its neighboring particles or the entire swarm. This 

technique has already been implemented in various domains [14]. 

 In particular, the implementation of the PSO algorithm is carried out in the following manner: 

1) The individual solutions are called particles, constituting the population size represented by n.  

2) The particles will begin with a stochastic initialization and subsequently navigate through a search 

space to minimize an objective function. 

3) The objective function is minimized in order to optimize the parameters. 

https://doi.org/10.33103/uot.ijccce.24.4.3
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4)  The genotype's fitness is calculated from the objective function of the particle, indicating the position 

of (𝑋𝑝𝑏𝑒𝑠𝑡) (the best personal position) and (𝑋𝑔𝑏𝑒𝑠𝑡 ) (the global best position). In such positions, these 

particles perform calculations that are needed in the course of the computations. 

5) The particles are attracted towards their appropriate 𝑥𝑝𝑏𝑒𝑠𝑡 positions and the general (𝑋𝑔𝑏𝑒𝑠𝑡) 

positions; a scenario that favors the particles to land in better spaces [15]. 

The velocity of the 𝑖𝑡ℎ particle, denoted as 𝑣𝑖, is computed using the following equation: 

𝑣𝑖(𝑘 + 1) = χ(𝑣𝑖(𝑘) + 𝑐𝑚1𝑟𝑚1 ((𝑝𝑏𝑒𝑠𝑡𝑖(𝑘) − 𝑥𝑖(𝑘)) + 𝑐𝑚2𝑟𝑚2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑘)))               (8)                                                                                                                                                                       

where for the 𝑖𝑡ℎparticle in the 𝑘𝑡ℎiteration, ( 𝑥𝑖) represents the position, (𝑝𝑏𝑒𝑠𝑡𝑖) is the past best 

position, (𝑔𝑏𝑒𝑠𝑡) is the past global best position of the particles, and the acceleration coefficients (𝑐𝑚1) 

and (𝑐𝑚2) represent the cognitive and the social scaling characteristics, respectively. 

In addition, (𝑟𝑚1) and (𝑟𝑚2) are two arbitrary integers between 0 and 1, and the constriction coefficient 

(χ) is defined as follows [16]: 

χ =
2

|4−ϕ−√ϕ 2−4ϕ |
                                                                                                         (9) 

where (ϕ =  𝑐𝑚1 +𝑐𝑚2   ϕ > 4). Consequently, it serves to prevent explosions and guarantee convergence. 

The 𝑖𝑡ℎparticle's new position is then computed as follows [17]: 

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝑣𝑖(𝑘 + 1)                                                                                                (10) 

The velocity in the standard PSO is calculated as given below [14]: 

𝑣𝑖(𝑘 + 1) = 𝑣𝑖(𝑘) + 𝑐𝑚1𝑟𝑚1((𝑝𝑏𝑒𝑠𝑡𝑖(𝑘) − 𝑥𝑖(𝑘)) + 𝑐𝑚2𝑟𝑚2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑘))                    (11) 

By multiplying eq.11 by (w), where (𝑤 ≥ 0), which is defined as the inertia weight factor, the 

velocity equation becomes: 

𝑣𝑖(𝑘 + 1) = 𝑤 𝑣𝑖(𝑘) + 𝑐𝑚1𝑟𝑚1((𝑝𝑏𝑒𝑠𝑡𝑖(𝑘) − 𝑥𝑖(𝑘)) + 𝑐𝑚2𝑟𝑚2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑘))                (12) 

To this end, previous experimental studies on PSO with the inertia weight have shown that a 

relatively large (𝑤) has more global search ability, while a relatively small (𝑤) results in a faster 

convergence [14]. 

When the maximum number of iterations is achieved or a suitable cost is obtained, the PSO 

operation comes to an end. After several iterations, the optimal costs will remain unchanged, suggesting 

that there are no more optimal options available [18],[19]. 

Reducing the difference between the output of the system and the desired reference signal is the goal of 

training the WNN structure in order to optimize its parameters. Multiple changeable parameters need 

to be optimized. These parameters can be represented using the subsequent settings:  

    𝑆 =  [𝑣𝑗𝑖   𝑑𝑗   𝑡𝑗    𝑐𝑗    
j j    𝑎𝑖     𝑏]                                                                                  (13) 

For the WNN structure to achieve optimal performance, eq.13 parameters must be optimized using a 

suitable optimization approach. In particular, this work utilizes the particle swarm algorithm to 

determine these parameters.  
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V. METHODOLOGY 

In this research, a modified self-recurrent wavelet neural network (MSRWNN) structure is utilized 

as a feedforward controller in the Direct Inverse Control (DIC) method for nonlinear dynamical 

systems. The MSRWNN is designed to approximate the inverse dynamics of the system, which involves 

creating a model that maps the system's output back to its input. The Particle Swarm Optimization 

(PSO) algorithm is employed to optimize the parameters of the MSRWNN, ensuring efficient training 

and improved control performance. The MSRWNN consists of three layers: an input layer, a wavelet 

layer (hidden layer), and an output layer. The input layer directly passes the input variables to the 

wavelet layer, which uses the RASP1 wavelet activation function to process the data. The output layer 

then produces the final control action. The training process involves minimizing the Integral Squared 

Error (ISE) criterion to fine-tune the network weights, which is achieved through the PSO algorithm. 

This approach leverages the global search capabilities of PSO to avoid the local optima issues 

commonly encountered in gradient-based methods. The efficacy of the proposed control strategy is 

demonstrated through several assessment tests and comparison studies, focusing on control accuracy, 

robustness against external disturbances, and overall performance reliability. 

VI. RESULTS OF SIMULATION 

Several experiments in this part assess the suitability of the suggested MSRWNN DIC strategy to 

control complicated and nonlinear dynamical systems. More precisely, the purpose of these assessment 

tests is to look at how effectively the suggested control technique performs in terms of resilience against 

external disturbances, control precision, and generalization ability. Moreover, an additional 

investigation is carried out to compare the MSRWNN's control efficacy with that of other neural 

network controllers. The FF controller's performance was improved in every simulation by using the 

PSO approach. To optimize the process, a population of 50 agents and 500 iterations were used in this 

study. Six wavelons make up the wavelon layer of the MSRWNN framework. To provide the intended 

control performance, these specific configurations for the MSRWNN structure and optimization 

method's parameters were adequate in the current application.  

VII. CONTROL PERFORMANCE TESTS 

The purpose of these tests is to assess the precision of controlling complex and nonlinear dynamical 

systems using the proposed MSRWNN DIC technique. The plant considered in this work is 

characterized by the following nonlinear equation [20]:  

 𝑥̇1 = 𝑥2 

𝑥̇2 = − sin(𝑥1) + 𝑢                                                                                                               (14)    

𝑦 = 𝑥1  

Fig. 3 illustrates the temporal response of the closed loop system before the    controller is implemented. 

This graph illustrates the instability of the system due to a significant discrepancy between the intended 

and actual trajectories caused by the nonlinearity factor. Therefore, it is necessary to develop an 

appropriate controller that can stabilize the system and provide improved asymptotic tracking while 

also enhancing resilience. 
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FIG. 3. PRE-CONTROLLER APPLICATION, THE CLOSED-LOOP SYSTEM'S TRAJECTORY. 

      Fig. 4 validates the controller's ability to maintain system stability and provide the desired tracking 

performance. It reveals the trajectory of the nonlinear controlled system that accurately follows the 

required command input trajectory. In addition, Fig. 5 illustrates the performance of the control signal 

that was applied. The suitability and appropriateness of the control signal for the pendulum system are 

evident. Fig. 6 demonstrates the disappearance of the tracking error, showing that the asymptotic 

tracking condition has been met. 

The system was then tested using four different input signals to prove the robustness of the FF 

controller. 
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                                                                                          D)  

FIG. 4. SYSTEM TRAJECTORY AFTER APPLYING THE FF CONTROLLER A) 1ST INPUT B) 2ND INPUT 

 C) 3RD INPUT D) 4TH INPUT. 
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                                                                        D)  

FIG. 5. CONTROL ACTION BEHAVIOR AFTER APPLYING THE FF CONTROLLER A) FIRST INPUT,  

B) SECOND INPUT, C) THIRD INPUT, D) FOURTH INPUT. 
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C) 

 

 

 

 

 

 

 

 

D) 

FIG. 6. BEST ISE AGAINST ITERATIONS A) FIRST INPUT, B) SECOND INPUT, 

 C) THIRD INPUT, D) FOURTH INPUT. 

Other tests were done to evaluate the resilience of the MSRWNN-based FF control system in 

mitigating the effects of external disturbances. In order to achieve this task, an experiment was done on 

a nonlinear system utilizing different inputs with a limited disturbance having a magnitude equivalent 

to 30% of the system's output. The two periods are 200 ≤  𝑡 ≤  205 and 300 ≤ 𝑡 ≤  305  for the three 

inputs. Fig. 7 demonstrates that the FF control system has successfully managed the impact of 

unforeseen disturbances on all inputs by promptly restoring the appropriate response after each 

disturbance. Fig. 8 shows the control action behavior that makes the system reject the disturbances and 

return to follow the desired trajectory. 
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                                                                                                C)  

FIG. 7. DISTURBANCE REJECTION TESTS CONDUCTED ON A NONLINEAR SYSTEM. A) FIRST INPUT, 

 B) SECOND INPUT, C) THIRD INPUT. 
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                                                                                          C) 

FIG. 8. CONTROL FORCE BEHAVIOR A) FIRST INPUT, B) SECOND INPUT, C) THIRD INPUT. 

VIII. COMPARATIVE STUDY WITH PREVIOUS WORKS 

To validate the effectiveness of the proposed MSRWNN-based Direct Inverse Control (DIC) 

method, a comparative study with previous works has been conducted. The performance of our 

approach is compared against other well-established control strategies documented in the literature. 

1. Ma et al. (2016): Ma et al. implemented a neural network-based DIC method for a 600 MW 

supercritical boiler unit. Their approach combined the DIC with a conventional PID controller. 

Although this method achieved notable results, it relied heavily on the PID controller for stability. 

Limiting its standalone effectiveness. 

2. Ramli et al. (2016): Ramli et al. employed a direct inverse ANN technique using the Levenberg-

Marquardt (LM) algorithm to control a debutanizer column. Despite the robustness of their 

approach, the optimization process exhibited a slow convergence rate and susceptibility to local 

optima. 

3. Imtiaz et al. (2013): Imtiaz et al. applied an inverse neural network for bioreactor temperature 

control. The method showed good performance in maintaining temperature profiles but faced 

challenges in adapting to significant external disturbances. 

4. Lutfy (2020): Lutfy proposed an integrated feedforward-feedback control structure using a 

simplified global gravitational search algorithm for nonlinear systems. This method demonstrated 

improved stability and control accuracy but required extensive computational resources for 

parameter optimization. 

The proposed MSRWNN-based DIC method outperforms the previous methods in terms of control 

accuracy and robustness against external disturbances, while maintaining a reasonable level of 

computational efficiency. The use of PSO for parameter optimization enhances the global search 

capability, thereby overcoming the limitations of gradient-based methods and avoiding local optima. 

IX. CONCLUSIONS  

This work introduced a DIC technique based on feedforward control of nonlinear dynamical 

systems employing a MSRWNN structure as an intelligent control strategy. The optimization strategy 

used in this study is to determine the ideal values for the MSRWNN controller's parameters. The 

suggested MSRWNN-based DIC method has shown to be successful in terms of control accuracy and 

robustness against unforeseen external disturbances by conducting several evaluation tests utilizing a 
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nonlinear system. The proposed method achieved significant improvements, including a 25% reduction 

in Integral Squared Error (ISE) and a 30% improvement in disturbance rejection capability compared 

to traditional neural network controllers. Future work could explore the application of this methodology 

to other types of nonlinear systems and further refine the optimization process to enhance computational 

efficiency. The promising results obtained from this study suggest that the proposed method holds 

significant potential for broader application in various industrial and engineering domains. 
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