Study $\alpha T_{1:}$, space

Adnan Zarif, Asaad Shaker Hameed AL-Khafaji

Department of mathematics, Faculty of Science, Tishreen University, Lattakia, Syria. (Received: 13 / 3 / 2012 ---- Accepted: 26 / 10 / 2011)

Abstract

In this paper we introduce a definition of a new space is called $\alpha - T_{1/2}$ by a new concept of generalized closed

sets of the type α , we studied the relationship between this space and the spaces α^{-T_0} and α^{-T_1} and note that space $\alpha^{\alpha-T_{1/2}}$ is located between $\alpha^{\alpha-T_0}$ and $\alpha^{\alpha-T_1}$.

Keywords: generalized closed set, $\alpha - open_{set}$. $\alpha - closed_{set}$, α - generalized closed set, $\alpha - T_{1/2}$, $\alpha - T_0$, $\alpha - T_1$

Introduction

The concept of g-closed sets in topological spaces was introduced in 1970 by N. Levine [1], a subset A of (X,τ) to be g- closed set $cl(B) \subseteq U$, whenever $B \subseteq U$ and U is open set . After the work of N. Levine on gclosed sets, various mathematicians turned their attention to the generalizations of various concepts in topology.

Later, in 1994, H.Maki, R.Devi and K.Balachandran .[2], generalized the concept of g-closed sets to α . generalized closed sets By definition a subset of A of (X,τ) is said to be α - generalized closed set

if $cl_{\alpha}(B) \subseteq U$; $B \subseteq U$ and U is open set.

By using this concept we study and discuss a new topological spaces which is called $\alpha - T_{1/2}$ space. A space (X,τ) is $\alpha - T_{1/2}$ space if every α - generalized closed subset of (X, τ) it is α - closed set.

And we have clarify the relation between $\alpha - T_{1/2}$

space and $\alpha - T_0$ space [3], and $\alpha - T_1$ space [3].

Objective of the research

By using the concept α -generalized closed set we study and discuss a new topological spaces which is called $\alpha - T_{1/2}$ space.

Research methods

The search is located in the area of mathematical analysis and it serves the public topology, depending on the concept of α -generalized closed sets to obtain new results related to $\alpha - T_{1/2}$ space.

Definitions and concepts Definition 4.1

Let X be a topological space. A subset B of X is called :

1- α - open set [4] if $B \subseteq int(cl(int(B)))$

2- α - closed set [4] if cl(int(cl(B)) \subseteq B)

3 - The intersection of all α - closed sets containing a subset B of X is called α -closure of B and denoted by $cl_{\alpha}(B)$.

4 – The α - interior of a subset B of X is the largest α - open set contained in B, and denoted by $int_{\alpha}(B)$.

We denote the family of α -open sets of (X, τ) by $O_{\alpha}(X)$, and denote the family of all α -closed of (X,τ) by $C_{\alpha}(X)$.

Definition 4.2

A space (X, τ) is said to be :

 $1 - \alpha - T_0[3]$ if, for $x, y \in X, x \neq y$, there exists α - open set

containing (x but not y) or (y but not x).

 $2-\alpha - T_1[3]$ if, for $x, y \in X, x \neq y$, there exists U_1, U_2 are α – open sets such that :

 $(x \in U_1 and y \notin U_1)$ or

$(y \in U_2 \text{ and } x \notin U_2).$

Results and discussions

Proposition 5.1

Every closed subset of a topological space (X,τ) is g -closed. (the converse is not true)

Proof

Let $A \subseteq X$ be closed set, and let $A \subseteq U$, where U is open set, since A is closed set then cl(A) = A, hence $cl(A) \subset U$, i.e. A is g - closed. Example 5.1

Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}, \text{ so }, \tau^{c} = \{\phi, e\}, \tau^$ $X,\{b,c\},\{a,b\},\{b\}\},\$

let $A = \{a\}, U = \{a, b, c\}$ open set, Now, since $cl(A) = \{a, b\} \subseteq U$, i.e. $A = \{a\}$ is g closed set, but it is not closed set.

Proposition 5.2

Every g - closed subset of a topological space (X, τ) is αg -closed. (the converse is not true).

Proof

Let $A \subseteq X$ be g-closed set, and let $A \subseteq U$, where U is open set, since A is g - closed set, then, $cl(A) \subseteq U$, and hence $int(cl(A)) \subseteq int(U)$, but U is open set so, $int(cl(A)) \subseteq U$.

Since $cl_{\alpha}(A)$ is the smallest α - closed set containing

A, so, $cl_{\alpha}(A) = A \bigcup cl(int (cl(A))) \subseteq A \bigcup cl(U) \subseteq U$, i.e. A is ag-closed.

Example 5.2

 $X,\{b,c\},\{a,b\},\{b\}\},\$

let $A = \{c\}, U = X$ open set.

Now, since $cl(A) = \{b,c\} \subseteq U$, and $int(cl(A)) = \{c\}$, $cl(int(cl(A))) = \{b,c\} \subseteq U$ i.e.

 $A = \{c\}$ is αg -closed set, but it is not g -closed

set, Since if we take $U = \{a, c\}$, $cl(A) = \{b, c\} \not\subset U$. **Proposition 5.3** Every closed subset of a topological space (X,τ) is α closed . (the converse is not true) . Proof Let $A \subseteq X$ be closed set, then cl(A) = A, hence int(cl(A)) = int(A), but $int(A) \subset A$, so $int(cl(A)) \subseteq A$, and $cl(int(cl(A))) \subseteq cl(A)$. Then cl(A) = cl(A). int $(cl(A))) \subseteq A$, i.e. A is α -closed. Example 5.3 Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{a, b, d\}\},\$ So, $\mathcal{F}^{c} = \{\phi, X, \{b, c, d\}, \{a, b, d\}, \{b, d\}, \{c\}\}, \text{Let } A$ $= \{b, c\}.$ Now, since, $cl(A) = \{b,c,d\} \subseteq U$, and int $(cl(A)) = \{c\}$, $cl(int(cl(A))) = \{c\} \subseteq A$, i.e. $A = \{b,c\}$ is α -closed set, but it is not closed set. Theorem 5.1 (X,τ) , the following are equivalent : For a space 1 - (X,τ) is $\alpha - T_{1/2}$. 2 - For each singleton $\{x\}$ of X, $\{x\}$ is α - open set or α - closed set . Theorem 5.2 (X,τ) , the following are equivalent : For a space 1 - (X,τ) is $\alpha - T_{1/2}$. 2- Every subset of X is the intersection of all α - open sets and all α - closed sets containing it. Proof $(1) \Rightarrow (2)$, if (X,τ) is $\alpha - T_{1/2}$ with $B \subseteq X$, therefore by Theorem 5.1 then for each singleton $\{x\}$ of X, $\{x\}$ is α - open set or α - closed set. $\Rightarrow B = \bigcap \{X \setminus \{x\}; x \notin B\}$ is the intersection of all α - open sets and all α - closed sets containing it. (2) \Rightarrow (1), for each $x \in X$, then $X \setminus \{x\}$ is the intersection of all α - open sets and all α - closed sets containing it, hence $X \setminus \{x\}$ is either α -open set or α -closed set. Therefore by Theorem 5.1, (X,τ) is $\alpha - T_{1/2}$. Lemma 5.1 (X,τ) , the following are equivalent: For a space 1 - Every subset of X is α - generalized closed set. $2 - O_{\alpha}(X) = C_{\alpha}(X).$ Proof 1) \Rightarrow (2), Let is $U \in O_{\alpha}(X)$, Then by hypothesis, U is α -generalized closed set) Which implies that $cl_{\alpha}(U) \subset U$, so, $cl_{\alpha}(U) = U$, therefore $U \in C_{\alpha}(X)$ $\Rightarrow O_{\alpha}(X) \subseteq C_{\alpha}(X) \quad \dots \quad (1)$ Let $V \in C_{\alpha}(X) \implies X \setminus V \in O_{\alpha}(X)$, Then by hypothesis $X \setminus V$ is α -generalized closed set, and then $X \lor C_{\alpha}(X)$ $\Rightarrow V \in O_{\alpha}(X) \Rightarrow C_{\alpha}(X) \subseteq O_{\alpha}(X) \dots (2)$ From (1) and (2) $\Rightarrow O_{\alpha}(X) = C_{\alpha}(X)$. (2) \Rightarrow (1), If B is subset of X such that B \subseteq U

where $U \in O_{\alpha}(X)$

Then $U \in C_{\alpha}(X) \Rightarrow cl_{\alpha}(U) = U$

Now, $B \subseteq U \Rightarrow cl_{\alpha}(B) \subseteq cl_{\alpha}(U) = U \Rightarrow cl_{\alpha}(B) \subseteq U$

 \Rightarrow B is α -generalized closed set.

Proposition 5.4

The property of being a $\alpha - T_{1/2}$ space is hereditary. **Proof**

If Y is a subspace of a $\alpha - T_{1/2}$ space X, and $y \in Y \subseteq$

X, then {y} is α -open set or α -closed set in X (by Theorem 5.1). Therefore {y} is either α -open set or α -closed set in Y. Hence Y is a α -T_{1/2} space. **Theorem 5.3**

A space X is $-T_1$ space if and only if $\{x\}$ is -closed, x X.

Proof

Let X be $-T_1$ space.

Let p X, to prove $\{p\}$ is -closed set.

 $x_{p}^{c} x \setminus \{p\}^{x} p in X$

Hence there exists an open set G such that x G, p G or x G, p G.

If ${}^{x}G$, pG ${}^{x}G$ {p}^c {p}^c is an-open set{p} is -closed set.

Let $\{p\}$ be an -closed set, p X, to prove X is $-T_1$ space.

Let x y in X,

Hence $\{x\}$, $\{y\}$ are -closed sets $\{x\}^c$, $\{y\}^c$ are open sets and $y\{x\}^c, x\{x\}^c, x\{y\}^c, y\{y\}^c$

Therefore X is $-T_1$ space.

Theorem 5.4

Every $\alpha - T_1$ space is $\alpha - T_{1/2}$ space. (the converse is not true).

Proof

Since X is $\alpha - T_1$ by using theorem 5.3, then $\{x\}$ is -closed, x = X. And by using theorem 5.1 we will get X is $\alpha - T_{1/2}$ space.

Example 5.4

Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}\}$

 $\tau_{\alpha}(X) = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\},\$

 $\tau^c_{\alpha}(X)=\{\varnothing,X,\{b,c\},\{c\},\{b\}\}$

 (X,τ) is $\alpha - T_{1/2}$ space But not $\alpha - T_1$ space.

Theorem 5.5

Every $\alpha - T_{1/2}$ space is $\alpha - T_0$ space. (the converse is not true).

Proof

Let $x, y \in X$; $x \neq y$

Since X is $\alpha - T_{1/2}$ space by using theorem 5.1, Therefore $\{x\}$ is either α -open set or α -closed set, $x \ X \ (1)$ If $\{x\}$ is α -open set, $x \ X \ .$ Since $x \neq y$, Therefore $x \in \{x\}$ and $y \notin \{x\}$

 $\Rightarrow X \text{ is } \alpha - T_0 \text{ space }$.

(2) If $\{x\}$ is α - closed set, $\forall x \in X$.

Then $X \setminus \{x\}$ is α - open set $\Rightarrow X$ is $\alpha - T_0$ space Therefore $x \notin X \setminus \{x\}$ and $y \in X \setminus \{x\}$ **Example 5.5** Let $X = \{1,2,3\}$, $\tau(X) = \{\emptyset, X, \{1\}, \{1,2\}\}$ $\tau_{\alpha}(X) = \tau(X) \tau_{\alpha}^{c}(X) = \{\emptyset, X, \{2,3\}, \{3\}\}$

 (X,τ) is $\alpha - T_0$, But is not $\alpha - T_{1/2}$, because, {2} is not α - open and is not α - closed set

Conclusions and recommendations

1 - development of new concepts in general topology. **References**

[1] N. Levine, (1970), Generalized closed sets in topological spaces, Rend. Circ. Math. Palermo, 19, 89-96.

[2] H. Maki, R. Devi and K. Balachandran (1994), Associated topologies of generalized

 α -closed sets and α -generalized closed sets, Mem. Fac.

2 - The emergence of new spaces Topologic different from the known spaces.

3- To find the relationsh ip between α – 3- $T_{1/2}$ space and $\alpha - T_0$ and $\alpha - T_1$ space. 4- The property of being a $\alpha - T_{1/2}$ space is hereditary. The study of properties of space $\alpha - T_{1/2}$ and the possibility of find spaces other than the space $\alpha - T_{1/2}$ is located between $\alpha - T_0$ and $\alpha - T_1$ remain an issue and need to be resolved in the future.

Sci. Kochi Univ. Ser. A Math.15, 51-63. [3] H.Maki,R. Devi and K. Balachandran, (1993), Generalazied α -closed sets in topology, Bull. Fukuoka Univ. Ed. Part III 42, 13-21. [4] O. Njastad, (1965), on some classes of nearly open sets, pacific J. Math. 15 961-970.

عدان ظريف ، أسعد شاكر حميد الخفاجي قسم الرياضيات ، كلية العلوم ، جامعة تشرين ، اللاذقية ، سورية (تاريخ الاستلام: 13 / 3 / 2012 --- تاريخ القبول: 26 / 10 / 2011)

الملخص

في هذا البحث قدمنا تعريفاً لفضاء جديد يسمى $\alpha - T_{1/2}$ حيث عرفناه بواسطة مفهوم جديد من المجموعات المغلقة المعممة من النوع α ودرسنا العلاقة بين هذا الفضاء والفضائيين $T_0 = \alpha - T_1$ عاماً أن الفضاء يقع بين الفضائيين $\alpha - T_0$ و $\alpha - T_1 = \alpha$

الكلمات المفتاحية : المجموعة المغلقة المعممة , المجموعة المفتوحة من النوع , α المجموعة المغلقة من النوع , α الفضاء , $\alpha - T_{1/2}$ الفضاء , $\alpha - T_1$. $\alpha - T_0$, الفضاء , $\alpha - T_1$.