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ABSTRACT 
 In several areas of parallelism, the novelty of parallel algorithms is formed by decomposing the 

algorithm’s sequence either on the basis of data or tasks without touching the internal peculiarity of the 

original algorithms (serial algorithm). Parallel hardware has experienced significant growth in recent years 

and is readily affordable, as for today; multicore hardware now exists in the vast majority of low-cost digital 

devices. At the same pace, parallel libraries have demonstrated a noticeable improvement and ease in 

utilisation. These facts play a vital role in significantly changing the way of designing an algorithm. In this 

paper, a new design paradigm for a parallel uniform block distribution (UBD) algorithm is proposed by 

taking advantage of the capability of the parallel libraries during the design phase of the parallel algorithm, 

rather than making parallelisation as an improvement stage. In particular, the main contribution of this work 

utilises a new mathematical calculation that uses the thread ID as a variable to explicitly decompose the data 

of a matrix (array) of one or multiple dimensions among several threads in parallel. Experimental results 

show a considerable speedup compared to the serial version of the algorithm and comparable results to the 

original OpenMP implementation. 

 Keywords: Shared memory architecture, OpenMP, Domain decomposition, Parallel efficiency. 

 الخلاصة 
التوازي، يتم تشكيل حداثة الخوارزميات المتوازية من خلال تحميل تسمسل خوارزمية إما عمى أساس البرمجة بمن  مجالاتفي عدة 

نموا كبيرا في  متعددة النواةخصوصية الداخمية لمخوارزميات الأصمية )الخوارزمية التسمسمية(. شهدت الأجهزة الالبيانات أو المهام دون لمس 
الآن في الغالبية العظمى من الأجهزة الرقمية منخفضة  ة. الأجهزة متعددة النوى موجودهي الأنالسنوات الأخيرة، وبأسعار معقولة ، كما 

د أثبتت المكتبات موازية تحسن ممحوظ وسهولة في الاستخدام. هذه الحقائق تمعب دورا حيويا في تغيير كبير في ق لتكمفة. عمى نفس الوتيرة،ا
من خلال الاستفادة من قدرة  نموذج تصميم جديد لخوارزمية موازية توزيع كتمة موحدةيتم أقتراح  خوارزمية. في هذه الورقة، الطريقة تصميم 

يتم المساهمة الرئيسية لهذا العمل  كمرحمة التحسن. البرمجة بالتوازي موازية أثناء مرحمة تصميم خوارزمية موازية، بدلا من جعلاللمكتبات ا
 واحدبعد مصفوفة )مجموعة( من البيانات  ضمن كمتغير لتتحمل بشكل واضح النواةعممية حسابية رياضية جديد يستخدم معرف  عن طريق
المعالجة  مع معيارمقارنة مع الإصدار التسمسمي لمخوارزمية وقابمة لممقارنة  رتسريع كبيلمعمل يظهر  الأبعاد. النتائج التجريبيةأو متعددة 

 المتعددة المعروف.
.،المعمجات المتعددة مفتوحة المصدر ، تقسيم المجال، كفاءة البرمجة بالتوازي بنية الذاكرة المشتركة -: الكممات المفتاحية

1.     INTRODUCTION 
In a large class of scientific computations, the data domains are located in a one-, 

two-, or three-dimensional space. This class includes, but is not limited to, linear algebra 

kernels, image rendering algorithms, particle-in-cell simulations, databases, and many 

more. For faster processing, parallel and distributed computing has been employed to this 

class of computations by decomposing the data among processors. Because the parallel 

efficiency is evaluated by the time required for the last processor to finish its task, it is 

fundamentally important to provide a load-balanced distribution for the computational 

workloads such that each processor receives an equal workload to achieve a good 

efficiency. For a multidimensional space of data, it has been proven that finding the 

optimal distribution, formally known as generalised block distribution (GBD), is NP-

complete (Aspvall et.al., 2001); hence, several approximation algorithms have been 

proposed to find near-optimal solutions to this problem. However, for numerous time-
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critical algorithms, especially those that show high uniformity in the computational 

workload of data, it is more preferable to develop a distribution with an emphasis on an 

equivalent distribution [i.e., a uniform block distribution (UBD)] with less or no 

overhead, rather than distributing the data with exactly equal workloads. 

In GBD, also known as rectangular partitioning (RP), there are several different 

families that are commonly studied. Figure 1 shows three common families for two-

dimensional space: (a) arbitrary, allowing any partitioning into rectangular tiles, (b) 

hierarchical, obtained through recursive cuts, and (c) pxq partitioning (Muthukrishnan and 

Suel, 2005). 

 

 
Figure 1:  Families of GBD. 

 

However, there are some good reasons why pxq partitioning is preferred in certain 

scenarios. In the context of parallel computing, pxq partitioning results in a very simple 

communication pattern because every node has exactly 2N horizontal and vertical 

neighbours, where N represents the number of dimensions. 

From an algorithmic point of view, GBD as well as several other algorithms were 

not developed with architecture in mind. In other words, there was no explicit 

consideration of the continuing changes and development in hardware architecture, such 

as parallel architecture, even though most of these developed algorithms were proposed to 

take advantage of such architecture. 

The Co-exploration between algorithm and architecture (CEAA) (Gwo-Giun et.al., 

2009) is a new design paradigm for algorithms, which takes into account the current 

trends of the continuous development in computing architecture, particularly parallel 

architecture, during the design phase of algorithms. Unfortunately, this term has not been 

significantly utilised among several classes of algorithms such as the class of GBD. In 

contrast, the design phase of many algorithms has lacked the facilities introduced by 

parallel libraries and parallel application programming interfaces (APIs) that have shown 

a significant improvement over the years. 

As a matter of fact, a parallel architecture such as multicore architecture is forming 

the vast majority, if not the only, architecture equipped among digital devices that are 

currently in the market. Two and four cores are becoming common, even in handheld 

devices such as smart phones. Fundamentally, this number of cores is expected to 

increase over time. Hence, we believe that now is the right time to explicitly consider the 

trends of architecture and software libraries during the design phase of a parallel 

algorithm. However, we believe that such designs for inherently parallel algorithms 
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should not generate a conflict when the parallel algorithm is examined sequentially. In 

this paper, such a consideration is applied by designing a parallel algorithm for a non-

overlapping UBD algorithm that explicitly assigns each part of the domain to one 

processing element in parallel. 

2. BACKGROUND 
The GBD problem has been intensively studied in the literature (Gaur et.al., 2002, 

Saule et.al., 2011, Manne and Sørevik, 1996). Applications of the problem include 

various parallel sparse-matrix computations, compilers for high-performance languages, 

particle-in-cell computations, video and image compression, and simulations associated 

with communication networks. All of the literature studies have stated that finding an 

optimal solution to the GBD problem is NP-complete, even for simple computational 

problems such as the sum of numbers in a block. For example, image-compression data 

are stored in memory as a two-dimensional array of pixels; from a GBD point of view, the 

optimal distribution is when all blocks (sub-images) require the same computational 

resources (same complexity) for compression. In video coding, the same scenario is 

repeated but with several successive images (frames). However, the per-frame GBD in 

video coding (video compression) and other application areas will became a bottleneck 

owing to the increase in frame rate along with the frame resolution, especially in time-

critical situations such as real-time. As an alternative, the UBD will probably lead to a 

better execution time. 

The UBD is a special case of pxq partitioning in which all blocks (in some cases 

half of a border’s block will have a different size) have the same size regardless of the 

different workloads of these blocks (see Figure 2). Despite its simplicity, UBD has also 

lacked consideration of CEAA and parallel software facilitations. UBD utilises the 

recursive coordinate bisection (RCB) algorithm to recursively decompose the data which 

prevents parallelisation from being applicable.    

 

 
Figure 2:  Uniform block distribution. 

It is clear that in order to effectively take advantage of a parallel architecture such as 

a multicore or distributed architecture, one should use the facilities provided for such 

architectures in the design phase of a particular algorithm. As an example, OpenMP 

(Pacheco, 2011) and POSIX threads (in short, Pthreads) (2011) are examples of a 

language extension and parallel library, respectively, to explore parallelism on shared 

memory architectures. Both have rich features that facilitate easy parallel implementation. 

OpenMP is one of the most common language extensions used for parallel 

computing on shared memory architectures, and it is categorised as cross-platform, 
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scalable, and easy to use. OpenMP is a collection of compiler directives, library functions, 

and environment variables that can be used to specify shared-memory parallelism in 

FORTRAN, C, and C++ programs. OpenMP uses the fork-join model of parallel 

execution. Although this fork-join model is useful for solving a variety of problems, it is 

somewhat tailored for large array-based applications (Board, 2008). Pthreads, which is a 

standard application program interface that could potentially be implemented on many 

different systems for multi-threaded support, also has wide adoption in several parallel 

algorithms. The main difference between OpenMP and Pthreads is that adding OpenMP 

directives in OpenMP to explore parallelisation is performed without significant code 

modification, while a minor to major code modification is required in Pthreads to match 

the syntax of this interface. 

3. THE PROPOSED PARALLEL UBD ALGORITHM 
The main theme behind the idea of this work is how to effectively consider the 

features of parallel libraries in the design phase of an algorithm owing to the fact that 

most, if not all, digital devices are equipped with more than one processing core. 

The problem covered in this work is the UBD. The choice of this problem was 

because the usefulness of such straightforward partitioning in applications required the 

fast decision of a partitioning problem, even if the partitioned domains are not exactly 

equal in terms of their workload. Real-time multimedia services such as video 

conferencing, video on demand, IPTV, and many more are a class of applications that 

require such speed in partitioning. However, we believe that the proposed algorithm can 

suit any algorithm that deals with array data-type. 

3.1 Preliminaries 
We assume that R is N-dimensional array; N is any integer number, where N > 0. m 

is a positive integer number such that m > 0, which represents the number of partitions 

that R will be partitioned into. We refer to m as the number of blocks even if R was one-

dimensional. We are interested in m because m represents the number of processors 

(threads) in our algorithm, which is the usual case in parallel processing, where each 

block is assigned to one processor for processing. In the design of our algorithm, we have 

moved a step backward when we consider m to represent the number of partitions, as the 

number of partitions is represented by pxq partitions (the case of two-dimensional space) 

in most GBD problems. In our algorithm, m is equal to p, pxq, and pxqxr for one-, two-, 

and three-dimensional space, respectively. 

3.2 Block Size (Dimensions) 
The proposed parallel algorithm first determines N and m. Then, the algorithm 

defines a number of integer variables equal to the value of N. If N = 1, only one variable 

(D1) will be declared, while if N = 2, two variables (D1 and D2) will be declared and so 

on. These variables will set to 1 as initial values. After this initialisation, if N > 1, m will 

be used as an input for a prime factorisation function to find its factors (f1, f2, f3,….., fx). If 

x > N, a reduction function is proposed to reduce the number of these factors (fD1, fD2,…., 

fDN) to N factors. However, if x ≤ N, there is no need to reduce the factors. The condition 

among these factors after reduction is that ∑fDi is the lowest among other possible 

reductions. For example, if the factors were 2, 2, 3, and 5, which are the factors of 60, and 

N = 3, then the reduced factors are 4, 3, and 5, (Total 12), where 4 comes from 

multiplying 2 by 2 and not 2, 2, and 15 (3 × 5) (Total 19) nor 2, 5, and 6 (2 × 3) (Total 
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13). 

Once the factor reduction step is finalised, the values of the variables (D1, D2, 

………, DN) will be changed by these reduced factors in descending order. As in the above 

example, D1 will be equal to 5, D2 will be equal to 4, and D3 will be equal to 3. However, 

if the number of factors was less than N, then the values of some of the variables (Dx+1, 
……., DN) will remain 1, as initialised at the beginning of the algorithm. 

Finally, the new values of (D1, D2,………, DN) will be the dominators for their 

analogous dimensions to determine the size of each block. As for three-dimensional 

space, width, length, and height are used for representation. The block’s width will be 

equal to width/D3 + width%D3, the block’s length will be equal to length/D2 + 

length%D2, and the block’s height will be equal to length/D1 + length%D1. 

3.3 Parallel UBD 
In order to explicitly assign each block to one processor for processing, we need to 

utilise the facilitations of the parallel libraries. In a parallel environment, each processing 

unit has a unique identification number called the thread ID or processor ID. In fact, 

most, if not all, of the parallel libraries as well as parallel APIs have a built-in facility to 

retrieve the thread ID within a parallel region. OpenMP, Pthread, MPI, and many more 

support such identification by creating a variable to store this ID for all threads/processors 

within a parallel region. In a parallel environment with m processors, the group of thread 

IDs will start from 0 to (m – 1).  The thread ID, the new values of (D1, D2, ………, DN), 

and block dimensions will form a new mathematical calculation. The idea of this 

calculation is based on using the integer division (/) and integer modulus (%) operations 

to explicitly assign each block to one thread. As illustrated in the following sections, the 

problem has been divided on the basis of the dimensions of the data space into one, two, 

and three dimensions. 

3.4 One-Dimensional Domain 
In terms of a one-dimensional R (width), N will be equal to 1. Hence, only one 

variable will be declared, D1, and will be initialised to 1. From an algorithmic point of 

view, one-dimensional data can be iteratively traced using one loop only, particularly a 

for loop. Because N = 1, there is no need to factorise m, and D1 will be assigned the value 

of m. The next step is to determine the block’s width. The block width (Bw) is equal to 

width(R)/m + width(R)%m. Once Bw is determined, the parallel distribution of R will be 

implemented using the formula in Figure 3 that will run in parallel. 

TID = Retrieve the ThreadID() 

FOR i = (TID%D1)Bw to  (TID%D1 + 1)Bw 

Do F(R[i]) 

Figure 3:  Parallel UBD of one-dimensional space. 

Where in Figure 3, TID is the thread ID in a parallel region [0 to (m – 1)]. This 

parallel loop will be run at once among all threads. Each thread will utilise the value of its 

TID. However, in some cases, the thread with the largest value of TID (m – 1) will go 

over the length of that dimension when the length of one or more of the dimensions is not 

divisible by the number of blocks of that particular dimension, as shown in Figure 4. In 

order to make sure that no such memory error can happen, a min function will be used. 

Therefore, the final equation for the one-dimensional parallel UBD is illustrated in the 

formulation in Figure 5. 
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Figure 3:  Thread accessing memory beyond the array size. 

 

TID = Retrieve the ThreadID() 

FOR i = (TID%D1)Bw to  min ( (TID%D1 + 1)Bw, width) 

Do F(R[i]) 

Figure 5:  Parallel UBD of one-dimensional space with the memory accessing 

treatment. 

3.5 Two-Dimensional Domains 
For a two-dimensional R (width, length), N will be equal to 2, and in this case, two 

variables will be created (D1 and D2) and initialised to 1. The next step is to factorise m 

because N > 1. If the number of factors of m is greater than the number of dimensions, a 

factor reduction algorithm will be employed to reduce the factors to two reduced factors. 

The value of these two factors will substitute for D1 and D2. Similar to the case of one-

dimensional space, the next step is to determine the dimension of the blocks. In this case, 

Bw will be equal to width(R)/D2 + width(R)%D2 and the block’s height (Bl) will be equal 

to length(R)/D1 + length(R)/D1. 

In two-dimensional space, we note that in order for each thread to access one block 

for processing, we need to use the integer division (/) and integer modulus (%) operations, 

rather than using only integer division, as in the case of one-dimensional space. Figure 6 

shows the mathematical formulation embedded in two for loops. 

TID = Retrieve the ThreadID() 

FOR i = (TID/D1)Bw to min (((TID/D1) + 1 )Bw  , width) 

For j = (TID%D1)Bh to min (((TID/D1) + 1 )Bh  , length) 

Do F(R[i,j]) 

Figure 6:  Parallel UBD of two-dimensional space with the memory accessing 

treatment. 

3.6 Three-Dimensional Domains 
a three-dimensional R (width, length, height) such as a cube, N will be equal to 3. 

Therefore, the number of created variables is three (D1, D2, and D3). Similar to the 

previous two examples, the next step is to factorise m. If the number of factors is more 

than three, then a factor reduction algorithm will be used to reduce the factors to three. 

The values of these reduced factors will substitute for the values of D1, D2, and D3. As 

expected, the next step is to determine the block’s dimensions (width, length and height). 

Bw and Bl are determined using the same equations for two-dimensional space, while the 

block’s height (Bh) is equal to height (R)/D1 + height (R)%D1. 
 

Once all the block dimensions are determined, Figure 7 shows how a three-

dimensional space is uniformly distributed using a three for loops. 

TID = Retrieve the ThreadID() 

For i= (TID/(D1xD2))Bw to min(((TID/(D1xD2) + 1)Bw ,width) 
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For j= ((TID/D1)%D2)Bl to min(((TID/D1)%D2) +1)Bl, length) 

For k= (TID%D1)Bh to  min ( (TID%D1 + 1)Bh, height) 

Do F(R[i,j,k]) 

Figure 7:  Parallel UBD of three-dimensional space with the memory accessing 

treatment. 

3.7 Inter-Subdomain Communication 
In many applications, the interface between blocks (block boundaries) receives 

special attention. As an example, in block-based video and image coding, the blocks’ 

boundaries will enter a coding stage called a deblocking filter. The purpose of this stage is 

to remove artefacts around the block’s boundaries. Hence, a partitioning algorithm needs 

to ensure the lowest possible length for such boundaries to provide better algorithm 

efficiency. In our algorithm, such a requirement has been achieved by adding the 

condition that ∑Di must be the lowest among the other conditions.  Figure 8 shows an 

example where a two-dimensional array is partitioned into 30 blocks by assuming that the 

values of x and y are comparable. Figure 3 (a) shows the optimal partitioning where the 

interface (borders) of the blocks is less (4y + 5x) compared to Figure 3 (b) (9y + 2x) and 

Figure 3 (c) (14y + x). 

 

 
Figure 4:  Different scenarios of 2D array partitioning. 

4.      WORKING EXAMPLES 
In order to validate the proposed parallel algorithm, we need to propose working 

examples with different input parameters. Table 1 summarises the scenarios that cover all 

possible cases for one-, two-, and three-dimensional space. The purpose is to know 

whether the proposed parallel GBP algorithm will correctly distribute the input space into 

m blocks. When N = 1, three possible cases are proposed, m = 1 (no partitioning), m = 2 

(even number), and m = 3 (odd number). When N = 2, similar scenarios are proposed in 

addition to the scenario of m = 4, which shows the partitioning along both dimensions. 

Finally, for N = 3, the scenarios cover the partitioning among one, two, and three 

dimensions with an additional scenario (m = 27), which is an odd number of partitions for 

all dimensions.  
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Table 1: Scenarios of one-, two-, and three-dimensional parallel array partitioning 

Number of 

Dimensions 

(N) 

Numbe

r of 

Blocks 

(m) 

Input Size 

One 

Dimension 

1 100 

2 100 

3 100 

Two 

Dimensions 

1 100x100100 × 

100 

2 100 × 100 

4 100 × 100 

9 100 × 100 

Three 

Dimensions 

1 100 × 100 × 100 

2 100 × 100 × 100 

4 100 × 100 × 100 

8 100 × 100 × 100 

27 100 × 100 × 100 

5. IMPLEMENTATION, PARALLEL EVALUATION, AND 

EXPERIMENTAL RESULTS 
The main reason from employing parallelism is to finish a particular programming 

task in a shorter time. Therefore, this section will show how and when the proposed 

parallel algorithm has outperformed the serial algorithm with regard to different array 

sizes and a different number of blocks. As the correctness of the proposed algorithm has 

been mathematically proven, the parallel evaluation will emphasise different array sizes 

and a different number of blocks to show the speedup and scalability of the proposed 

parallel algorithm. Regardless of the number of dimensions, the total numbers of pixels in 

each experiment were 10
3
, 10

4
, 10

5
, and 10

6
, while the number of blocks (thread) was 

limited to 2, 4, or 8 owing to hardware availability. 

We have used the OpenMP standard to implement our parallel algorithm. However, 

Pthreads or any other parallel library can employ the proposed algorithm as long as those 

libraries have a built-in facility to retrieve the thread ID within a parallel region. The 

OpenMP style using C++ language for three, two, and one dimensions is shown in Figure 

9. 

#pragma omp parallel shared (R) num_threads (nthreads) 

{ 

int TID =  omp_get_thread_num(); 

 

for (int i = (TID/(D1 * D2)) * BW ; i < min (  ((TID/(D1 * D2)) + 1) * BW , WIDTH); 

i++)          

for (int j = ((TID/D1)%D2) * BL; j <min (  ((TID/D1)%D2 +1) * BL , lENGTH); j++)      

for (int k = (TID%D1) * BH; k < min (  ((TID%D1) + 1) * BH, HEIGHT) ; k++)  

run_over(R);  

} 
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(A) OpenMP parallelisation of GBD for 3D space 
 

#pragma omp parallel shared (R) num_threads (nthreads) 

{ 

int TID =  omp_get_thread_num(); 
 

for (int i = (TID/D1) * BW2D; i < min (   ((TID/D1) + 1) * BW2D , WIDTH2D) ; i++) 

for (int j = (TID%D1) * BL2D; j <min (  ((TID%D1) + 1) * BL2D, lENGTH2D); j++) 

run_over(R); 

} 

(B) OpenMP parallelisation of GBD for 2D space 

#pragma omp parallel shared (R) num_threads (nthreadsD) 

{ 

int TID =  omp_get_thread_num(); 

for (int i = (TID%D1) * BW1D; i < min (   ((TID%D1) + 1) * BW1D , WIDTH1D); 

i++) 

run_over(R); 

} 

(C) OpenMP parallelisation of GBD for 1D space 

As shown in the Pseudo above ,we have used #pragma omp parallel instead of 

#pragma omp parallel for, although the latter is designed to be used with a for loop, 

because the loop is explicitly partitioned into blocks among threads. Therefore, #pragma 

omp parallel is used, which is designed to duplicate the code between brackets and pass a 

copy of this code to each individual thread. num_threads is an OpenMP clause used to set 

the number of threads in a thread team. omp_get_thread_num is an OpenMP function 

used to return the thread number of the thread executing within its thread team. Finally, 

run_over is a simple polynomial function of the form of aR + b, where a and b are 

constants.  

The hardware environment was an Intel® Core
™

 i7-4960HQ Processor (4 cores, 8 

threads) and 4 GB of RAM, and the software platform was Microsoft Visual C++ 2010 

Professional. Results were evaluated with regard to the serial version of the run_over 

function as well as the original OpenMP version. Moreover, in order to provide a more 

reliable evaluation environment, the number of processors has been explicitly configured 

to suit the number of threads in each case. Time measurement was in milliseconds. Figure 

11 shows the execution time for one-, two-, and three-dimensional spaces for different 

sizes and a different number of threads. In Figure 11-14, P refers to the original parallel 

(see pseudo code below), while NP refers to the new parallel paradigm proposed in this 

work. 

#pragma omp parallel for private (j,k) shared (R) num_threads (nthreads) 

for (i = 0; i < width; i++) 

for (j = 0; j < length; j++) 

for (k = 0; k < height; k++) 

run_over(R); 

(A) Typical OpenMP parallelisation for 3D space 
 

#pragma omp parallel for private (j) shared (R) num_threads (nthreads) 

for (i = 0; i < width; i++) 



Journal of Babylon University/Engineering Sciences/ No.(2)/ Vol.(25): 2017 

827 

for (j = 0; j < length; j++) 

run_over(R); 

(B) Typical OpenMP parallelisation for 2D space 
 

#pragma omp parallel for shared (R) num_threads (nthreads) 

for (i = 0; i < width; i++) 

run_over(R); 

(C) Typical OpenMP parallelization for 1D space 
 

Figure 5:  Typical OpenMP parallelisation (row-wise). 

 

 
Figure 6:  Execution times of the typical OpenMP parallelisation and the proposed 

UBD, size = 10
3
 

 

 
Figure 7:  Execution times of the typical OpenMP parallelisation and the proposed 

UBD, size = 10
4
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Figure 8:  Execution times of the typical OpenMP parallelisation and the proposed 

UBD, size = 10
5
 

 

 
Figure 9:  Execution times of the typical OpenMP parallelisation and the proposed 

UBD, size = 10
6
 

As can be observed in Figures 11-14, the when the size of the space is relatively 

small (10
3
), the serial version is faster than the parallel version. Moreover, more time is 

needed compared to the serial version when more threads are created. This is due to the 

overhead caused by thread creation and termination. This observation changes when the 

size of the space becomes bigger (10
5
); as illustrated in some experiments, the parallel 

implementations outperform the serial version in terms of time. Obvious parallel 

efficiency is observed when the size of the data is 10
6
. In this scenario, the task is 

executed faster when more threads are created. This is due to the fact that the parallel 

granularity is quite sufficient for each thread to provide a considerable speedup. 

Moreover, encouraging results are observed between the parallel time of the 

proposed parallel algorithm and the original implementation of OpenMP.  The results of 

the proposed parallel algorithm exhibit comparability, and there was no significant time 

difference for a particular case although the proposed algorithm overcomes several 

limitations of the original OpenMP style, such as multidimensional partitioning (explicit 

nested parallelism). 
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6. CONCLUSION AND FUTURE DIRECTIONS 
This work has presented a new parallel algorithmic design approach for the block 

partitioning problem. The main theme of this work is represented by the employment of 

the facilities in the parallel library in the design phase of UBD algorithm. Experimental 

results demonstrate a considerable parallel speedup and efficiency compared to the serial 

version of UBD. The contribution of this work represents an example of static scheduling 

where data are partitioned regardless of their workload. This approach is good with data that 

has a comparable intra-workload. However, the proposed parallel algorithm can be extended 

to support dynamic scheduling by adjusting the size of the partitioned blocks to reach a near-

optimal distribution because the optimal distribution of this problem is NP-complete. 

Moreover, the number of blocks can be a prime number for particular cases. For the one-

dimensional space there is no problem, but for two or more dimensions, there will be a 

problem, as it is impossible to find two numbers or more in which the result after 

multiplication is a prime number. Hence, it is possible to subtract a number from the prime 

number so that it becomes an even number. By doing such a step, it will be possible to find 

two or more numbers where the result of multiplying them will result in that even number, 

and a multidimensional distribution can be made. Finally, several optimisations can be 

incrementally introduced because the work of this paper represents an algorithmic-level 

contribution. 
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