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Abstract
In this paper, we have proposed a new variational Variable Metric (VM) method for solving unconstrained
optimization problems . Experimental results indicate that the new proposed method was efficient than the
standard BFGS method .

Introduction
Consider the Variable Metric (VM) method whose
iteration step has the form :

rt+l =r* +dld* ........(l)

Where

dt = -Ht9t . .. (z\

Here.r, and Jr*, are old and new vectors ofvariables,

respectively. Direction vector d* and positive step

size a1 are chosen so that

lct + dtdr)< Ici+ 6pLdI e. .... .(3)

sGL + di t)r dt >62d[ t1 .. .....@\

with 0 < rr <1/2 and 6q <62 < l, wherc IGL +dltl
and /(ri) are old and new values of the objective

function and gQk+d|diand g* are old and new

gradient of the objective function, respectively. }/* is

a symmetric positive definite approximation of the
inverse Hessian matrix that is constructed iteratively
using the formula

H lfs = H, - tul;rt!!, *l' - r4!,1
vi\ vihL vi} l

',,.,.,...(5)

This is the so called BFGS metltod l7l.
The general strategy of self-scaling VM-method is to
scale the Hessian approximation maaix a1 before it
is updated at each iteration . This is to avoid large
difference in the eigenvalues of the approximated
Hessian of the objective function. Self-scaling VM
methods were introduced by Oren, see 1561. The
Hessian approximation matrix flr can be updated

ac{ording to a self-scaling BFGS update ofthe form:

n!' = 4( n, - 
H'Y"" 

: "'Yi 
H' l.-{.lt -'+* I

\ viYr .) \ftL vtft 
.J

.'.,',',' (6)

where

, 'I'r5l=..=-,,\,,
Yi H *Yt

The matrix fl*+r satisfies the Quasi-Newton (QN)

condition

H r*lr = Yr '. . .....(E)

where y. = Et.r-Bt, vr =rrrr -xt, eL is a

scalar see [l| .

Variational Formulation
In I4l, Greenstadt derives VM methods, using a

classical variational approach. Specifically, iterative
formulas are developed for updating the matrix a1 ,

the inverse of the W, where H1 is an approximation

to the inverse Hessian 6-l(.tr)of the function being

minimized . Using the iterative formula :

H *t = 1t(H t + elwpt'[) + es ........\9al

where
r'l

*o lvt.nrr^Yl ! -H!Y* | (eD)' 
lv', tt t'* u tt )

Note that */'liv=a for a given value of l/a <0< l.
For more details see [21.
To provide revised estimates to the inverse Hessian at
each step solving the correction term Er that

minimizes the norm yields

N(E L ) = rt(wE LYEI 1 . .......(to)

subject to the conditions

EI - Ek=o ..........(r1,

And

1, k = H L+ty t = (e t @ L + e Lv LNti[ \ + E t)y t ..........(12\

which reduc€s to :

Epp =v1 -(2(H1 +ok*14\vL = r1 ..........(t3)

where I/ is a positive definite symmetric matrix . ln

[8] Consider 7 -norm given by

lc*llln =r4wcwer 1 ........ 1r+1

To ensure affine invarianc€, rrr,=y is required in
defining the norm [3] .

In tlle remainder of this deriyation, we shall ignore

the subscript ft .

We shall solve this consnained minimization problem
by the use of Lagrange multipliers. We form the
composite function @ as follows :

o =lr,wtwrtttArtEv-rt+rtlnE ri rl ... .. tls)2Lt
We also note tlEt

- f -t1'rey-4=v115t r)i')] .. (16)

Hence, we have

4=wew *lur *fr-r=o....... 07)
AE

so that
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e = - ult y' . r' - rlt ..........tt2t

wherc M = I/-l . Since M is symmetric .

Subtracting Er from E should give zero, so that

r-r' =-u$'-fir +zrr -zrlt =o . ....1rs1

and we have

r, -r=|br -u,I tzot

Subtracting this into (18) gives

=-ul nr *lt"tr - t"r tluL' 2" )

=-lult''u'lu

fl 4 + ev rilvtl + ${ 14 + W',t'1
4,,=4(4+aryi,t--;L+

lJ*lv<n.*d\
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, -lla<0 S1 r:z)

vJ

1/v
,,' ,, ,(31)

where

E

Now we take note ofthe condition ; Eq. (13)

tn -, = -!u'2 lr *ry'

rf@ * * ennr )tr
And

TI
", =o[nrrrll]L '!,"' I ... ,rr,'' \vj* r'ru*t)
A new Algorithm
Step 0: Choose an initial point 11 e n', set * = I .

Step 1: Ifthe stopping criterion is satisfied stop :

llgr"ll. " . c=t'ro{,
Step 2: Solve d* = Htg* to obtain a search direction

d*.

Step 3: Find a step size d. which satis! the rules

(3) and (4)

Step 4:Generate a new iteration point by

xr*t = xk +d,*dk and calculate.

the new updating formula (il) .

Step 5: Set t = i +l and go to Step I .

Numerical Results
This section was devoted to numerical experiments.
Our purpose was to check whether the new algorithm
provide improvements on the corresponding standard
BFGS-algorithm. The programs were wrinen in
Fortran 90. The test fulctions were commonly used
for unconstrained test problerns with standard starting
points and a summary of the results of these test
functions was given in Table (3.1). The same line
search was employed in each algorithm, this was the
cubic inter?olation technique. The initial inverse
approximation was a0 = / . The stopping criterion was

taken to be ls*.111<. . We have used the dimension of
the problem (n), n:100, 1000 .

We tabulate for comparison of these algorithms, the
number of function evaluations (NOF) and the
numbq ofiterations (NOl) .

Table (3-1)
shows the computational results, where the columns
have the following meanings :

Test functions : the name ofthe test problems .

NOI : Number of iterations .

NOF: Number of function evaluations.

(2t)

ltq - r = o. ..........12t1

multiptying by 2w ,Y{ehave

b{ + lyT luy +2tvt =o ..........(23)

From which we solve for the i, which is fiee from
the inner product. The result is

l = -t yr My I tbw, * yr Lr uytl .... .... .tztt

we now multiply by yrM to obtain:

y' ul, = -<y' w)-'bw, * ly| ruqyllr ruryll ..........12s1

and, since y' M), it the same as f, llfiy, we can

solve for .f ,r21, . The result is

{ W = -\y' W\-t (y' t) ..........(26)

we now substitute this back into (14) to obtain:

^ = 1r'ror'b\, o,'trr\'<y',\rl <rrt
= 1yr uy1 21yr r'1y '2(yl tty) tw,

and we are in a pnsition to replace ). in Eq. (21) . we
then have for r

,=-!-lr' ,. r",' -ld)ro' rl .........rr",v'uvl \v'w) l

and, finally, replacing r by t-E@t+o*tr\y, we

obtain

|"y' u * uy{ -4nr*uJ >tt u -et'ryl <nr*uJ )
' 
=kl )-f 

tr,-6r@,, 
e,r y)l,a{ u 

}
..........(29)

which is our final formula for E. Since rv=y +

r= |

y'n
f-r, 

*r - Etu r re*nt tynt - Euyr t u 1 * w*7 t)

1 -i(,"-6'rot*u*r>)*t 
I

. . (30)

w€ shall also refer to the ncw update which :
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Com
Table (3.1)

rison betweetr the New and the standard BFGS methods
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N New
NOF (NOD

BFGS
NOr ooD

100 72 (20) 631 (234)
s00 72 (20) r 334 (s45)

Rosen

1000 74 (21',) 144s (659)
100 96 (26) 630 (228)
500 96 (26) 2026 (?55)

Wood

1000 e6 (26) 2940 (l r 93)
100 79 (24) 213 (91)
500 83 (24) 2tt (92)

393 (r40)

Notr-diagotr8l

1000 85 (2s)
100 lo8 (36) t2s (62)
500 116 (3e) t4t (70)

Wolfe

1000 r25 (42) r6s (82)
100 49 (12) 87 (37)
500 49 (12) lll (s0)

Cubic

1000 49 (12) r00 (4s)
r00 89 (22) 96 (38)
500 164 (43) 100 (40)
1000 166 (42\ r35 (s3)

Powell

46 ( 13) 4s (l l)
46 (13) 56 (13)

Cantrell

1000 s7 (16) s6 (13)
r00 Er (27) 84 (28)
500 81 (27) e6 (32)

Miele

1000 81 (27',) e5 (32)
2060 (s95) I 1315 (4s43)Total

Conclasions and Discussions
In this paper, we have proposed a new vartional VM-
type method for solving unconstrained minimization
problems. The computational experiments show that
the new approaches given in this paper are successful.
We claim that the new method is better than the
original formula. Namely, for the new method there
are about 81.79 % improvement in NOI & there are

about 86.90 % improvement in NOF overall, the

Appendix
l.Cubic function :

calculations & for different dimensions .

Relative efficiency ofthe different methods discussed
in the paper .

Tools BFGS new
NOI 18.20 0/o

NOF l0O o/o 13.90 %
However, for the 24 different cases the new algorithm
has beresults in 2ol24 % while BFGS has 4/24 % of
the cases .

n11

/(r) = I0oo(r,, - rt,_,)' + (l -.r2, |)2)
,=l

St arting po int :(-1.2,1,-1.2,1,... )7
Z.Non - diagonal function:

nl2
(.r) =I(loo(.r, - x,3)'z + (1 -.r,)'? )

'=l

Starting point:(-1,. )
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3.General ized pow e I I function I

s (xo,-, - I 0.x0,-, )2 + 5(xo,-, - x n,\2 + (x o,-, - 2x o,)2
f @=L' :':'. 

n-",^ -. xn,-, -2x0, , - x',)')
r=l + I U(.ra,_e - ,r4, , +(

Starting point: (3,1,0,1,.......................)1'

4.Miele function:
nl4

/(.r) = )[exp(.r n, ,) - *n,-rl' + 100(.rn,-, - xo,-, )6
i=1

+ [tan(x4,-r - ro, )]o + xf,-, + (.rn, - l)2
Starting po inli (1, 2, 2, 2,................)

5.llelfe function:

/(r) = (-x,(3 - x, I 2) + 2x, -l)2 +

) (.r,, - r, (3 - x, (3 - x, / 2) + 2x,*, - l)'? + (x,*, - x,(3x, / 2 -'l)2
t=l

Starting po int:. (-1,

T

T

6. Cantrell funclion'.

/(r) = Itexp(r o,-r) - to,-rlo + 100(xo,-, - ro,-, )u *

[tan-r(xo,-, - xo))o + xf;, ,
starting poinr (1, 2, 2, 2,................)

7 . Rosenbrock function :

nl2

/(r) = I(too(r r, - r1,_,)' + (l - 12, r)'?)
,=l

Starting po int :(-1.2,1,-1.2,1,... )r

S.Generalized wood func lion :

f 6y =f 
a(r 

"-, 
- xj,-r ;'? + 11 -.rn,-r)2 + 90(.10, - xi,-r)2 + (l - x o,-r)2 +

fi l0.l11ro,_, -l)2 +(.r0, -l)2 +19.8((ro,-, -l)+(.r0, -l))
Start ing po inl: (-3,-1,-3,-1,.......................)'
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