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Abstract

In this paper, we have proposed a new variational Variable Metric (VM) method for solving unconstrained
optimization problems . Experimental results indicate that the new proposed method was efficient than the

standard BFGS method .

Introduction

Consider the Variable Metric (VM) method whose
iteration step has the form :

Xg+] =Xk +Opdy
Where
d,=-H,g,

Here X, and X, ,, are old and new vectors of variables,

respectively. Direction vector d, and positive step
size @ are chosen so that

Sy +oydy)< f(xg)+ Ejod] gy (3)
glxp +akd*)rdk Ztgzd{gk v (4)
with 0<é8; <1/2 and & <& <1, where f(x; +aydy)

and f(x;)are old and new values of the objective

function and g(x; +aydy)and g, are old and new
gradient of the objective function, respectively. H is

a symmetric positive definite approximation of the
inverse Hessian matrix that is constructed iteratively
using the formula

HYSS _ |, — HkYkV:: Vi H, i V;VI I—] " yr‘:_{kh:l
Vi Vi Vi Vi Vi Vi
This is the so called BFGS method [7].

The general strategy of self-scaling VM-method is to
scale the Hessian approximation matrix #; before it

is updated at each iteration . This is to avoid large
difference in the eigenvalues of the approximated
Hessian of the objective function. Self-scaling VM
methods were introduced by Oren, see [5,6]. The
Hessian approximation matrix #; can be updated

according to a self-scaling BFGS update of the form:

= Hyol +vylH. ) v yiH,y
Hf”:gk(Hk_ ki‘krkk.k+lrk|—l+ .trlk
Vi Ve Vk.VkI. Vi Ve
.......... (6)
where
T
Vi Yk
Gr=——— (D)
}’kaJ"k

The matrix H;,, satisfies the Quasi-Newton (QN)
condition

H .y, =v
where Y, = &y, =& » Vi = X400 — X & isa
scalar see [1] .
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Variational Formulation

In [4], Greenstadt derives VM methods, using a
classical variational approach. Specifically, iterative
formulas are developed for updating the matrix H; .

the inverse of the VM, where H; is an approximation

to the inverse Hessian G~!(x;)of the function being
minimized . Using the iterative formula :

Hig =& (Hy +9*wkw{)+Ek ..........
where

—k

T

H
kYR | (9B)
Vi Vi

Wi :(J’;‘; Hl;yk)r[ o
Yy

Note that w/ Hw=a for a given value of -1/a<@<1.
For more details see |2].

To provide revised estimates to the inverse Hessian at
each step , solving the correction term £ that
minimizes the norm yields

N(Ey)=Tr(WERWE] )
subject to the conditions

E} ~ By =0 i (D)

And

vg = Hps vk = E(Hg +0pwpw] )+ Ep)yg
which reduces to :

e (12)

Epyp =vi —Ex(Hy +6kwkw{)yk Y
where W is a positive definite symmetric matrix . In
|8] Consider W -norm given by

|Ex |, =TrWEWET) (14)

To ensure affine invariance, Wv=y is required in
defining the norm [3] .

In the remainder of this derivation, we shall ignore
the subscript k .

We shall solve this constrained minimization problem
by the use of Lagrange multipliers. We form the
composite function @ as follows :

@ Z%Tr(WEWET)+).T(Ey—r)+Tr[F(EfET)] s sqni(18)
We also note that

AT (Ey-r)= Trl:(Eyfr)).T)] e (16)

Hence, we have

2 _wEw + 27 +TT T =0 ........(?)

so that
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E= —MllyT +r7 - FIM L))
where M = W ™' Since M is symmetric .

Subtracting E’ from E should give zero, so that
E-ET = ~MllyT —yal or? - 2r]M =0 .. (19)
and we have

T V.1 57
-I'== - creneee (20
r‘-r 3 [w’*~ Ay l (20)
Subtracting this into (18) gives

E =—M[ﬂ.y" + %(yl’f — a7 )]M

=_%M[vlT +lyTl\/{

Now we take note of the condition ; Eq. (13):

1 T T
Ey—r:—EM[y)l + Ay }\h—r:(). .......... (22)
multiplying by 2% , we have
ly}.T + ZyT ply+2Wr =0

From which we solve for the A which is free from
the inner product. The result is

A=—(pT My lZWr + y(J.TMy)I e (24)
we now multiply by ¥* M to obtain :
yT MA =7 by e+ 7 by AT )|
and, since yTM/‘L is the same as ﬂr‘ﬂ/lfy, we can
solve for A7 My . The result is
I My=-6" M) 7). (26)
we now substitute this back into (14) to obtain :
A= —(y"My)"IZer(yTMy)“(yTny]
= T2y 20" M) e
and we are in a position to replace A in Eq.(21). We
then have for E

T .
y My
and, finally, replacing » by v-&(H; +oww!)y, we

Em— )

(25)

e (27)

E=

y My

obtain
w M+ My —E(H, + 0w ! M—EMyyS (Hy, + 0wl )
E:T .
M| (-5 sl sl M
Y My
i (29)

which is our final formula for E. Since wv=y =

My=v

e -&(Hy + 6wl ! —§vyT(Hk +oww!)
1

.VTV

(yv-&7 g+ 0wy "

we shall also refer to the new update which :
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§(H, +Brh) +5) (H, +8vh) N
Vv

Iiﬂ =;(H +6‘Vl«{’) -

wi 1., .
B (87 +anby)
yvl Wy
.......... @31
where
"
&k =—Tv"y+r ,=1/a<B8<1....032
Vi (Hyp +6ww’ )y
And
Wi =(y§Hkyk)T[;—k—i,i’i} .......... (33)
vive ypHpy

A new Algorithm

Step 0: Choose an initial point x, € R",set k =1 .
Step 1: If the stopping criterion is satisfied stop :
lgin]<e . e=1*1074,

Step 2: Solve d, =-H,g; to obtain a search direction
d,.
Step 3: Find a step size @, which satisfy the rules

(3 and (4)
Step 4:Generate
X, =X, +,d, and calculate .

a new iteration point by

the new updating formula (31).

Step 5: Set k=k+1 and goto Step 1 .

Numerical Results

This section was devoted to numerical experiments.
Our purpose was to check whether the new algorithm
provide improvements on the corresponding standard
BFGS-algorithm. The programs were written in
Fortran 90. The test functions were commonly used
for unconstrained test problems with standard starting
points and a summary of the results of these test
functions was given in Table (3.1). The same line
search was employed in each algorithm, this was the
cubic interpolation technique. The initial inverse
approximation was H, = / . The stopping criterion was

taken to be |g.|<e . We have used the dimension of

the problem (n), n=100, 1000 .

We tabulate for comparison of these algorithms, the
number of function evaluations (NOF) and the
number of iterations (NOI) .

Table (3-1)

shows the computational results, where the columns
have the following meanings :

Test functions : the name of the test problems .

NOI : Number of iterations .

NOF: Number of function evaluations .
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Table (3.1)
Comparison between the New and the standard BFGS methods
Test N New BFGS
functions NOF (NOD) NOF (NOD
Rosen 100 | 72 (20) 631 (234
500 | 72 (20) 1334 (549
1000 [ 74 (21) 1445  (659)
Wood 100 96 (26) 630  (228)
500 96 (26) 2026 (755)
1000 [ 96 (26) | 2940 (1193)
Non-diagonal | 100 79 (24) 213 (91)
500 83 (24) 211 (92)
1000 [ 85 (25) 393  (140)
Wolfe 100 | 108 (36) 125 (62)
500 [ 116 (39 141 (70)
1000 | 125  (42) 165 (82)
Cubic 100 | 49 (12) 87 37
500 | 49 (12) 111 (50)
1000 | 49 (12) 100 (45)
Powell 100 | 89 (22) 96 (38)
500 | 164 (43) 100 (40)
1000 | 166 (42) 135 (53)
Cantrell 100 | 46 (13) | 45 (11)
500 | 46 (13) | 56 (13)
1000 | 57 (16) 56 (13)
Miele 100 | 81 27) 84 (28)
500 [ 81 27) 96 (32)
1000 | 81 (27) 95 (32)
Total 2060  (595) | 11315  (4543)

Conclasions and Discussions

ISSN: 1813 - 1662

calculations & for different dimensions .

In this paper, we have proposed a new vartional VM-
type method for solving unconstrained minimization
problems. The computational experiments show that
the new approaches given in this paper are successful.
We claim that the new method is better than the
original formula. Namely, for the new method there
are about 81.79 % improvement in NOI & there are

about 86.90 % improvement in NOF overall, the

Appendix
1.Cubic function :

n/2

Relative efficiency of the different methods discussed
in the paper .

Tools | BFGS new
NOI | 100 % | 18.20 %
NOF | 100 % | 13.90 %

However, for the 24 different cases the new algorithm
has beresults in 20/24 % while BFGS has 4/24 % of
the cases .

f(x)= Z(l 00(x;; —%3:)" +(1—%5.4)")
i=1

Starting point:(—1.2,1,-1.2,1,...... o

2. Non — diagonal function:

ni2

(x) =D.(100(x, - x})* +(1-x,)*)

i=1

Starting point:(-1,
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3.Generalized powell function:
(%3 — 103‘41-2)2 +3(Xy .~ x4;)2 Py — 2%, )2

f®=Y

x:-! "'"2x = _x;)z)
100, —x,,)" +( ! e

Starting pointy (L0 Lo Vol

4, Miele function:
n/4

f(x)= Z[QXP(“"M—Q - -"4:-2]2 +100(x,,_, — X4, )°
i=1
+[tan(x,,_, —x,)]* +x5_5 +(x, =1)°

Starting point: (1,2, 2, 2,..cecvevereee. )

5.Welfe function:
F(xX)=(=x,3-x/2)+2x, - 1)’ +

n-1
> (o —x,3-x,3-x,/2)+2x,, -1’ +(x,,, —x,(x,/2-1)
i=l

Starting point: (=1, .ccccevereeennennee. )"

6.Cantrell function:
n/4

f(x)= Z[exP(xaf-a) ~Xgea) FI00(X, ~%,,)" +
i=l
[tan™ (x,,_, —x,,)]* + x5

starting point; (L 2, 2, 2,smsiniosns ¥

7. Rosenbrock function :
ni2

F(x) =Y (100(xy, —x3)7 +(1-x,)")
i=1
Starting point:(-1.2,1,-1.2,1,......

8.Generalized wood function:

£ = §4(x4,_2 —x2 )2 +(1- X, )7 +90(x,, — 22, ) +(1-x,,,)° +
= 10.0((x,,, =12 +(x,, = 1)> +19.8((x,,_, = 1) +(x,, = 1))

Starting point: (-3,—1,-3,— Lecooeevrrecrennne. ¥
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