
Journal of Babylon University/Engineering Sciences/ No.(2)/ Vol.(25): 2017

818

A New Design Paradigm for a Parallel Uniform Block
Distribution (UBD) Algorithm

Mohammed Faiz Aboalmaaly

Department of Computer Techniques Engineering, Alsafwa University College

mo.abomaali@outlook.com

ABSTRACT
 In several areas of parallelism, the novelty of parallel algorithms is formed by decomposing the

algorithm’s sequence either on the basis of data or tasks without touching the internal peculiarity of the

original algorithms (serial algorithm). Parallel hardware has experienced significant growth in recent years

and is readily affordable, as for today; multicore hardware now exists in the vast majority of low-cost digital

devices. At the same pace, parallel libraries have demonstrated a noticeable improvement and ease in

utilisation. These facts play a vital role in significantly changing the way of designing an algorithm. In this

paper, a new design paradigm for a parallel uniform block distribution (UBD) algorithm is proposed by

taking advantage of the capability of the parallel libraries during the design phase of the parallel algorithm,

rather than making parallelisation as an improvement stage. In particular, the main contribution of this work

utilises a new mathematical calculation that uses the thread ID as a variable to explicitly decompose the data

of a matrix (array) of one or multiple dimensions among several threads in parallel. Experimental results

show a considerable speedup compared to the serial version of the algorithm and comparable results to the

original OpenMP implementation.

 Keywords: Shared memory architecture, OpenMP, Domain decomposition, Parallel efficiency.

 الخلاصة
التوازي، يتم تشكيل حداثة الخوارزميات المتوازية من خلال تحميل تسمسل خوارزمية إما عمى أساس البرمجة بمن مجالاتفي عدة

نموا كبيرا في متعددة النواةخصوصية الداخمية لمخوارزميات الأصمية)الخوارزمية التسمسمية(. شهدت الأجهزة الالبيانات أو المهام دون لمس
الآن في الغالبية العظمى من الأجهزة الرقمية منخفضة ة. الأجهزة متعددة النوى موجودهي الأنالسنوات الأخيرة، وبأسعار معقولة ، كما

د أثبتت المكتبات موازية تحسن ممحوظ وسهولة في الاستخدام. هذه الحقائق تمعب دورا حيويا في تغيير كبير في ق لتكمفة. عمى نفس الوتيرة،ا
من خلال الاستفادة من قدرة نموذج تصميم جديد لخوارزمية موازية توزيع كتمة موحدةيتم أقتراح خوارزمية. في هذه الورقة، الطريقة تصميم

يتم المساهمة الرئيسية لهذا العمل كمرحمة التحسن. البرمجة بالتوازي موازية أثناء مرحمة تصميم خوارزمية موازية، بدلا من جعلاللمكتبات ا
 واحدبعد مصفوفة)مجموعة(من البيانات ضمن كمتغير لتتحمل بشكل واضح النواةعممية حسابية رياضية جديد يستخدم معرف عن طريق
المعالجة مع معيارمقارنة مع الإصدار التسمسمي لمخوارزمية وقابمة لممقارنة رتسريع كبيلمعمل يظهر الأبعاد. النتائج التجريبيةأو متعددة

 المتعددة المعروف.
.،المعمجات المتعددة مفتوحة المصدر ، تقسيم المجال، كفاءة البرمجة بالتوازي بنية الذاكرة المشتركة -: الكممات المفتاحية

1. INTRODUCTION
In a large class of scientific computations, the data domains are located in a one-,

two-, or three-dimensional space. This class includes, but is not limited to, linear algebra

kernels, image rendering algorithms, particle-in-cell simulations, databases, and many

more. For faster processing, parallel and distributed computing has been employed to this

class of computations by decomposing the data among processors. Because the parallel

efficiency is evaluated by the time required for the last processor to finish its task, it is

fundamentally important to provide a load-balanced distribution for the computational

workloads such that each processor receives an equal workload to achieve a good

efficiency. For a multidimensional space of data, it has been proven that finding the

optimal distribution, formally known as generalised block distribution (GBD), is NP-

complete (Aspvall et.al., 2001); hence, several approximation algorithms have been

proposed to find near-optimal solutions to this problem. However, for numerous time-

mailto:mo.abomaali@outlook.com

Journal of Babylon University/Engineering Sciences/ No.(2)/ Vol.(25): 2017

819

critical algorithms, especially those that show high uniformity in the computational

workload of data, it is more preferable to develop a distribution with an emphasis on an

equivalent distribution [i.e., a uniform block distribution (UBD)] with less or no

overhead, rather than distributing the data with exactly equal workloads.

In GBD, also known as rectangular partitioning (RP), there are several different

families that are commonly studied. Figure 1 shows three common families for two-

dimensional space: (a) arbitrary, allowing any partitioning into rectangular tiles, (b)

hierarchical, obtained through recursive cuts, and (c) pxq partitioning (Muthukrishnan and

Suel, 2005).

Figure 1: Families of GBD.

However, there are some good reasons why pxq partitioning is preferred in certain

scenarios. In the context of parallel computing, pxq partitioning results in a very simple

communication pattern because every node has exactly 2N horizontal and vertical

neighbours, where N represents the number of dimensions.

From an algorithmic point of view, GBD as well as several other algorithms were

not developed with architecture in mind. In other words, there was no explicit

consideration of the continuing changes and development in hardware architecture, such

as parallel architecture, even though most of these developed algorithms were proposed to

take advantage of such architecture.

The Co-exploration between algorithm and architecture (CEAA) (Gwo-Giun et.al.,

2009) is a new design paradigm for algorithms, which takes into account the current

trends of the continuous development in computing architecture, particularly parallel

architecture, during the design phase of algorithms. Unfortunately, this term has not been

significantly utilised among several classes of algorithms such as the class of GBD. In

contrast, the design phase of many algorithms has lacked the facilities introduced by

parallel libraries and parallel application programming interfaces (APIs) that have shown

a significant improvement over the years.

As a matter of fact, a parallel architecture such as multicore architecture is forming

the vast majority, if not the only, architecture equipped among digital devices that are

currently in the market. Two and four cores are becoming common, even in handheld

devices such as smart phones. Fundamentally, this number of cores is expected to

increase over time. Hence, we believe that now is the right time to explicitly consider the

trends of architecture and software libraries during the design phase of a parallel

algorithm. However, we believe that such designs for inherently parallel algorithms

Journal of Babylon University/Engineering Sciences/ No.(2)/ Vol.(25): 2017

820

should not generate a conflict when the parallel algorithm is examined sequentially. In

this paper, such a consideration is applied by designing a parallel algorithm for a non-

overlapping UBD algorithm that explicitly assigns each part of the domain to one

processing element in parallel.

2. BACKGROUND
The GBD problem has been intensively studied in the literature (Gaur et.al., 2002,

Saule et.al., 2011, Manne and Sørevik, 1996). Applications of the problem include

various parallel sparse-matrix computations, compilers for high-performance languages,

particle-in-cell computations, video and image compression, and simulations associated

with communication networks. All of the literature studies have stated that finding an

optimal solution to the GBD problem is NP-complete, even for simple computational

problems such as the sum of numbers in a block. For example, image-compression data

are stored in memory as a two-dimensional array of pixels; from a GBD point of view, the

optimal distribution is when all blocks (sub-images) require the same computational

resources (same complexity) for compression. In video coding, the same scenario is

repeated but with several successive images (frames). However, the per-frame GBD in

video coding (video compression) and other application areas will became a bottleneck

owing to the increase in frame rate along with the frame resolution, especially in time-

critical situations such as real-time. As an alternative, the UBD will probably lead to a

better execution time.

The UBD is a special case of pxq partitioning in which all blocks (in some cases

half of a border’s block will have a different size) have the same size regardless of the

different workloads of these blocks (see Figure 2). Despite its simplicity, UBD has also

lacked consideration of CEAA and parallel software facilitations. UBD utilises the

recursive coordinate bisection (RCB) algorithm to recursively decompose the data which

prevents parallelisation from being applicable.

Figure 2: Uniform block distribution.

It is clear that in order to effectively take advantage of a parallel architecture such as

a multicore or distributed architecture, one should use the facilities provided for such

architectures in the design phase of a particular algorithm. As an example, OpenMP

(Pacheco, 2011) and POSIX threads (in short, Pthreads) (2011) are examples of a

language extension and parallel library, respectively, to explore parallelism on shared

memory architectures. Both have rich features that facilitate easy parallel implementation.

OpenMP is one of the most common language extensions used for parallel

computing on shared memory architectures, and it is categorised as cross-platform,

Journal of Babylon University/Engineering Sciences/ No.(2)/ Vol.(25): 2017

821

scalable, and easy to use. OpenMP is a collection of compiler directives, library functions,

and environment variables that can be used to specify shared-memory parallelism in

FORTRAN, C, and C++ programs. OpenMP uses the fork-join model of parallel

execution. Although this fork-join model is useful for solving a variety of problems, it is

somewhat tailored for large array-based applications (Board, 2008). Pthreads, which is a

standard application program interface that could potentially be implemented on many

different systems for multi-threaded support, also has wide adoption in several parallel

algorithms. The main difference between OpenMP and Pthreads is that adding OpenMP

directives in OpenMP to explore parallelisation is performed without significant code

modification, while a minor to major code modification is required in Pthreads to match

the syntax of this interface.

3. THE PROPOSED PARALLEL UBD ALGORITHM
The main theme behind the idea of this work is how to effectively consider the

features of parallel libraries in the design phase of an algorithm owing to the fact that

most, if not all, digital devices are equipped with more than one processing core.

The problem covered in this work is the UBD. The choice of this problem was

because the usefulness of such straightforward partitioning in applications required the

fast decision of a partitioning problem, even if the partitioned domains are not exactly

equal in terms of their workload. Real-time multimedia services such as video

conferencing, video on demand, IPTV, and many more are a class of applications that

require such speed in partitioning. However, we believe that the proposed algorithm can

suit any algorithm that deals with array data-type.

3.1 Preliminaries
We assume that R is N-dimensional array; N is any integer number, where N > 0. m

is a positive integer number such that m > 0, which represents the number of partitions

that R will be partitioned into. We refer to m as the number of blocks even if R was one-

dimensional. We are interested in m because m represents the number of processors

(threads) in our algorithm, which is the usual case in parallel processing, where each

block is assigned to one processor for processing. In the design of our algorithm, we have

moved a step backward when we consider m to represent the number of partitions, as the

number of partitions is represented by pxq partitions (the case of two-dimensional space)

in most GBD problems. In our algorithm, m is equal to p, pxq, and pxqxr for one-, two-,

and three-dimensional space, respectively.

3.2 Block Size (Dimensions)
The proposed parallel algorithm first determines N and m. Then, the algorithm

defines a number of integer variables equal to the value of N. If N = 1, only one variable

(D1) will be declared, while if N = 2, two variables (D1 and D2) will be declared and so

on. These variables will set to 1 as initial values. After this initialisation, if N > 1, m will

be used as an input for a prime factorisation function to find its factors (f1, f2, f3,….., fx). If

x > N, a reduction function is proposed to reduce the number of these factors (fD1, fD2,….,

fDN) to N factors. However, if x ≤ N, there is no need to reduce the factors. The condition

among these factors after reduction is that ∑fDi is the lowest among other possible

reductions. For example, if the factors were 2, 2, 3, and 5, which are the factors of 60, and

N = 3, then the reduced factors are 4, 3, and 5, (Total 12), where 4 comes from

multiplying 2 by 2 and not 2, 2, and 15 (3 × 5) (Total 19) nor 2, 5, and 6 (2 × 3) (Total

Journal of Babylon University/Engineering Sciences/ No.(2)/ Vol.(25): 2017

822

13).

Once the factor reduction step is finalised, the values of the variables (D1, D2,

………, DN) will be changed by these reduced factors in descending order. As in the above

example, D1 will be equal to 5, D2 will be equal to 4, and D3 will be equal to 3. However,

if the number of factors was less than N, then the values of some of the variables (Dx+1,
……., DN) will remain 1, as initialised at the beginning of the algorithm.

Finally, the new values of (D1, D2,………, DN) will be the dominators for their

analogous dimensions to determine the size of each block. As for three-dimensional

space, width, length, and height are used for representation. The block’s width will be

equal to width/D3 + width%D3, the block’s length will be equal to length/D2 +

length%D2, and the block’s height will be equal to length/D1 + length%D1.

3.3 Parallel UBD
In order to explicitly assign each block to one processor for processing, we need to

utilise the facilitations of the parallel libraries. In a parallel environment, each processing

unit has a unique identification number called the thread ID or processor ID. In fact,

most, if not all, of the parallel libraries as well as parallel APIs have a built-in facility to

retrieve the thread ID within a parallel region. OpenMP, Pthread, MPI, and many more

support such identification by creating a variable to store this ID for all threads/processors

within a parallel region. In a parallel environment with m processors, the group of thread

IDs will start from 0 to (m – 1). The thread ID, the new values of (D1, D2, ………, DN),

and block dimensions will form a new mathematical calculation. The idea of this

calculation is based on using the integer division (/) and integer modulus (%) operations

to explicitly assign each block to one thread. As illustrated in the following sections, the

problem has been divided on the basis of the dimensions of the data space into one, two,

and three dimensions.

3.4 One-Dimensional Domain
In terms of a one-dimensional R (width), N will be equal to 1. Hence, only one

variable will be declared, D1, and will be initialised to 1. From an algorithmic point of

view, one-dimensional data can be iteratively traced using one loop only, particularly a

for loop. Because N = 1, there is no need to factorise m, and D1 will be assigned the value

of m. The next step is to determine the block’s width. The block width (Bw) is equal to

width(R)/m + width(R)%m. Once Bw is determined, the parallel distribution of R will be

implemented using the formula in Figure 3 that will run in parallel.

TID = Retrieve the ThreadID()

FOR i = (TID%D1)Bw to (TID%D1 + 1)Bw

Do F(R[i])

Figure 3: Parallel UBD of one-dimensional space.

Where in Figure 3, TID is the thread ID in a parallel region [0 to (m – 1)]. This

parallel loop will be run at once among all threads. Each thread will utilise the value of its

TID. However, in some cases, the thread with the largest value of TID (m – 1) will go

over the length of that dimension when the length of one or more of the dimensions is not

divisible by the number of blocks of that particular dimension, as shown in Figure 4. In

order to make sure that no such memory error can happen, a min function will be used.

Therefore, the final equation for the one-dimensional parallel UBD is illustrated in the

formulation in Figure 5.

Journal of Babylon University/Engineering Sciences/ No.(2)/ Vol.(25): 2017

823

Figure 3: Thread accessing memory beyond the array size.

TID = Retrieve the ThreadID()

FOR i = (TID%D1)Bw to min ((TID%D1 + 1)Bw, width)

Do F(R[i])

Figure 5: Parallel UBD of one-dimensional space with the memory accessing

treatment.

3.5 Two-Dimensional Domains
For a two-dimensional R (width, length), N will be equal to 2, and in this case, two

variables will be created (D1 and D2) and initialised to 1. The next step is to factorise m

because N > 1. If the number of factors of m is greater than the number of dimensions, a

factor reduction algorithm will be employed to reduce the factors to two reduced factors.

The value of these two factors will substitute for D1 and D2. Similar to the case of one-

dimensional space, the next step is to determine the dimension of the blocks. In this case,

Bw will be equal to width(R)/D2 + width(R)%D2 and the block’s height (Bl) will be equal

to length(R)/D1 + length(R)/D1.

In two-dimensional space, we note that in order for each thread to access one block

for processing, we need to use the integer division (/) and integer modulus (%) operations,

rather than using only integer division, as in the case of one-dimensional space. Figure 6

shows the mathematical formulation embedded in two for loops.

TID = Retrieve the ThreadID()

FOR i = (TID/D1)Bw to min (((TID/D1) + 1)Bw , width)

For j = (TID%D1)Bh to min (((TID/D1) + 1)Bh , length)

Do F(R[i,j])

Figure 6: Parallel UBD of two-dimensional space with the memory accessing

treatment.

3.6 Three-Dimensional Domains
a three-dimensional R (width, length, height) such as a cube, N will be equal to 3.

Therefore, the number of created variables is three (D1, D2, and D3). Similar to the

previous two examples, the next step is to factorise m. If the number of factors is more

than three, then a factor reduction algorithm will be used to reduce the factors to three.

The values of these reduced factors will substitute for the values of D1, D2, and D3. As

expected, the next step is to determine the block’s dimensions (width, length and height).

Bw and Bl are determined using the same equations for two-dimensional space, while the

block’s height (Bh) is equal to height (R)/D1 + height (R)%D1.

Once all the block dimensions are determined, Figure 7 shows how a three-

dimensional space is uniformly distributed using a three for loops.

TID = Retrieve the ThreadID()

For i= (TID/(D1xD2))Bw to min(((TID/(D1xD2) + 1)Bw ,width)

Journal of Babylon University/Engineering Sciences/ No.(2)/ Vol.(25): 2017

824

For j= ((TID/D1)%D2)Bl to min(((TID/D1)%D2) +1)Bl, length)

For k= (TID%D1)Bh to min ((TID%D1 + 1)Bh, height)

Do F(R[i,j,k])

Figure 7: Parallel UBD of three-dimensional space with the memory accessing

treatment.

3.7 Inter-Subdomain Communication
In many applications, the interface between blocks (block boundaries) receives

special attention. As an example, in block-based video and image coding, the blocks’

boundaries will enter a coding stage called a deblocking filter. The purpose of this stage is

to remove artefacts around the block’s boundaries. Hence, a partitioning algorithm needs

to ensure the lowest possible length for such boundaries to provide better algorithm

efficiency. In our algorithm, such a requirement has been achieved by adding the

condition that ∑Di must be the lowest among the other conditions. Figure 8 shows an

example where a two-dimensional array is partitioned into 30 blocks by assuming that the

values of x and y are comparable. Figure 3 (a) shows the optimal partitioning where the

interface (borders) of the blocks is less (4y + 5x) compared to Figure 3 (b) (9y + 2x) and

Figure 3 (c) (14y + x).

Figure 4: Different scenarios of 2D array partitioning.

4. WORKING EXAMPLES
In order to validate the proposed parallel algorithm, we need to propose working

examples with different input parameters. Table 1 summarises the scenarios that cover all

possible cases for one-, two-, and three-dimensional space. The purpose is to know

whether the proposed parallel GBP algorithm will correctly distribute the input space into

m blocks. When N = 1, three possible cases are proposed, m = 1 (no partitioning), m = 2

(even number), and m = 3 (odd number). When N = 2, similar scenarios are proposed in

addition to the scenario of m = 4, which shows the partitioning along both dimensions.

Finally, for N = 3, the scenarios cover the partitioning among one, two, and three

dimensions with an additional scenario (m = 27), which is an odd number of partitions for

all dimensions.

Journal of Babylon University/Engineering Sciences/ No.(2)/ Vol.(25): 2017

825

Table 1: Scenarios of one-, two-, and three-dimensional parallel array partitioning

Number of

Dimensions

(N)

Numbe

r of

Blocks

(m)

Input Size

One

Dimension

1 100

2 100

3 100

Two

Dimensions

1 100x100100 ×

100

2 100 × 100

4 100 × 100

9 100 × 100

Three

Dimensions

1 100 × 100 × 100

2 100 × 100 × 100

4 100 × 100 × 100

8 100 × 100 × 100

27 100 × 100 × 100

5. IMPLEMENTATION, PARALLEL EVALUATION, AND

EXPERIMENTAL RESULTS
The main reason from employing parallelism is to finish a particular programming

task in a shorter time. Therefore, this section will show how and when the proposed

parallel algorithm has outperformed the serial algorithm with regard to different array

sizes and a different number of blocks. As the correctness of the proposed algorithm has

been mathematically proven, the parallel evaluation will emphasise different array sizes

and a different number of blocks to show the speedup and scalability of the proposed

parallel algorithm. Regardless of the number of dimensions, the total numbers of pixels in

each experiment were 10
3
, 10

4
, 10

5
, and 10

6
, while the number of blocks (thread) was

limited to 2, 4, or 8 owing to hardware availability.

We have used the OpenMP standard to implement our parallel algorithm. However,

Pthreads or any other parallel library can employ the proposed algorithm as long as those

libraries have a built-in facility to retrieve the thread ID within a parallel region. The

OpenMP style using C++ language for three, two, and one dimensions is shown in Figure

9.

#pragma omp parallel shared (R) num_threads (nthreads)

{

int TID = omp_get_thread_num();

for (int i = (TID/(D1 * D2)) * BW ; i < min (((TID/(D1 * D2)) + 1) * BW , WIDTH);

i++)

for (int j = ((TID/D1)%D2) * BL; j <min (((TID/D1)%D2 +1) * BL , lENGTH); j++)

for (int k = (TID%D1) * BH; k < min (((TID%D1) + 1) * BH, HEIGHT) ; k++)

run_over(R);

}

Journal of Babylon University/Engineering Sciences/ No.(2)/ Vol.(25): 2017

826

(A) OpenMP parallelisation of GBD for 3D space

#pragma omp parallel shared (R) num_threads (nthreads)

{

int TID = omp_get_thread_num();

for (int i = (TID/D1) * BW2D; i < min (((TID/D1) + 1) * BW2D , WIDTH2D) ; i++)

for (int j = (TID%D1) * BL2D; j <min (((TID%D1) + 1) * BL2D, lENGTH2D); j++)

run_over(R);

}

(B) OpenMP parallelisation of GBD for 2D space

#pragma omp parallel shared (R) num_threads (nthreadsD)

{

int TID = omp_get_thread_num();

for (int i = (TID%D1) * BW1D; i < min (((TID%D1) + 1) * BW1D , WIDTH1D);

i++)

run_over(R);

}

(C) OpenMP parallelisation of GBD for 1D space

As shown in the Pseudo above ,we have used #pragma omp parallel instead of

#pragma omp parallel for, although the latter is designed to be used with a for loop,

because the loop is explicitly partitioned into blocks among threads. Therefore, #pragma

omp parallel is used, which is designed to duplicate the code between brackets and pass a

copy of this code to each individual thread. num_threads is an OpenMP clause used to set

the number of threads in a thread team. omp_get_thread_num is an OpenMP function

used to return the thread number of the thread executing within its thread team. Finally,

run_over is a simple polynomial function of the form of aR + b, where a and b are

constants.

The hardware environment was an Intel® Core
™

 i7-4960HQ Processor (4 cores, 8

threads) and 4 GB of RAM, and the software platform was Microsoft Visual C++ 2010

Professional. Results were evaluated with regard to the serial version of the run_over

function as well as the original OpenMP version. Moreover, in order to provide a more

reliable evaluation environment, the number of processors has been explicitly configured

to suit the number of threads in each case. Time measurement was in milliseconds. Figure

11 shows the execution time for one-, two-, and three-dimensional spaces for different

sizes and a different number of threads. In Figure 11-14, P refers to the original parallel

(see pseudo code below), while NP refers to the new parallel paradigm proposed in this

work.

#pragma omp parallel for private (j,k) shared (R) num_threads (nthreads)

for (i = 0; i < width; i++)

for (j = 0; j < length; j++)

for (k = 0; k < height; k++)

run_over(R);

(A) Typical OpenMP parallelisation for 3D space

#pragma omp parallel for private (j) shared (R) num_threads (nthreads)

for (i = 0; i < width; i++)

Journal of Babylon University/Engineering Sciences/ No.(2)/ Vol.(25): 2017

827

for (j = 0; j < length; j++)

run_over(R);

(B) Typical OpenMP parallelisation for 2D space

#pragma omp parallel for shared (R) num_threads (nthreads)

for (i = 0; i < width; i++)

run_over(R);

(C) Typical OpenMP parallelization for 1D space

Figure 5: Typical OpenMP parallelisation (row-wise).

Figure 6: Execution times of the typical OpenMP parallelisation and the proposed

UBD, size = 10
3

Figure 7: Execution times of the typical OpenMP parallelisation and the proposed

UBD, size = 10
4

Journal of Babylon University/Engineering Sciences/ No.(2)/ Vol.(25): 2017

828

Figure 8: Execution times of the typical OpenMP parallelisation and the proposed

UBD, size = 10
5

Figure 9: Execution times of the typical OpenMP parallelisation and the proposed

UBD, size = 10
6

As can be observed in Figures 11-14, the when the size of the space is relatively

small (10
3
), the serial version is faster than the parallel version. Moreover, more time is

needed compared to the serial version when more threads are created. This is due to the

overhead caused by thread creation and termination. This observation changes when the

size of the space becomes bigger (10
5
); as illustrated in some experiments, the parallel

implementations outperform the serial version in terms of time. Obvious parallel

efficiency is observed when the size of the data is 10
6
. In this scenario, the task is

executed faster when more threads are created. This is due to the fact that the parallel

granularity is quite sufficient for each thread to provide a considerable speedup.

Moreover, encouraging results are observed between the parallel time of the

proposed parallel algorithm and the original implementation of OpenMP. The results of

the proposed parallel algorithm exhibit comparability, and there was no significant time

difference for a particular case although the proposed algorithm overcomes several

limitations of the original OpenMP style, such as multidimensional partitioning (explicit

nested parallelism).

Journal of Babylon University/Engineering Sciences/ No.(2)/ Vol.(25): 2017

829

6. CONCLUSION AND FUTURE DIRECTIONS
This work has presented a new parallel algorithmic design approach for the block

partitioning problem. The main theme of this work is represented by the employment of

the facilities in the parallel library in the design phase of UBD algorithm. Experimental

results demonstrate a considerable parallel speedup and efficiency compared to the serial

version of UBD. The contribution of this work represents an example of static scheduling

where data are partitioned regardless of their workload. This approach is good with data that

has a comparable intra-workload. However, the proposed parallel algorithm can be extended

to support dynamic scheduling by adjusting the size of the partitioned blocks to reach a near-

optimal distribution because the optimal distribution of this problem is NP-complete.

Moreover, the number of blocks can be a prime number for particular cases. For the one-

dimensional space there is no problem, but for two or more dimensions, there will be a

problem, as it is impossible to find two numbers or more in which the result after

multiplication is a prime number. Hence, it is possible to subtract a number from the prime

number so that it becomes an even number. By doing such a step, it will be possible to find

two or more numbers where the result of multiplying them will result in that even number,

and a multidimensional distribution can be made. Finally, several optimisations can be

incrementally introduced because the work of this paper represents an algorithmic-level

contribution.

REFERENCES
Aspvall, B.; M. Halldórsson, and F. Manne, 2001 “Approximations for the general block

distribution of a matrix,” Theor. Comput. Sci., vol. 262, pp. 145–160.

Gaur, D. R. ; T. Ibaraki, and R. Krishnamurti, 2002. “Constant ratio approximation

algorithms for the rectangle stabbing problem and the rectilinear partitioning

problem,” J. Algorithms, vol. 43, pp. 138–152.

Gwo-Giun, L.; C. Yen-Kuang, M. Mattavelli, and E. S. Jang, 2009 “Algorithm/

architecture co-exploration of visual computing on emergent platforms: Overview

and future prospects,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, pp.

1576–1587.

Manne, V and T. Sørevik, 1996. “Partitioning an array onto a mesh of processors, in

Applied Parallel Computing Industrial Computation and Optimization, vol. 1184,

J. Waśniewski, J. Dongarra, K. Madsen, and D. Olesen, Eds. Heidelberg: Springer

Berlin, pp. 467–477.

Muthukrishnan ,V., and T. Suel, 2005 “Approximation algorithms for array partitioning

problems,” J. Algorithms, vol. 54, pp. 85–104.

OpenMP Application Program Interface Available: http://www.openmp.org/mp-

documents/spec30.pdf.

Pacheco ,P. S., 2011 “Shared-memory programming with OpenMP,” in An Introduction

to Parallel Programming, P.S. Pacheco, Ed. Elsevier: Morgan Kaufmann, Ch. 5,

pp. 209–270.

Pthreads (POSIX Threads),V., , 2011 in Encyclopedia of Parallel Computing, vol. 2092,

D. Padua, Ed., New York: Springer, p..

Saule, E. ; E. O. Bas, x, atalyu, and U.V. Rek, 2011. “Partitioning spatially located

computations using rectangles,” IEEE Int. Parallel and Distributed Processing

Symp. (IPDPS), Alaska, pp. 709–720.

http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf

