
Weakly quasi-prime radical of submodules
Hairan lbraheem Farisr , Nada Jasim Mohammad Al-obaidf

t Salah Al-Deen's Education , Tikrit ; Iruq
) Department of Mathematics, Collage of Educationfor Women , Tikrit Uniwrsity, Tikrit, Iraq

Tiktit Joumal of Pure Science 19 (5) 2014

the concept of weakly quasi-prime radical of a

submodule, and the concept of weakly quasi-prime
radical submodules as a generalization of prime
radical of N, and prime radical submodules
respectively.
Sl:Basic DroDerties of Weakly quasi-prime
radical:
In this section, we intooduce, the concept of weakly
quasiprime radical of a submodule N ofan R-module
M as a generalization of prime radical ofa submodule
N, and gives some basic properties ofit.
Definition (1.1):
A weakly quasi-prime radical of a submodule N ofan
R-module M, denoted by Wqpradr,a (N) is defined as

the intersection of all weakly quasi-prime submodule
of M which contain N. lf there exists no weakly
quasi-prime submodule of M containing N, we put
Wqpradr,a(N):M. If M=& and I is an ideal of \ then
Wqprad y(I) is the intersection ofall weakly quasi-
prime ideals of R containing I.
In the following proposition we give some
fundamental properties of weakly quasi-prime
radical.
Proposition (1.2):
Let F:M---'M' be an epimorphis from an R-module M
in to an R-module M', and K be a submodule of M
with Kerf g K, then:
l. /(WqpradM(K)) :Wqprady,(/(K))

L f r(WqpradM,(K')) - wqpradvUlr(K')).where K' is
a submodule of M'.
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1. N c Wqprady (N).

Z If N GL then Wqprady (N)q Wqprads (L).
f. Wqprady (Wqprady (N)) =Wqprady(N).
4. Wqprady (NflL) c Wqprady (N) O Wqxady (L).

5. WqpradM(N+L) :WqpradM (Wqprady (fJ)+
Wqpradll (L)).
Proof:

! Since Wqprady (N)=OL, where the intersection is
over all weakly quasi-prime submodule L, with NgL,
SoNsWqprady(N).
a Suppose that NcL, and let K be a weakly quasi-
prime submodule of M with t4K. But N q L s K
implies that NgK. Hence WqpradM (N) g Wqpradu
(L).

I By part one, we have Wqprady (N) q Wqprady
(Wqprady (N)). Now, Wqprady (Wqp rad r,r (N)) =
f)L, where the intersection is over all weakly quasi-
prime submodule L with Wqprady (N) c L. But by
(1) we have N c Wqpradll(N), and consequently,
Wqpradll (Wqr rad u (N) g Wqprady (I.l). Hence
Wqprady (Wqprady (l{)) : Wqprady (N).
4. Sine NOIgL and NltLgN, then by (2) we have

Wqprady Q{OL) q Wqprady (L) and Wqp rady

$nL) c Wqpradll (N). Thus Wqprady $nL) c
Wqprady (N) n Wqprady (L).

5 Since N+l,c WqpradM(N)+ Wqpradll(L) then by
(2) we have WqpradM(N+L)gWqp rady (Wqprady
(N)+ wqpradM (L)).

Abstract:
Let R be acommutative ring with identity, and M be a unitary R-module. In this paper we introduce the concept
weakly quasi-prime radical of submodules N as a generalization of a prime radical of submodule N (for short,
Wqprady(N)) is define as the intersection ofall weakly quasiprime submodules ofM which contain N. Also, we
introduce the concept weakly quasi-prime radical submodule, where a proper submodule N of an R-module M
which satisfies the properry Wqpradu (N)=N is called a weakly quasi-prime radical submodule of M. Many
properties ofthese concepts are given.
Introduction:
Throughout this paper R will be denoted a Proof:
commutative ring with identity, and M be a unitary a Since wqpradM (K) : iN where the intersection is
R-module. A prime radical ofan R-submodule N of over all weakly quasiprime submodule N ofM with
M, denoted by rady(N)was defined in [7] as the KsN, then /(Wqprady (K) = I (nN). Since Kerfs
intersection of all prime submodule of M containing K g N then /(Wqprady (K)Fn,fN) [5] where the
N, then rady (N) = M. Where a proper submodule K intersection is over all weakly quasi-prime submodule
of M is called a prime if r meK for reR, meM /(N) of M with /(K)c/(N) thus l(WqpradMu(K)).
implies that either m€N or r€ [K:M]. 2. Let K be a submodule of M,. Then Wqprady, (K)
Weakly quasi-prime submodules are generalization of InN, where the interseclion is over all weikly quasi-
a prime submodules are introduce in [3]. where a prime submodule N' of M,with KgM', then f
proper submodule N of an R-module M is called llwqprady (K)):f,(nN): n /-,(N) t5l. i\ihere the
weakly quasi-prime, if wherever 0+rrrzmeN. for intersection is over all weakly quasi-prime submodule
each non-Zero elemenrs 1112eR and for each /-,(N'l of M with /-rtK,)e /r(N') therefore /-0+mcM.theneitherrrmcNorr2mcN. ](Wqpradv(K')) Wqpiadv(fr(l(;)).
Equivalently, a proper submodule N ofan R-module iroposition0.3):
M is weakly quasi-prime if and only if [N:q(m)] is L1fiJ.1f, q:;odule, and N,L are two submodule
weakly prime ideal of R for each 0+m€M.We give of M then:
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Now let K be a weakly quasi-prime submodule ofM
such that N+LEK, we are going to prove that
WqpradM N) + WqpradM (L) q K. Since N+L q K N
g K and L e K.Thus Wqpradll (N) g K and

Wqprady (L) g K. Hence Wqprady (N)+ Wqprady
(L) _c K, and WqpradM (WqpradM (N)+ Wqprady (L))
g I( Therefore Wqp rady (Wqprady (N)+ Wqpradv
(L)) c WqpradLa (N+L) and we have Wqprady (Wqp
radv (NF Wqprady(L))= WqpradM (N+L).
As a consequence of proposition (1.3) we get the
fol lowing corollaries.
Corollary (1.4): Let N be a submodule of
Wqrrady(N(S)), where S is a multiplicative set of R.
Corollary(1.5): Let N be a submodule of an R-
module M then Wqprady(N)gWqprady(cl(N)).
Corollary (1.6): Let N be a submodule of an R-
module M then Wqpradr,r (N) q Wqp rad u ([N:l]) for
every ideal I ofR
Recall that a submodule N of an R-module M is
completely ineducible if for any submodule L1,L2 of
M,LrnLrgN, implies that either L1=N or Lr=N[6].
The following proposition gives equality of prop.
(1.3(4)) holds under certain condition.
Proposition (1.4: Let M be an R-module, and N, L
are two submodules of M. [f every weakly quasi-
prime submodule of M which contain NOL is
completely irreducible submodule, then Wqprady
(NOL) = Wqprady (N)nW qpradv(L).
Prooft
Since Wqprady (NOL) g Wqprad!,r (N)f)W qpradl,a
(L) holds by prop.(1.3(4)). tf Wqp rad M(NnL)= M,
then Wqprady [N; Wqprady{ L)=M.
If Wqprady NnL)+M, then there exists a weakly
quasi-prime submodule K of M such that NntEK
then by hypothesis either NgK or LgK so that either
Wqprady (N) q K or Wqprady (L) g K, since every
weakly quasi-prime submodule containing NnL is
completely irreducible, then we have either WqpradM
(N) q Wqprady (NOL) or Wqprady (L) c Wqprady
NNL).
Therefore Wqprady (L) ll Wqprady (N) c WqpradM
(NnL). Hence Wqpradr,r (NOL) = Wqp rad y(N) O

Wqprady (L).
Proposition (1.8):
l,€t N be a submodule of an R-module M. Then
wqprady ([N:M]) M s Wqp radM (N).
Proof:
L€t Wqprad -(|0=M, then WqpradM([N:M])M c
Wqprady(N). Let L be any weakly quasi-prime
submodule of M containing N, [N:M] c [L:M]. But L
is a weakly quasiprime, then by (3, coro.3. 1.4,ch.3).

[L:M] is a weakly prime ideal of R, and hence [L:M]
is a weakly quasi-prime ideal ofR .

Thus Wqprads ([N:M]) M c [L:M]McL. Therefore
WqpradM ([N:MIO s WqpradM (N).
Proposition (1.9):
I-€t M be an R-module, and N,L are submodule ofM
such that [N:M]+[K:M]= R for each weakly quasi-
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prime submodule K of M containing NaL. Then
Wqp radv (NO L)=WqpradM (N)n WqpradM (L).
Proofi
Since NOtgK, and K is weakly quasiprime
submodule of M, then by (3,coro. 3.1.4)ch.3) we have
LgK, thus K is completely irreducible and hence by
prop.(l.7) we have
WqpradM(NaL)=WqpradM(N)nWqprady(L). We can
generalize proposition (1.7).
Proposition (1.10):
Let Nr,N2,...,N" be a submodule of an R-module M
such that wherever NrnN2n....nN" g I( for some
i=|,2,....t for any quasi-prime submodule H of M.
Then Wqprady(fl l!, ND=fl iL, Wqpradl,a(Ni).
Proposition (l.l l):
Let N be a submodule of an R-module M. If M
satisfies the ascending chain condition on
submodules, then WqpradM (N) = M if and only if
N=M.
Proof:
Suppose that N=M, then Wqprady (N)= Wqprady
(M)=M. Now, suppose that M satisfies the ascending
chain condition on submodule, then every proper
submodule of M is contained in a prime submodule.
Hence every proper submodule is contained in a

weakly quasi-prime submodule. Thus ifN is a proper,
then WqpradM (N)+M. Hence if Wqprads (N)= M
then N:M.
Corollary (1.12):
If an R-module M satisfies the asecending chain

condition on a submodules, and N,L are submodules
of M. Then Wqprady(NlrWqprad l\,(L):M if and
only if N+L=M.
Proof:
Assume that Wqprady (Nlr Wqprads (L)=M. Thus
Wqprady (Wqpradl,a (N)+ Wqp radu (L))= Wqpradr,r
(M) =M. If N+L=M, then WqpradM (N+L)= Wqprady
(M)=M. Mean Wqprady (Wqprady (N)+ Wqpradv
(L)=M, implies that WqpradM (N)+ WqpradM (L)=M.
Mean WqpradM(N+L):M by prop.(1.3(5)). But M
satisfies ascending chain condition then N+L=M.
Proposition (1.13):
Let M be an R-module. If M is regular, than
WqpradM(K)=K for all submodule K of M.
Proof:
Suppose that M is regular R-module, and let K be a
proper submodule of M. Then by prop.(1.3) we have
Kg Wqprady (K). To prove first that K is the
intersection of prime submodules, we must prove that
K is semi-prime submodule of rad y(N)=M.
Let r2xeK for r€R, xeM. Then since M is regular by

[2] we have rxe(r) MO(rx) =(r)(rx). Thus rxeK and
K is a semi-prime submodule. Hence by [4] K is the
intersection of a prime submodules. Hence K=
n..^ P. where P- is a prime submodule of M for
each ccE,1, therefor 0o,.^ K.gt( where fu is a
prime submodule of M is a weakly quasi-prime then
Wqprads (K) g [')"." K-, implies that Wqprady (K)
g K. Hence Wqprad y (KlK.
52: r eakly quasi-prime radical submodules:
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ln this section, we inhoduce the definition of weakly
quasi-prime radical submodule as a generalization of
prime radical submodule, and study some properties

ofthis concept.
Delinition (2.1):
A proper submodule of an R-module M is called
weakly quasi-prime radical, if Wqp rad y(N)=N.
Proposition (2.2):
tfN is a submodule ofan R-module M that Wqprady
(N) is a weakly quasi-prime radical submodule.
Proof:-
tom prop.(I.3(3),we have WqpradM(Wqpradv(NF
Wqprady(N).hence Wqp rad y(N)is aweakly quasi-
prime radical Submoaule of M.
Proposition (2.3):
If N is a weakly quasi-prime submodule of M, then
Wqprad y(N)=N.
Proof:-
from prop (1.3(l), we have Ng Wqprady (N).And
tom definition of Wqprad M(N),we have WqpradM
(N) c ,hene Wqprady (N)=N.
Now, we are going to consider the relationship
among the following three statements for any R-
module.

t M satisfies the ascending chain condition for
weakly quasi-prime radical submodules. ! Each
weakly quasi-prime radical submodule is an
intersection of a finite number of weakly quasi-prime
submodule.
1 Every weakly quasi-prime radical submodule is the
weakly quasi-prime radical of a finitely generated
submodule of it.
Proposition (2.4):
Let M be an R-module. lf M satisfies the ascending
chain mndition for weakly quasi-prime radical
submodules, then every weakly quasi-prime radical
submodule ofM is an intersection ofa finite number
of weakly quasi-prime submodules.
Proof:
trt N be a weakly quasi-prime radical submodule of
M. Put N=ni€r Ni, where Ni is a weakly quasiprime
radical submodule of M for each iel, and the
expression is reduced. Assume that I is an infinite
index set. wilhout loss of generality we may assume
t}lat I is countable.
Then N= 0p, NicOp, Nic0f . Nic...., is

ascending chain of weakly quasi-prime radical
submodules. Then by prop.(1.3( I )),we have fl1.,Ni g
Wqp radM (ni€r Ni)qnWqprads(Nif fl;.1 Ni.
By hypothesis this asc€nding chain must terminate, so

there existsjeI such that npjNi=n:,+1Ni, therefore

flf;*1 NiqNj, which contradicts that the expression
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N= n:1 Ni is reduced. Therefore, I must be finite and

hence N=flf , Ni.
Proposition (2.,
Let M be an R-module. If M satisfies the ascending
chain condition for weakly quasi-prime radical
submodules then every proper submodule of M is a
weakly quasi-prime radical of a finitely generaled

submodule.
Proof:
Assume that there exists aproper submodule N of M
which is not the weakly quasi-prime radical of
finitely generated submodule ofit.
l,€t mreN and N1=Wqprady(Rm1), so N1cN. Thus
there exists m:eN-Nr. kt N1:Wqp rady(Rmr+P.rn:),
then NlcN, hence there exists m3eN-N3 This
implies an ascending chain of weakly quasi-prime

radical submodules N1gN2qN3g....,which does not
terminate and this contradicts with the h)?othesis.
Proposition (2.6):
Let M b€ a finitely generated R-module. If every
weakly quasi-prime submodule ofM is weakly quasi-
prime radical ofa finitely generated submodule of it,
then M satisfies the ascending chain condition for
weakly quasi-prime submodules.
Prooft
Let N1gN2gN3q..,., be ascending chain of weakly
quasi-prime submodules of M. Since M is finitely
generated, then N=U Ni is weakly quasi-prime
submodule of M. Thus by hlpothesis, N is the weakly
quasi-prime radical for some finitely generated

submodule L=Rmr+Rm2+Rmr+...+Rm"=Xilr Rmi,
where mieN for all i=1,2,...,n. Hence L g Wqprady
(L) = N =UNi. Then there exists jeJ such that
u Ni = Nj. Thus the chain of weakly quasiprime
submodules Ni terminates.
The following proposition shows that weakly quasi-
prime radical submodule and prime-radical sumodule
are equivalent undel acertian condition.
Proposition (2.7):
L€t M be an R-module such that every submodule of
M is irreducible. Then N is prime-radical submodule
iffN is aweakly quasi-prime radical submodule
Proof:
Suppose that N is a prime-radical submodule, that is
N= rady(N)=fl{Li:where Li is a prime submodule of
M such that Ng Li) since every submodule is
irreducible, then by [,prop 2.1.3, ch2] every prime
submodule of M is weakly quasi-prime. Hence rad
y(N) = O {Li:where Li is a prime submodule of M
such that NgLi)=Wqpradu(N)
Conversely: Similary.
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