Strong forms of T^{*}- Intuitionistic Generalized Continuous Map in intuitionistic Topological Spaces

Asmaa G. Raouf, Muna A. Mahmood

Dept of mathematic, College of Education, Tikrit University, Tikrit, Iraq (Received: 9 / 1 / 2012 ---- Accepted: 13 / 3 / 2012)

Abstract

The aim of this paper is to introduce three new classes of maps called T^* - intuitionistic *gc*-irresolute map, strongly intuitionistic generalized continuous maps and perfectly intuitionistic generalized continuous maps in intuitionistic topological spaces and study some of their properties and relations among them. And T^* it is topology defined by $T^* = \{U: Icl^*(\overline{U}) = (\overline{U})\}$.

Key words: T^* -intuitionistic gc-irresolute maps, strongly T^* -intuitionistic generalized continuous maps, perfectly T^* -intuitionistic generalized continuous maps in intuitionistic topological spaces.

Introduction

Generalization of the concept of generalized closed sets is given by Levin, N.[5]. Dunham, W. [2] introduced generalized closure operator cl^* and defined a topology called T^* -topology. Pushpalatha, A. Eswaran, S. and Rajar, P.[9] introduced and investigated T^* -generalized-closed sets. Eswaran, S. and Pushpalatha, A. [3]studied and introduced T^* -generalized-continuous maps in a topological spaces. Gananambal, Y.[4] studied generalized-closed sets in topological spaces.

Pushpalatha, A. and Eswaran, S. [8] introduced T^* generalized-closed sets, T^* - generalized-continuous maps, perfectly generalized-continuous maps and strongly generalized-continuous maps respectively. Raouf, G. A. [10] studied intuitionistic generalizedclosed sets and some kinds in intuitionistic topological space.

In this paper, we introduce three new classes of maps between intuitionistic topological spaces (*ITS*) namely T^* - intuitionistic gc-irresolute maps, strongly T^* -intuitionistic g-continuous maps and perfectly T^* intuitionistic g-continuous maps and study their properties. Throughout this paper(X, T^*) and (Y, T°) (or simply X and Y) represent non-empty intuitionistic topological spaces (*ITS*) on which no separation axioms are assumed, unless otherwise mentioned. Let A be an IS in (X, T^*), we denote the closure of A (respectively the generalized closure operator is defined by the intersection of all Ig-closed contining A, and A^c represent closure of A and complement of A to an intuitionistic topological spaces (*ITS*) on T^* by cl (A) (respectively cl^{*}(A)).

Preliminaries

We recall the following definitions which are needed in our work

Let X be a non-empty set, and let A and B be IS having the form $A = \langle x, A_1, A_2 \rangle$; $B = \langle x, B_1, B_2 \rangle$ respectively. Furthermore, let $\{A_i : i \in I\}$ be an arbitrary family of IS in X, where $A_i = \langle x, A_i^{(1)}, A_i^{(2)} \rangle$, then :

- 1) $\widetilde{\varphi} = \langle x, \varphi, X \rangle; \widetilde{X} = \langle x, X, \varphi \rangle.$
- 2) $A \subseteq B$, iff $A_1 \subseteq B_1$ and $A_2 \supseteq B_2$.
- 3) The complement of A is denoted by \overline{A} and defined by $\overline{A} = \langle x, A_2, A_1 \rangle$.

4) $\cup A_i = \langle x_i \cup A_i^{(1)}, \cap A_i^{(2)} \rangle, \cap A_i = \langle x_i \cap A_i^{(1)}, \cup A_i^{(2)} \rangle$ [5]. Let X and Y be two non-empty sets and $f: X \to Y$ be a function. If $B = \langle y, B_1, B_2 \rangle$ is IS in Y, then the pre image of B under f denoted by $f^{-1}(B)$ is IS in X defined by $f^{-1}(B) = (x, f^{-1}(B_1), f^{-1}(B_2)), [1]$. An intuitionistic topology (IT, for short) on a non-empty set X, is a family T of IS in X containing $\widetilde{Q}, \widetilde{X}$ and under arbitrary unions closed and finitely intersections. The pair (X, T) is called an intuitionistic topological space (ITS, for short) [1]. A subset A of intuitionistic topological spaces (ITS, for short) (X,T) is said to be generalized closed (g-closed) in X if $Ic!(A) \subseteq U$ whenever $A \subseteq U$ and U is I open in X. A subset A is called generalized open (g-open) in X if its complement A^c is g-closed [5]. For the subset A of ITS (X,T), the intuitionistic generalized closure operator Icl* is defined by the intersection of all 1g-closed sets containing A[2].

A subset A of ITS (X,T), the topology T^* is defined by $T^* = \{U: Id^*(\overline{U}) = (\overline{U})\}$ [2]. A subset A of ITS (X,T) is called T^* -generalized-closed sets $(T^*-Ig\text{-closed})$ if $cl^*(A) \subseteq U$ whenever $A \subseteq U$ and U is T^* -I open in X. The complement of T^* -I generalized-closed set is called the T^* -I generalized-open set $(T^*-Ig\text{-open})$ [9]. A collection $\{A_i: i \in I\}$ of g-open sets in a topological space (X,T) is called a Ig-open cover of a subset B if $B \subset U \{A_i : i \in I\}$ [2]. A map $f:(X,T) \to (Y,\tau)$ is called continuous if $f^{-1}(V)$ is I-closed (or I-open) in X for every y I-closed set (or *I*-open set) V in Y [10]. A map $f:(X,T) \to (Y,\tau)$ is called generalized continuous (1g-continuous) if $f^{-1}(V)$ is Iq-closed in X for every I-closed set in Y [10]. A map $f:(X,T) \to (Y,\tau)$ is said to be gcirresolute if $f^{-1}(V)$ is lg-closed in X for every lgclosed set in Y [7]. A map $f: (X,T) \to (Y,\tau)$ is said to be strongly generalized-continuous (strongly 1gcontinuous) if $f^{-1}(V)$ is lopen set in X for every lgopen set in Y [10]. A map $f: (X,T) \to (Y,\tau)$ is said to be perfectly generalized-continuous (perfectly 1gcontinuous) if $f^{-1}(V)$ is both lopen and l-closed set in X for every Ig-open set in Y[8].

A map $f: (X,T) \to (Y,\tau)$ is called T^* -generalized continuous (T^* -Ig-continuous) if $f^{-1}(V)$ is T^* -Igclosed set in X for every Ig-closed set in Y [9].

Proposition 2.1 [9]

Every *I*-closed set in X is T^* -*Ig*-closed

Proof

Let A be an Iclosed set in X. Let $A \subseteq U$ where U is any T^* -Iopen set in X. Since A is an Iclosed then $Icl(A) = A \subseteq U$ but $Icl^*(A) \subseteq Icl(A)$. Thus, we have $Icl^*(A) \subseteq U$ whenever $A \subseteq U$. Therefore, A is T^* -Ig-closed.

Proposition 2.2 [9]

Every lg-closed set is T^* -lg-closed.

Proof

Let A be lg-closed set in X. Let $A \subseteq U$ where U is T^* -Iopen in X. Then $Icl(A) \subseteq U$, since A is lg-closed, $Icl^*(A) \subseteq Icl(A)$. Therefore, $Icl^*(A) \subseteq U$. Hence A is T^* -lg-closed.

T^* -intuitionistic gc - irresolute maps in intuitionistic topological spaces

In this section, we introduce a new class of map called T^* - intuitionistic gc- irresolute (T^* -Igc-irresolute) maps . which is included in the class of T^* - intuitionistic g-continuous (T^* -Ig-continuous) maps . We investigate some basic properties also. **Definition 3.1**

A map $f: (X,T) \to (Y,\tau)$, where (X,T) and (Y,τ) are ITS is called T^* -*Igc*-irresolute if the inverse image of every T^* -*Ig*-closed set in Y is T^* -*Ig*-closed set in X.

Theorem 3.2

The space (X,T) and (Y,τ) are T^* -lgc-irresolute if

and only if the inverse image of every T^* -Ig-open set in Y is T^* -Ig-open in X.

Proof

Assume that f is T^* -Igc-irresolute. Let A be any T^* - Ig-open set in Y. Then A^c is T^* -Ig-closed set in Y. Since f is T^* -Igc-irresolute, $f^{-1}(A^c)$ is T^* -Igclosed set in X. But $f^{-1}(A^c) = (f^{-1}(A))^c$ so $f^{-1}(A)$ is T^* -Ig-open set in X. Hence the inverse image of every T^* -Ig-open set in Y is T^* -Ig-open set in X.

Assume that the inverse image of every T^* -Ig-open set in Y is T^* -Ig-open set in X. Let A be any T^* -Igclosed set in Y. Then A^c is T^* -Ig-open set in Y. Then $f^{-1}(A^c)$ is T^* -Ig-open set in X. But $f^{-1}(A^c) = (f^{-1}(A))^c$ so $f^{-1}(A)$ is T^* -Ig-closed set in X. Therefore, f is T^* -Igc-irresolute.

Theorem 3.3

A map $f: X \to Y$ is T^* - *lgc*-irresolute if and only if it is T^* -*lg*-continuous.

Proof

Since f is T^* -Igc-irresolute. Let V be any Ig-closed set in Y. By proposition 2.2, V is T^* -Ig-closed set in Y. Since f is T^* -Igc-irresolute, then $f^{-1}(V)$ is T^* -Ig-closed in X. Therefore, f is T^* -Ig-continuous.

Since f is T^* -Ig-continuous. Let V be any Igclosed set in Y. By properties 2.2, V is T^* -Ig-closed set in Y. f is T^* -Ig-continuous, then $f^{-1}(V)$ is T^* -Ig-closed set in X. Therefore, f is T^* -Igc-irresolute. **Proposition 3.4**

Let X, Y and Z are an intuitionistic topological spaces . For any T^* -Igc-irresolute map $f: X \to Y$ and any T^* -Ig-continuous map $g: Y \to Z$, the composition $g \circ f: X \to Z$ is T^* -Ig-continuous.

Proof

Let V be any Ig-closed set in Z. Since g is T^* -Igcontinuous, $g^{-1}(V)$ is T^* -Ig-closed set in Y. Since f is T^* -Igc-irresolute, $f^{-1}(g^{-1}(V))$ is T^* -Ig-closed set in X. But $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$. Therefore, $g \circ f$ is T^* -Ig-continuous.

Proposition 3.5

If $f: X \to Y$ from intuitionistic topological space (X, T^*) into intuitionistic topological space (Y, τ^*) is

bijective, Ig-open and T^* -Ig-continuous then f is T*-Igc-irresolute .

Proof

Let V be any T^* -Ig-closed set in Y. Let $f^{-1}(V) \subseteq U$ where V is Ig-open set in X. Therefore, $V \subseteq f(U)$ holds.

Since f(U) is *Ig*-open and *V* is T^* -*Ig*-closed set in Y_{l} $cl(V) \subseteq f(U)$ holds and hence $f^{-1}(cl(V)) \subseteq U$. Since f is T^* -Ig-continuous and cl(V) is Ig-closed set in Y. $cl(f^{-1}(cl(V))) \subseteq U$ and so $cl(f^{-1}(V)) \subseteq U$. Therefore, $f^{-1}(V)$ is T^* -Ig-closed set in X. Hence f is T*-Igc-irresolute.

Strongly T^* - intuitionistic g- continuous maps an intuitionistic topological spaces

Levine, N. [5] introduced and investigated strongly I 1g-continuous continuous and strongly in intuitionistic topological spaces respectively.

In this section we introduce anew kind of amap forms of intuitionistic continuous maps an intuitionistic topological spaces namely strongly T^* - intuitionistic g – continuous (T^* -lg-continuous) maps and related to other kind of maps which are defined in this work

Definition 4.1

A map $f: (X,T) \to (Y,\tau)$, where (X,T) and (Y,τ) are ITS is called strongly T^* - intuitionistic g continuous if the inverse image of every T^* -Ig-open set (or T*-Ig-closed set) in Y is Ig-open (or Igclosed) in X.

Proposition 4.2

If a map $f: X \to Y$ from an intuitionistic topological space (X, T^*) into an intuitionistic topological space (Y, τ^*) is strongly T^* -Ig-continuous then it is T^* -Ig-continuous.

Proof

Since f is strongly T^* -lg-continuous. Let A be any Ig-closed set in Y. By proposition 2.2, A is T*-Igclosed set in Y. Since f is strongly T^* -1gcontinuous, $f^{-1}(A)$ is *lg*-closed in X. Therefore, f is T*-Ig-continuous.

The converse of the above proposition need not be true as the following example shows. Example 4.3

Let $X = \{1, 2, 3\}; T = \{\tilde{\emptyset}, \tilde{X}, A, B\}$ where $A = (x, \{2\}, \{1, 3\})$ and $B = (x, \{2\}, \emptyset)$. Let $Y = \{a, b, c\}; \tau = \{\widetilde{\emptyset}, \widetilde{Y}, C\}$ where $C = (y, \{a\}, \emptyset)$. Define a mapping $f: X \to Y$

by f(2) = a, f(3) = b and f(1) = c. Then f is T^* -lg-continuous. But f is not strongly T^* -lgcontinuous, since $D = (v, \{a\}, \{b, c\})$ is T^* -Igclosed set in Y, $A = f^{-1}(D) = (x, \{2\}, \{1,3\})$ is not g-closed set in X.

Theorem 4.4

A mapping $f: X \to Y$ from an intuitionistic topological space (X, T^*) into an intuitionistic topological space (Y, τ^*) is strongly T^* -Igcontinuous if and only if the inverse image of every T^* -Ig-closed set in Y is Ig-closed in X.

Proof

Since f is strongly T^* -lg-continuous. Let V be any T^* -Ig-closed set in Y. Then V^c is T^* -Ig-open set in Y. Since f is strongly T^* -Ig-continuous, $f^{-1}(V^c)$ is Ig-open in X. But $f^{-1}(V^{\circ}) = (f^{-1}(V))^{\circ}$ and so $f^{-1}(V)$ is Ig-closed set in X.

Conversely

Since the inverse image of every T^* -Ig-closed set in Y is Ig-closed set in X. Let A be any T^* -Ig-open set in Y. Then A^c is T^* -Ig-closed set in Y. Then $f^{-1}(A^c)$ is Ig-closed set in X. But $f^{-1}(A^c) = (f^{-1}(A))^c$

so $f^{1}(A)$ is lg-open set in X. Therefore, f is strongly T^* -Ig-continuous.

Proposition 4.5

If a mapping $f: X \to Y$ is strongly T^* -Ig-continuous and a mapping $g: Y \to Z$ is T^* -lg-continuous then the composition $g \circ f: X \to Z$ is T^* -Ig-continuous. Proof

Let A be any lg-closed set in Z. Since g is T^* -lgcontinuous, $q^{-1}(A)$ is T^* -Ig-closed set in Y. Since f is strongly T^* -Igc-continuous, $f^{-1}(g^{-1}(A))$ is T^* -Ig-closed set in X .By proposition 2.2. So $f^{-1}(q^{-1}(A))$ is T*-Ig-closed set. But $f^{-1}(g^{-1}(A)) = (g \circ f)^{-1}(A)$. Therefore, $g \circ f$ is T^* . Ig-continuous.

Proposition 4.6

If mapping $f: X \to Y$ from an intuitionistic topological space (X,T^*) into an intuitionistic topological space (Y, τ^*) is I continuous then it is strongly T^* -*lg*-continuous but not conversely. Proof

Since f is I continuous. Let A be any I-closed set in Y, then $f^{-1}(A)$ is I-closed set in X. By proposition 2.2, A is T*-Ig-closed. Since every I-closed set is Ig-closed then $f^{-1}(A)$ is Ig-closed. Hence f is strongly T^* -Ig-continuous.

The Converse of the above proposition need not be true as seen from the following example .

Example 4.7

Let $X = \{a, b, c\}; T = \{\tilde{\emptyset}, \tilde{X}, A, B\}$ where $A = \langle x, \{a\}, \{b, c\}\rangle$ and $B = \langle x, \{b, c\}, \{a\}\}$. Let $Y = \{1, 2, 3\}; \tau = \{\tilde{\emptyset}, \tilde{Y}, C, D\}$ where $C = \langle y, \{1\}, \{2, 3\}\rangle; D = \langle y, \{1\}, \emptyset\rangle$. Define a mapping $f: X \to Y$ by f(a) = f(c) = 1 and f(b) = 2. We can see that f is strongly T^* -Igcontinuous. We can see also that f is not continuous, since $\overline{C} = \langle y, \{2, 3\}, \{1\}\rangle$ is closed set in Y then $f^{-1}(\overline{C}) = \langle x, \{b\}, \{a, c\}\rangle$ is not closed set in X.

Proposition 4.8

If a mapping $f: X \to Y$ from an intuitionistic topological space (X, T^*) into an intuitionistic topological space (Y, τ^*) is *Ig*-continuous then it is strongly T^* -*Ig*-continuous.

Proof

Let $f: X \to Y$ be Ig-continuous.

Let A be I closed set in Y. Since f is Ig-continuous, then $f^{-1}(A)$ is Ig-closed set in X.By proposition 2.2, A is T^* -*Ig*-closed set in Y. Therefore f is strongly T^* -*Ig*-continuous.

The converse of the proposition need not be true as the following example shows. Example 4.9

Let $X = \{1,2,3\}; T = \{\tilde{\emptyset}, \tilde{X}, A, B\}$ where $A = \langle x, \{1\}, \{2,3\}\rangle$ and $B = \langle x, \{1\}, \emptyset \rangle$. Let $Y = \{a, b, c\}; \tau = \{\tilde{\emptyset}, \tilde{Y}, C, D\}$ where $C = \langle y, \{a\}, \{b, c\}\rangle$ and $D = \langle y, \{b, c\}, \{a\}\rangle$. Define a mapping $f: X \to Y$ by f(1) = f(3) = aand f(2) = b. Then f is strongly T^* -Ig-continuous. Since for the T^* -Ig-closed set $E = \langle y, \{b\}, \emptyset \rangle$ in Y, is $f^{-1}(E) = \langle x, \{2\}, \emptyset \rangle$ is Ig-closed set in X. But fis not Ig-continuous, because E is not closed set in Y.

Proposition 4.10

If a map $f: X \to Y$ from an intuitionistic topological space (X, T^*) into an intuitionistic topological space (Y, τ^*) is strongly T^* -*lg*-continuous then it is T^* -*lgc*-irresolute but not conversely.

Proof

Let f is strongly T^* -Ig-continuous map. Let A be a T^* -Ig-closed set in Y, then $f^{-1}(A)$ is Ig-closed in X. By proposition 2.2, $f^{-1}(A)$ is T^* -Ig-closed set in X. Therefore, f is T^* -Igc –irresolute.

The Converse of the above proposition need not be true as seen from the following example . **Example 4.11**

Let $X = \{1,2,3\}; T = \{\tilde{\emptyset}, \tilde{X}, A, B\}$ where $A = \langle x, \{3\}, \{1,2\}\rangle$ and $B = \langle x, \{3\}, \emptyset \rangle$. Let $Y = \{a, b, c\}; \tau = \{\tilde{\emptyset}, \tilde{Y}, C\}$ where $C = \langle y, \{b\}, \emptyset \rangle$. Define a mapping $f: X \to Y$ by f(3) = b; f(2) = a and f(1) = c. Then f is T^* -lgc-irresolute. But f is not strongly T^* -lgcontinuous, since C is T^* -lg-closed closed in Y, $B = f^{-1}(C) = \langle x, \{3\}, \emptyset \rangle$ is not lg-closed in X.

Perfectly T^* - intuitionistic g -continuous maps an intuitionistic topological spaces

In this section, we introduce a new kind of maps called perfectly T^* - intuitionistic g- continuous (perfectly T^* -Ig-continuous) maps and related of other kind of maps which are defined in this work. **Definition 5.1**

A map $f: (X,T) \to (Y,\tau)$, where (X,T) and (Y,τ) are ITS is called perfectly T^* -*Ig*-continuous if the inverse image of every T^* -*Ig*-closed set in Y is both *Ig*-open and *Ig*-closed in X.

Proposition 5.2

If a map $f: X \to Y$ from an intuitionistic topological space (X, T^*) into an intuitionistic topological space (Y, τ^*) is perfectly T^* -Ig-continuous then it is strongly T^* -Ig-continuous but not converse.

Proof

Since f is perfectly T^* -Ig-continuous. Let V be any T^* -Ig-closed set in Y, then $f^{-1}(V)$ is Ig-closed in X. Therefore, f is strongly T^* -Ig-continuous.

The Converse of the above proposition need not be true as seen from the following example shows. **Example 5.3**

Recall example 4.9. It is clear that f is strongly T^* *lg*-continuous, but not perfectly T^* -*lg*-continuous.

Theorem 5.4

A map $f: X \to Y$ from an intuitionistic topological space (X, T^*) into an intuitionistic topological space (Y, τ^*) is perfectly T^* -Ig-continuous if and only if the inverse image of every T^* -Ig-closed set in Y is both Ig-open and Ig-closed in X.

Proof

Since f is perfectly T^* -Ig-continuous. Let V be any T^* -Ig-closed set in Y. Then $f^{-1}(V^c)$ is both Ig-open and Ig-closed in X. But $f^{-1}(V^c) = (f^{-1}(V))^c$ so $f^{-1}(V)$ is both Ig-open and Ig-closed in X. Conversely Since the inverse image of every T^* -Ig-closed set in Y is both Ig-open and Ig-closed in X. Let A be any T^* -Ig-open set in Y. Then A^c is T^* -Ig-closed set in Y, by assumption, $f^{-1}(A^c) = (f^{-1}(A))^c$ and so $f^{-1}(A)$ is both Ig-open and Ig-closed in X. Therefore, f is perfectly T^* -Ig-continuous.

Proposition 5.5

If a map $f: X \to Y$ from an intuitionistic topological space (X, T^*) into an intuitionistic topological space (Y, τ^*) is perfectly T^* -*Ig*-continuous then it is T^* -*Igc*-irresolute, but not conversely.

References

[1]. Cueva, M.C. (1995) "Semi-generalized continuous maps in topological spaces" portugalie, Math. Vol. 52 Fasc. 4.

[2]. Dunham, W. (1982) "A new closure operator for non- T_1 topologies" kyungpook Math. J. 22, pp. 55-60.

[3]. Eswaran, S. and pushpalatha, A. (2009) " T^* -generalized continuous maps in topological spaces" Int. J. of Math. Sci. and Engineering Applications, Vol. 3, No. IV, (will be published in December 2009 issue).

[4]. Gananambal, Y. (1997) "On generalized closed sets in topological spaces" Indian J. prue apple Math. 28, No. 3, pp. 351-360.

[5]. Levine, N. (1970) "Generalized closed sets in topology" Rend. Cric. Mat. Palermo, 19, 2, pp. 89-96.
[6]. Navalagi, G. B. (2002) "Semipre-continuous function and properties generalized semipre-closed

Proof

Since f is perfectly T^* -Ig-continuous. Let A be a T^* -Ig-closed set in Y, then $f^{-1}(A)$ is both Ig-open and Ig-closed in X. By proposition 2.2, $f^{-1}(A)$ is T^* -Ig-closed set in X. Hence f is T^* -Igc-irresolute.

The Converse of the above proposition need not be true as seen from the following example shows. **Example 5.6**

Recall example 4.11. We see that f is T^* -Igc-irresolute, but not perfectly T^* -Ig-continuous.

sets in topological spaces" Int. J. MMS 29, 2. pp. 85-98.

[7]. Ozcelik, A. Z. and Narli, S. (2007) "Decomposition of homeomorphism on topological spaces" Int. J. of math. And Math. Sci. Vol. 1, ISSN pp. 72-75.

[8]. Pushpalatha, A. and Eswaran, S. (2010) "strongly forms of T^* -generalized continuous map in topological spaces" Int. J. contep. Math. Science, Vol. 5, no. 17, pp. 815-822.

[9]. Pushpalatha, A. and Eswaran, S. and Rajar, P. (2009) " T^* -generalized closed sets in topological spaces" pro. of W. con. on Engineering, I SBN. pp. 978-988.

[10]. Raouf, G. A. (2008) "On generalized homeomorphism" between ITS" MSC. Tikrit uni. Thesis coll. Of Education.

تعميم الدوال المستمرة القوية الشكل في الفضاءات التبولوجية الحدسية-٣

أسماء غصوب رؤوف ، منى عبداللطيف محمود

قسم الرياضيات ، كلية التربية ، جامعة تكريت ، تكريت ، العراق

(تاريخ الاستلام: 9 / 1 / 2012 ---- تاريخ القبول: 13 / 3 / 2012)

الملخص

أن الهدف من هذا البحث هو أعطاء ثلاث أصناف جديدة من الدوال الحدسية وأسميناها تعميم الدوال غير القابلة للاختزال الحدسية-*T وتعميم الدوال المستمرة القوية الحدسية-*T وتعميم الدوال المستمرة التامة الحدسية-*T في الفضاءات التبولوجة الحدسية ود رسنا بعض صفاتها والعلاقة بينهم .