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Abstract:

Let R be acommutative ring with identity, and M be a unitary R-module. In this paper we introduce the concept
weakly quasi-prime radical of submodules N as a generalization of a prime radical of submodule N (for short,
Wqpradm(N)) is define as the intersection of all weakly quasi-prime submodules of M which contain N. Also, we
introduce the concept weakly quasi-prime radical submodule, where a proper submodule N of an R-module M
which satisfies the property Wqprady (N)=N is called a weakly quasi-prime radical submodule of M. Many

properties of these concepts are given.
Introduction:

Throughout this paper R will be denoted a
commutative ring with identity, and M be a unitary
R-module. A prime radical of an R-submodule N of
M, denoted by rady(N)was defined in [7] as the
intersection of all prime submodule of M containing
N, then rady (N) = M. Where a proper submodule K
of M is called a prime if r meK for reR, meM
implies that either meN or re [K:M].

Weakly quasi-prime submodules are generalization of
a prime submodules are introduce in [3], where a
proper submodule N of an R-module M is called
weakly quasi-prime, if wherever 0#rjrymeN, for
each non-Zero elements rr.eR and for each
0#meM, then either rymeN or rmeN.

Equivalently, a proper submodule N of an R-module
M is weakly quasi-prime if and only if [N:r(m)] is
weakly prime ideal of R for each 0+meM.We give
the concept of weakly quasi-prime radical of a
submodule, and the concept of weakly quasi-prime
radical submodules as a generalization of prime

radical of N, and prime radical submodules
respectively.

S1:Basic properties of Weakly quasi-prime
radical:

In this section, we introduce, the concept of weakly
quasi-prime radical of a submodule N of an R-module
M as a generalization of prime radical of a submodule
N, and gives some basic properties of it.

Definition (1.1):

A weakly quasi-prime radical of a submodule N of an
R-module M, denoted by Wqprady (N) is defined as
the intersection of all weakly quasi-prime submodule
of M which contain N. If there exists no weakly
quasi-prime submodule of M containing N, we put
Wqprady(N)=M. If M=R, and I is an ideal of R, then
Wqprad w(T) is the intersection  of all weakly quasi-
prime ideals of R containing I.

In the following proposition we give some
fundamental properties of weakly quasi-prime
radical.

Proposition (1.2):

Let F:-M—M' be an epimorphis from an R-module M
in to an R-module M', and K be a submodule of M
with Kerf ¢ K, then:

1. f(Wqpradu(K)) =Wqpradu(f(K))

2. f'(Wqpradw(K')) = Waprady(f™'(K").Where K' is
a submodule of M'.

Proof:
1. Since Wqprady (K) = NN where the intersection is
over all weakly quasi-prime submodule N of M with
KcN, then f(Wgprady (K)) = f (NN). Since Kerf <
K < N then f(Wqprady (K))=Nf(N) [5] where the
intersection is over all weakly quasi-prime submodule
f(N) of M' with f(K)cf(N) thus f(Wqpradm(f(K)).
2. Let K' be a submodule of M'. Then Wqpradyy (K')
= NN' where the intersection is over all weakly quasi-
?rime submodule N' of M' with K'eM', then f
(Wqprady (K))=f" ("N') = N £ (N") [5]. Where the
intersection is over all weakly quasi-prime submodule
(N) of M with f'(K)c f'(N') therefore f
(Wqprad w(K"))=Waqpradu(f™ (K).
Proposition(1.3):
Let M be an R-module, and N,L are two submodule
of M then:
1. N < Waprady (N).
2. If N cL then Wqprady (N)c Wqprady (L).
3. Wqprady (Wqprady (N)) =Wqpradu(N).
4. Wgprady (NNL) < Wqprady (N) N Wqprad (L).
5. Wgprady(N+L) =Wgqpradyy, (Wqprady (N)+
Waprady (L)).
Proof:
1. Since Wqprady (N)=NL, where the intersection is
over all weakly quasi-prime submodule L, with NcL,
So N ¢ Wqprady (N).
2. Suppose that NcL, and let K be a weakly quasi-
prime submodule of M with LcK. But Nc L c K,
implies that NcK. Hence Wqprady (N) = Wqprady
(L).
3. By part one, we have Wqprady (N) ¢ Wqprady
(Wgprady; (N)). Now, Wgprady (Wqp rad y (N)) =
ML, where the intersection is over all weakly quasi-
prime submodule L with Wqprady (N) < L. But by
(1) we have N c Wqpradu(N), and consequently,
Waprady (Wgp rad y (N) < Wqprady (N). Hence
Wqprady (Wgprady (N)) = Waprady (N).
4. Sine NNLcL and NNLcN, then by (2) we have
Wgaprady (NNL) < Wgprady (L) and Wqp rady
(NNL) = Wqprady (N). Thus Wgprady (NNL)
Waprady (N) N Wqprady (L).
5. Since N+Lc Wqprady(N)+ Wqprady(L) then by
(2) we have Wqprady(N+L)cWqp radu (Wgpradu
(N)+ Waprady (L))
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Now let K be a weakly quasi-prime submodule of M
such that N+LcK, we are going to prove that
Waprady (N) + Wgprady (L) € K. Since NtLc K, N
c K and L ¢ K.Thus Wqprady (N) < K and
Wqprady (L) c K. Hence Wqprady (N)+ Wqprady
(L) c K, and Wgprady (Wqprady (N)+ Wqprady (L))
< K. Therefore Wgp rady (Wqprady (N)+ Waprady
(L)) c Wqprady (N+L) and we have Wqprady (Wgp
rady (N)+ Wqprady (L))= Wqprady (N+L).

As a consequence of proposition (1.3) we get the
following corollaries.

Corollary (1.4): Let N be a submodule of
Wqpradyu(N(S)), where S is a multiplicative set of R.
Corollary(1.5): Let N be a submodule of an R-
module M then Wqprady(N)c Wqpradu(cl(N)).
Corollary (1.6): Let N be a submodule of an R-
module M then Wqprady, (N) < Wqp rad v ([N:1]) for
every ideal I of R.

Recall that a submodule N of an R-module M is
completely irreducible if for any submodule L,,L, of
M,L;NL,cN, implies that either L;=N or L,=N[6].
The following proposition gives equality of prop.
(1.3(4)) holds under certain condition.

Proposition (1.7): Let M be an R-module, and N, L
are two submodules of M. If every weakly quasi-
prime submodule of M which contain NNL is
completely irreducible submodule, then Wqprady
(NNL) = Wqprady (N)NW gprady(L).

Proof:

Since Wqprady (NNL) < Wqprady (N)W qprady
(L) holds by prop.(1.3(4)). If Wqp rad w(NNL)= M,
then Wqprady (N)= Wqprady (L)=M.

If Wgprady (NNL)#M, then there exists a weakly
quasi-prime submodule K of M such that NNLcK,
then by hypothesis either NCK or LcK so that either
Wqprady (N) € K or Wqprady (L) < K, since every
weakly quasi-prime submodule containing NML is
completely irreducible, then we have either Wqprady
(N) = Wqprady (NML) or Wqprady (L) = Wqprady
(NNL).

Therefore Wqprady; (L) N Wqprady (N) < Wqprady
(NNL). Hence Wgprady (NMNL) = Wqp rad w(N) N
Wqprady (L).

Proposition (1.8):

Let N be a submodule of an R-module M. Then
Waprady ([N:M]) M c Wqp rady (N).

Proof:

Let Wgprad u(N)=M, then Wqprady([N:M])M <
Wgpradu(N). Let L be any weakly quasi-prime
submodule of M containing N, [N:M] < [L:M]. But L
is a weakly quasi-prime, then by (3, coro.3.1.4,ch.3).
[L:M] is a weakly prime ideal of R, and hence [L:M]
is a weakly quasi-prime ideal of R .

Thus Wgprady ([N:M]) M < [L:M]McL. Therefore
Waprady ([N:M]M) € Wqprady (N).

Proposition (1.9):

Let M be an R-module, and N,L are submodule of M
such that [N:M]+[K:M]= R for each weakly quasi-
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prime submodule K of M containing NML. Then
Wqp rady (NNL)=Wgprady (N)"Wqprady (L).
Proof:

Since NNLcK, and K is weakly quasi-prime
submodule of M, then by (3,coro. 3.1.4)ch.3) we have
LcK, thus K is completely irreducible and hence by
prop.(1.7) we have
Waprady(NNL)=Wqpradu(N)NWaprady(L). We can
generalize proposition (1.7).

Proposition (1.10):

Let Ni,Na....,N, be a submodule of an R-module M
such that wherever N;NN,MN....N,, < K, for some
i=1,2,....n for any quasi-prime submodule H of M.
Then Wqpradu(NiL, Ni)=N{L, Wqprady(Ni).
Proposition (1.11):

Let N be a submodule of an R-module M. If M
satisfies the ascending chain condition on
submodules, then Wqprady (N) = M if and only if
N=M.

Proof:

Suppose that N=M, then Wqprady (N)= Wqprady
(M)=M. Now, suppose that M satisfies the ascending
chain condition on submodule, then every proper
submodule of M is contained in a prime submodule.
Hence every proper submodule is contained in a
weakly quasi-prime submodule. Thus if N is a proper,
then Wqprady (N)#M. Hence if Wqprady (N)= M
then N=M.

Corollary (1.12):

If an R-module M satisfies the asecending chain
condition on a submodules, and N,L are submodules
of M. Then Wgqprady(N)+Wgprad u(L)=M if and
only if N+L=M.

Proof:

Assume that Wqprady (N)+ Wqprady (L)=M. Thus
Wqprady (Wgprady (N)+ Wqp rady (L))= Wqprady
(M) =M. If N+L=M, then Wqprady (N+L)= Wqprady
(M)=M. Mean Wqprady (Wqprady (N)+ Wqprady
(L)=M, implies that Wqprady (N)+ Wqprady (L)=M.
Mean Wgqprady(N+L)=M by prop.(1.3(5)). But M
satisfies ascending chain condition then N+L=M.
Proposition (1.13):

Let M be an R-module. If M is regular, then
Wqprady(K)=K for all submodule K of M.

Proof:

Suppose that M is regular R-module, and let K be a
proper submodule of M. Then by prop.(1.3) we have
Kc Wgqprady (K). To prove first that K is the
intersection of prime submodules, we must prove that
K is semi-prime submodule of rad y(N)=M.

Let r’xeK for reR, xeM. Then since M is regular by
[2] we have rxe(r) MN(rx) =(r)(rx). Thus rxeK and
K is a semi-prime submodule. Hence by [4] K is the
intersection of a prime submodules. Hence K=
Nuer P« where P, is a prime submodule of M for
each «cen, therefor Nye, Ko.cK, where K, is a
prime submodule of M is a weakly quasi-prime then
Waprady (K) < Ne, Ka, implies that Wqprady (K)
< K. Hence Wqprad y; (K)=K.

§2: Weakly quasi-prime radical submodules:
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In this section, we introduce the definition of weakly
quasi-prime radical submodule as a generalization of
prime radical submodule, and study some properties
of this concept.

Definition (2.1):

A proper submodule of an R-module M is called
weakly quasi-prime radical, if Wqp rad y(IN)=N.
Proposition (2.2):

If N is a submodule of an R-module M then Wqprady
(N) is a weakly quasi-prime radical submodule.
Proof:-

from prop.(1.3(3),we have Wgqprady(Wqprady(N)=
Waprady(N).hence Wqp rad w(N)is aweakly quasi-
prime radical Submoaule of M.

Proposition (2.3):

If N is a weakly quasi-prime submodule of M, then
Wqprad y(N)=N.

Proof:-

from prop (1.3(1), we have Nc Wqprady (N).And
from definition of Wqprad m(N),we have Wqprady
(N) < ,hene Wqprady (N)=N.

Now, we are going to consider the relationship
among the following three statements for any R-
module.

1. M satisfies the ascending chain condition for
weakly quasi-prime radical submodules. 2. Each
weakly quasi-prime radical submodule is an
intersection of a finite number of weakly quasi-prime
submodule.

3. Every weakly quasi-prime radical submodule is the
weakly quasi-prime radical of a finitely generated
submodule of it.

Proposition (2.4):

Let M be an R-module. If M satisfies the ascending
chain condition for weakly quasi-prime radical
submodules, then every weakly quasi-prime radical
submodule of M is an intersection of a finite number
of weakly quasi-prime submodules.

Proof:

Let N be a weakly quasi-prime radical submodule of
M. Put N=;¢; Ni, where Ni is a weakly quasi-prime
radical submodule of M for each iel, and the
expression is reduced. Assume that I is an infinite
index set. without loss of generality we may assume
that I is countable.

Then N= N2, NicN2,NicNZ;Nic...., s
ascending chain of weakly quasi-prime radical
submodules. Then by prop.(1.3(1)),we have N;g Ni <
Wap rady (Nje; N)=NWapradu(Ni)= Nig; NiL.

By hypothesis this ascending chain must terminate, so
there exists jel such that N{2; Ni=NZ;, ; Ni, therefore
NiZj+1 NicNj, which contradicts that the expression
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N= N2, Ni is reduced. Therefore, I must be finite and
hence N=N{2, Ni.

Proposition (2.5)

Let M be an R-module. If M satisfies the ascending
chain condition for weakly quasi-prime radical
submodules then every proper submodule of M is a
weakly quasi-prime radical of a finitely generated
submodule.

Proof:

Assume that there exists aproper submodule N of M
which is not the weakly quasi-prime radical of
finitely generated submodule of it.

Let m;eN and N,=Wgprady(Rm;), so N;cN. Thus
there exists m,eN-N|. Let N,=Wgp rady(Rm;+Rm,),
then N;cN, hence there exists m;eN-N; . This
implies an ascending chain of weakly quasi-prime
radical submodules N;cN>cN;c....,which does not
terminate and this contradicts with the hypothesis.
Proposition (2.6):

Let M be a finitely generated R-module. If every
weakly quasi-prime submodule of M is weakly quasi-
prime radical of a finitely generated submodule of it,
then M satisfies the ascending chain condition for
weakly quasi-prime submodules.

Proof:

Let NjcN>cNsc...., be ascending chain of weakly
quasi-prime submodules of M. Since M is finitely
generated, then N=UNi is weakly quasi-prime
submodule of M. Thus by hypothesis, N is the weakly
quasi-prime radical for some finitely generated
submodule L=Rm;+Rmy+Rms+...++Rm,=XL, Rmi,
where mieN for all i=1,2,...,n. Hence L. ¢ Wqprady
(L) = N =UNi. Then there exists jeJ such that
UNi = Nj. Thus the chain of weakly quasi-prime
submodules Ni terminates.

The following proposition shows that weakly quasi-
prime radical submodule and prime-radical sumodule
are equivalent under acertian condition.

Propeosition (2.7):

Let M be an R-module such that every submodule of
M is irreducible. Then N is prime-radical submodule
iff N is aweakly quasi-prime radical submodule
Proof:

Suppose that N is a prime-radical submodule, that is
N= rady(N)="{Li:where Li is a prime submodule of
M such that Nc Li} since every submodule is
irreducible, then by [1,prop 2.1.3, ch2] every prime
submodule of M is weakly quasi-prime. Hence rad
m(N) = N {Li:where Li is a prime submodule of M
such that NcLi}=Wqprady(N).

Conversely: Similary.
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