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1. INTRODUCTION 

As the size of the network increases, the problem of congestion control becomes a major issue and high-priority 

Issue [1]. This paper focuses on the TCP approach to congestion control, as it is one of the most widely used Internet 
protocols for traffic and congestion management, whose effectiveness determines Internet speeds. TCP uses a 
congestion control technique at the transport level so that the network is always efficient and that the sender doesn’t 

flood the network. With rising bit rates in data communication, congestion, when it occurs, must either be avoided or 
reduced in degree [2]. 

In particular, traditional TCP congestion control was designed almost entirely for long-lived connections and does 

not perform optimally for short-lived traffics such as Web, Cloud Computing and Internet of Thing (IoT). RED assist in 
controlling buffer sizes but implementing elaborate methods like Deep Q-Networks (DQN) could assist in enhancing 

the working of AQM in fast networks [3]. Current and future applications like Voice over IP (VoIP), video conference, 
real time video streaming, email and file transfer have dissimilar quality of service (QoS) demands on the 
communication and computing networks. Real-time services that include VoIP and video and live streaming services 

for instance, demand considerable bandwidth besides having little or no tolerance to both latency and jitter. The good 

ABSTRACT: AQM is used to meet targets for congestion control and low delay, high throughput in TCP/IP 
networks. But methods developed for AQM like Random Early Detection (RED) work strictly on the control 

parameters pre-set on them and thus may not respond very well to changing network conditions. Thus, this paper 
presents a composite AQM model using DRL based on DQN, and the ability to learn independently regarding the 
AQM weight parameter of the queue. The fact that DRL is adaptive means the effectiveness of the proposed 

system is also assured. As it is observed in implementing traditional model-based approach, the stability and 
performance degrade when tested in different network conditions; however, DRL’s ability to learn independently 
enables ML to solve network congestion as it happens. Consequently, more stability is achieved, the delay is lesser, 

more bandwidth is used and the overall packet drop rate is low; the proposed DRL-RED model is ideal for 
dynamic network environments. The proposed DRL-RED model is compared with the regular RED algorithm for 

both low density and high-density networks. This proposed model has achieved sustained throughput of up to 49.9 
Mbps with 0.949 % reduction on delay and very low PLR of 8.38043%. From the comparative analysis, it is clear 
that the employment of DRL with RED improves the stock of network throughput, the reduction on packet drop 

frequency, and the general delay in network situations. There are two main disadvantages of this approach: first, it 
cannot reach the heavy-traffic, the problem partly solved by model-based approach; second, the values of the 
congestion-control parameters cannot be reset, an issue eradicated by DRL as a result of its inherent adaptiveness. 

Consequently, new stability and increased performance can be achieved under various network conditions. 

 

Keywords: Congestion Control, Random Early Detection, Deep Reinforcement Learning   

https://orcid.org/0009-0005-6920-7610
https://orcid.org/0000-0002-6532-1150
https://doi.org/10.55145/ajest.2025.04.01.013


Mohammed Q. matrood et al., Al-Salam Journal for Engineering and Technology Vol. 4 No.1 (2025) p. 135-149 
 

 

 136 

thing with application for networks are typically more robust to packet loss [4]. TCP has congestion control, but the 
congestion that occurs within a router’s buffers when TCP is used across  networks is not managed by TCP. Congestion 

sharply degrades the networks’ performance through escalating the delay in queues and packets loss, and, decreases 
packets delivery rate, or the throughput [5, 6]. In attempting to tackle these problems many Active Queue Management 
(AQM) algorithms have been introduced as they help to identify congestion early and improve the networks’ 

performance. Some of them are BLUE [7], Proportional Integral Controller Enhanced (PIE) [8] and RED [9] etc. 
Other AQM algorithms such as RED estimates congestion based on queue size [10], and uses a random based 

technique to proactively drop packets to prevent congestion. BLUE has been acknowledged for its technique in which 
packets are dropped randomly to contain congestion; this improves the nature of packet rejection probability but 
weakens the stability of the network. In turn, this is why Proportional Integral controller Enhanced (PIE) refines this 

approach by altering it depending on the changes in queue length. Nevertheless, all the AQM algorithms, RED, PIE, 
and BLUE, utilize fixed network setting and parameters that require to be set locally. This may challenge the model’s 
congestion control because congestion parameters and their density in different congestion levels increases the model’s 

volatility and potential errors. 
When applied to the gateway level, it is absolutely beneficial as it ends emulator dreams and solves buffer bloat 

and congestion in TCP/IP networks. The Bogus RED algorithm discards packets even before the bu ffer occupancy 
attains its limit while PIE and BLUE present derivatives of this idea. Congestion usually occurs when the delivery of 
packets in the network is higher than the channel rate of the bottleneck link. During congestion, each packet ends up in 

a buffer and may be dropped depending on the availability of buffer and length of the queue. It can be seen that system 
through put and the bottleneck channel capacity can be represented by 𝑃𝑋=𝐵. However, buffer bloat normally 

interferes with this free-flowing process. An important goal of AQM is to reduce queue length and improve the balance 
of the network that is a part of the main intuitions behind it [11]. 

Deep Reinforcement Learning (DRL) provides a model free solution to get the best tuning in complex and 
dynamic network scenarios [12]. This article explains that within the reinforcement learning environment DRL it is 
possible to learn to optimize the weight queues (wq) over time, without necessarily needing to understand the network 

architecture. 
The objective of this research is to enhance TCP congestion control via DRL using the Deep Q-Network (DQN) to 

ascertain precise values of wq parameters. Thus, the goal of the study is to eliminate packet losses and avoid such 

impacts on TCP congestion management as global synchronization and oscillations, using DRL to improve TCP’s 
performance end-to-end to maintain the quality of the user experience at a high level. This is attained through 
estimating and learning the probability density of packets arrival. Like any algorithm, the DRL algorithm operates 

based on the parameters, where a change in one parameter affects others; the model-free approaches develop an 
emphasis on congestion and enhance the AQM algorithms’ efficiency. DRL has been applied before in deal with 

congestion in various fields such as networking, robotics, and Internet of Things (IoT) among others [12]. 
Being an advanced model, the DRL model mitigates fluctuation typical to the use of methods such as RED in 

dynamic and high-density mesh networks [12, 13]. The main objective of this work is to increase efficiency by 

adopting an adaptive model based on DQN. It also got the asset of influencing the flexibility and adaptability of the 
network to enable it handle the communication flows. The conges tion management system of the proposed framework 
is an AQM congestion control system, which comprises PD controller, DOB, and SP. Subsequent simulation tests 

conducted in ns-2 verified the method because the proposed approach of PD + DOB + SP demonstrated better 
throughput than the traditional approach, including cases where UDP flows mix with other traffic [14]. 

The proposed DRL-AQM algorithm also brought up a model-free approach based on DRL strategies. DRL-AQM 
succeeds in determining the best packet-dropping policies from the traffic models they learn; therefore, DRL-AQM can 
improve the performance of different network conditions. Experiments prove that DRL-AQM is robust and self-

learning to outcompete other conventional AQM strategies under different challenging scenarios of network 
connections through adapting to dynamic link conditions [10].  

Moreover, the usage of the RED with Reconfigurable Maximum Dropping Probability (RRMDP) method also 

improves the network performance by tuning the maxp value according to traffic condition. This dynamic adjustment is 
most appropriate for controlling average queue size (avg) while preventing excessive queuing delay with no effect on 

the drop rate or overall link usage [15]. To further reduce congestion in TCP/IP networks, this research novelly 
proposes a weighted ensemble DRL model with five algorithms: Twin Delay DDPG, Proximal Policy Optimization, 
DQN, and DDPG. It compared well with other architectures and congestion control algorithms such as DRL and RED 

and proved superior to single DRL models during normal operations and specifically under conditions that were 
stressful [14]. 

Reinforcement learning (RL) has received a lot of attention from researchers as a result of its potential to improve 

throughput and reduce network latency. So the research proposes DRL for enhancing the AQM system. The DRL is 
capable of handling any sophisticated network with intensive variables and increases the power of the DRL model. 

Using the parameters, this study creates a DRL for AQM congestion management. In this paper we use the DQN 
algorithm to select better wq, to enhance throughput, delay, and packet loss rate (PLR). 
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The contributions of the paper are: 
• Simulate a dumbbell TCP network using normal and stress testing to account fo r fluctuations in traffic that 

arrives at the router. 
• Working on finding the best waiting weight queue by using the DQN algorithm which ensures high throughput, 

less packet loss, and delay in AQM. 

Section 2 covers DRL techniques for AQM control congestion research and publication. Section 3 discusses AQM 
and DRL-RED. Section 4 describes the approach taken to explain the study's DRL models. Section 5 discusses 

simulations and assessment of the setting. Finally, we provide our conclusions. 
 

2. RELATED WORKS 

In [10], DRL-AQM deals with the network congestion especially in data transmission congested areas, which is a 
common problem. DRL-AQM methods are used most often to solve the problem of congestion in the network. This 
paper analyses the main sources and consequences of network congestion with especial emphasis at buffer bloat. In 

AQM systems, adaptive DRL has been observed to enhance throughput variability together with the enhancement of 
delays. In a less complex network context, offered a method in which queue wait times are cut by as much as 400 while 
sustaining normal throughput rates. PPO algorithm from RL is used for accomplishing policy learning In particular, it is 

claimed that PPO keeps stable the throughput. 
In Smart Queue Management in [12], decide to use DQN because it is effective in reaching throughput and latency 

goals. A new AQM method is implemented in fog and edge networks in [16] to minimize queuing delay where DRL is 
used to upsurge queuing latency impartially to throughput. This approach was compared with other AQM methods 
including P-FIFO, RED, and CoDel all of which were outperformed by the proposed method in series of tests that 

yielded lower latency and jitter yet higher than average throughput. The states of the system include packet queue 
length, queue rate, and queue delay while actions include packet dropping and forwarding. 

In the work [17], deep neural network is used to decide dynamically about the buffer size of each network flow 

depending on congestion, latency, and bandwidth demands. This strategy makes it possible for the system and 
developers to get through with lesser queues while still having an allowance for throughput. As explained in [18], DQN 

can be employed in managing traffic for Multi-Path TCP (MPTCP) in having a DQN agent select the best routes and 
showing its ability in handling problems in traffic management and selection of paths. Furthermore, [19] discusses the 
application of RL to optimize MPTCP flow Scheduling for short and long flows with superior performance to the 

method that has already been used. 
The proposed DDPG-based DRL system will use the path dynamic packet distribution where the goal is to reduce 

the number of out of order queues in each path. The approach taken employs an actor-critic method, with transformers 

used for processing the change in states of sub-flows of neural networks. In Reference [20], a DRL algorithm for the 
network slice resource management is presented to consider fluctuations commonly observed in traffic arrival patterns 

and resource requirements which may include computational, memory, and bandwidth resources. As this method 
proves that its better in terms of resource utilization and has less latency compared to equal slicing approach. 

In [21] as the study of the DQN algorithm, two types of rewards are used including delayed rewards with an 

increase in delay decrease and enqueue rewards which increase with the decreasing packet drop rates. These rewards 
must be properly normalized; for instance, if packet drops are frequent, the delayed reward goes up and if most packets 
are put in the queue, the enqueue reward also goes up, possibly to a level that increases the delay. Achievement of this 

balance is made possible through the use of scaling parameter, δ. Also, the element of size for training data enhances 
the algorithm output delivered by the program. The test result showed that the Proposed DRL-based AQM had better 

performance than RED in latency and system throughput across the different test scenarios. However, to provide stable 
improvements in delay and translate them into consistent reduction, it is necessary to address the RTT oscillations. 

In Reference [22], analyzed the DQN algorithm in minimizing packet drop in congestion of a network, for control 

of traffic through the nodes of the network. The important measures are the drop rate, average number of items in a 
queue, enqueue rate, and dequeue rate. The main Q-network of output probabilities is computed for both a drop event 
and a non-drop event. Through the RL process, the DQN algorithm is used to successfully control packet drop rates and 

delay lower than RED for congestion control. 
Last but not least, Reference [23] compares an AQM framework based on RED with DRL for improving network 

control, especially for managing queuing latency and throughput. This Q-learning approach makes the probability of 
packet drop-optimal to achieve network utilization with little likelihood of congestion. Thus, dynamically optimal 
packet drops probabilities that results in low latency and high network throughput compared to when employing 

traditional RED. 
 

3. ACTIVE QUEUE MANAGEMENT (AQM) 

AQM is an efficient technique implemented in a buffer that deals with queues or groups of packets connected to 
the Network Interface Controller (NIC) of routers and switches. When barriers’ levels reach its limit or they are close to 
get it, the AQM is going to work reducing congestion through network schedule to control packet circulation. In order 
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to do this, there are several protocols that are widely adopted and they include RED, The Explicit Congestion 
Notification (ECN), the Controlled Delay (CoDel). The Internet Engineering Task Force (IETF) has approved the 

implementation of AQM as the best practice to optimize the network and ensure that the data transfers in  the network 
are Continuous. 

RED for example reduces the congestion through the process of random early discarding of packets in the buffer 

before complete congestion is experienced thus encouraging the reduction of transmission rates among the sources. 
ECN, on the other hand, informs the end nodes effectively that congestion is imminent without dropping the packets, 

this enables the applications to feedback slower transmission rates in order to minimize packet loss. CoDel addresses 
delay through the restriction of the time packets remain in the queue; conversely, getInputStream ()| CoDel prevents 
latency sensitive applications from being delayed. All these protocols provide AQM with the ability to manage 

congestion with varying levels of traffic in the networks such that end-to-end delays are minimized and throughput is 
thereby increased where needed most in the most complex and dynamically changing circuit architectures. Overall, the 
given approach is beneficial for maintaining steadier and more efficient functioning of networks as compared to mere 

overload prevention and traffic regulation. [24]. 
While relaying information, routers organize packets in a queue by interface where packets are held before 

transmission. These queues utilize a drop-tail discipline, whereby packets are allowed to accumulate in queues in case 
their size does not exceed the buffer limit, otherwise, packets are dropped. Whereas passive queuing only queues 
packets until they can be sent to their next destination, active queuing priorit izes or drops packets to avoid buffer 

overflow. AQM uses probability-based marking or dropping, irrespective of the buffer state, thus controls the queue 
length and prevents network congestion. However, Chou and Wu note that drop-tail queuing may punish burst loads 
and disrupt synchronization across the network since AQM is designed to head off these problems through early packet 

loss before the buffer overflows. It also means that through packet prioritization, SSDs and other endpoints can identify 
congestion early, eliminates buffer bloat, and reduces network latency [24]. 

On modern Internet systems, end-to-end congestion control techniques are applied in order to avoid congestion 
collapse. Some routers need big buffer for holding surge in traffic but at the same time have to retain link utilization. 
However, large buffers have been shown to introduce high queuing delay especially on routers with high throughput 

traffic and on drop-tail buffers. Drop-tail used by network administrators has to perform high utilization and low 
latencies, but this means that the buffer sizes have to be set carefully [25]. Routers evaluate parameters like load, queue 
length and loss rate, and highly developed AQM algorithms may include flow data also and congestion parameters to 

improve congestion assessment and control [26]. 
 

3.1 RANDOM EARLY DETECTION (RED) 

The RED method reported in [9] is one of the first AQM techniques identified by the IETF for congestion control 
at internet routers. RED makes congestion control by slightly and randomly dropping packets so that queues do not 

reach certain levels. It operates using four primary parameters: minimum and maximum queue thresholds are denoted 
as minth and maxth respectively, maximum drop probability is represented by maxp and Wq parameter. The expected 
queue length is generated dynamically using the Exponentially Weighted Moving Average (EWMA) in which the 

current queue size is used as the actual EWMA as a way of generating a smooth yet reactive measure of mean queues. 
In the RED mechanism, if the average queue size is less than min th, all the packets are accepted in order to enable 

the stream to run smoothly under low traffic density. If the average utilization rate becomes higher than this maxth, all 
the incoming packets are discarded with probability 1 to signal congestion avoidance. When the queue size is between 
minth and maxth, each packet is individually marked with a probability pa that is the average queue length (avg) divided 

by 256 to alert the system of congestion before the situation degrades [27]. These stages allow RED to proactively 
control traffic flow by starting to mark packets gradually so that the queues do not get congested and the network 
becomes unstable. Hence the two operational phases of RED guarantee good and controllable packets handling and 

thus early congestion indication balancing the network load to minimize latency: 
• Calculating the probability of packet drops: The technique relies on preventing congestion before it occurs. 

• Calculate the avg: It's computed as:                                                                                                                                                                                       
 

                             (1 - wq) x avg + wq x q                    if q < 0   

avg =                                                                                                                                  (1) 
                           (1 - wq) 

m x avg                           otherwise   
 

Where the avg is the average queue size, wq is the weight parameter within the range of 0 to 1, and q is the current 
queue size. The packet dropped probability for RED has been calculated as follows:  
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maxp           minth < avg < maxth 

0                                                    avg < min th 
 

 
                    avg - minth 

P(a)  =         maxth - minth 

                                                                                                                                                                     (2) 

 

1                                                   maxth < avg                       
 

 

The biggest packet drop probability, based on the avg, is represented by the size of the average queue, the minth 
value, and the maxth value in this Formula. 

The probability of a final packet being flagged increases naturally as the calculations improve since the last packet 

was flagged as follows: 
                                                        pb                                                       (3) 
                                                          1 – count x pb                                         

 
Where pa represents the probability of immediate marking, pa represents the probability of accumulation and 

dropping, and count represents the number of packets that have arrived since the last packet was dropped. Although 
RED outperforms standard Tail drop algorithm 1 [28], It lacks self-adaptation and is susceptible to parameter s itting 
[29]. 

 
Algorithm (1): Conventional RED 

Input: data rate,    
Output: avg 

1. Initialize and   

 For (each arriving packet (pkti)) {calculate the average queue size (avg /) 
2. If queue is empty 

 Else m = f (time- time) 

  increment the count/ 

 calculate the probability Pa 

 with probability pa: mark the ̀ arriving packet count = 0 

 elseIf mark the arriving packet count = 0 

 Else    count = -1   

 when queue becomes empty q-time = time 

3. End if 
4. End for 

 

In this case, q-time shows the starting point of the queue’s idle time. The parameter avg stands for the number of 
packets the queue occupies on average, while count is the number of packets marked by the queue after the last packet 

marked by it, which allows tracking the dynamic parameter. The variable wq determines weight for the queue through 
which is multiplied present queue value to get effect of present queue mean on calculated mean. Further, min th and 
maxth set the limits on the range of packets which are processed and controlled to avoid congestion in the queue. 

The maxp parameter is the highest probability of a marking operation occurring on the packet because it is a 
congestion control operation. Pa is the current probability utilized to mark packets, allowing the identification of real-
time queue conditions. For real-time network traffic, the symbol q represents the current size of the queue.  

The first form of variable is the current time, crucial to assess the condition of the queue in intervals, and the 
second form of variable is f(t), which is best defined as a linear function of time, such that f(t) = t. This function may be 

used to forecast behavior of queue and other parameters which is essential for the dynamic changing of the model 
according to the network traffic. Combined these parameters provide better control over the packets flows and make 
efficient traffic control and congestion control methods possible for queue management in the networks. 

 

4. DEEP REINFORCEMENT LEARNING (DRL) 

DRL is challenging in developing accurate models of complex traffic patterns in multi-tenant data centers 

(MTDCs). As a result, DRL has been recognized as a feasible performance to produce such determined adaptive 
intelligent mechanisms that function optimally in tough conditions  [30]. During the last decade, there has been a 
growing interest in the network communications area in supplementing traditional model-driven design techniques 

using a data-driven DRL-based solution, notably following AlphaGo's success. 

Pa =   
=\\ 
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The DRL algorithm is assessed for TCP congestion management. DRL efficiency is based on logical judgments 
about which states to employ, what actions to perform, and what incentives to distribute. In this work employ based 

DRL (DQN), which allows for discrete action space. The DRL formulation involves four elements: an agent, an action, 
a state, and a reward. In this scenario, a learner, also known as the agent, obtains knowledge. This component exists 
just at the chokepoint. The agent communicates and checks the connection status in the network environment, 

considering the probability of packet drops [30].  
It is implementing queue management using DRL for the following purposes:  

• Traditional AQM methodologies are primarily model-based. Realistic networks are dynamic and challenging to 
simulate. As a result, model-based approaches are ineffective for adaptively controlling dynamic network 
circumstances. DRL is a model-free technique for learning skills via interaction with the environment.  

• First point AQM settings might be challenging to configure. The Traffic Control (TC) configured command for 
the most popular AQMs, such as RED, has four arguments. When applied properly, RED is a highly efficient 
algorithm. However, dynamically predicting this set of elements proved tough. After training, a DRL agent is allowed 

to fine-tune settings. 
• First point DRL can learn novel environments and manage complicated state spaces in dynamic and time-varying 

scenarios. 
States: The states at a particular time (t) are expressed by the symbol St, representing  the number of states. Two 

types of states are presented here: packets in the queue (q) and the average queue. The pace of packets sent at the 

source is sx(t) = current-wq i (t)  

St = (i=0   current-wq i (t), avg)                                             (4) 

Here, the asterisk notation holds the following meaning St means the state at some time N means the total number 

of nodes i is an integer current-wq means the current weight of the queue Avg means the Average queue size. The 
congestion control of DRL-RED is expected by Equation (4) accounted the queue increase (Δq(t)>0) and decrease 
(Δq(t)<0). Past methods as in [2] employ the average queue length (q) as a measure to estimate the current status of the 

network instead of the current value of queue length (q). Therefore, AQM can get better actual time control of the 
actual queue length, which leads to less variation and a smaller influence of the network dynamic and heterogeneity. 

Action: Here, we define an action to be the response that the learning agent arrives at after perceiving its state and 

is the wq. The model exists with a predetermined action domain, with the goal of achieving the most effective optimal 
action within this domain [31]. This method shed light on an essential assessment feature in DRL, which is the potential 

to choose the right actions for the agent. The primary goal of DRL here is simply to locate the optimal value for a 
queue, which this study finds is the appropriate step needed to restore balance in fluctuating networks. 

Reward: The agent provides the reward based on the actions performed. The reward signals were designed to 

achieve the aims of low latency and high throughput. Equation (5) represents the proposed reward function. 
 

           Reward = 2 thr–5 PLR–3  this.avg / this.buffersize–change-penalty                                             (5) 

 

The thr means throughput, PLR is packet loss Rate, this. avg/this.buffersize is means the current average queue 
length and current queue size, and the change-penalty is update the penalty. This function should perform optimally to 
overcome the lower throughput and higher latency observed in equations  (1) and (3). These techniques will achieve the 

objectives of low drop rate, low delay, and high throughput. 
 

4.1 DEEP Q_NETWORK (DISCRITE) 

DQN is often deployed to decide over discrete actions inside an action space [32, 33]. According to DQN, the 
policy is assumed by choosing the desired action that has the capability to fetch the maximum reward in the present 
state [34]. The biggest problem in DQN is to prevent the overestimation of Q value of an action which comes originally 

from the calculation of Wq. This research seeks to determine the right level of load for environmental interventions 
within the network with an account of the effects of the two parameters on the model’s performance. For St and At in 

DQN, meaning state and action at time t, they are saved as St, St + 1 and At + 1. Here, St + 1 and At + 1 refer to the 
state St and action At at the next time step that is t + 1.The loss function for weight θ is provided as follows: 

 
Li(θi) = ES,A∼ρ()  (ysi − Q(S, A; θi))

2                                              (6) 

 
The ys i is the target network, and Q(S, A, θ i) is the prediction Q-values. In the previous phase, weights were θ i-1. 

The target network from the (4) equation will be as follows:  

 
                                    yi = ES′ , ∼ε   r + γmax Q (S′ , A′ ; θ i− 1)                                               (7) 
                                                                                                         A′   
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The derivative concerning the weight for gradient stochastic optimization in neural networks, when utilizing 
Equations (4) and (3), may be represented as : 

 
∇θi Li (θ i) = ES,A∼ρ()  (r + γmax Q       (S′ , A′ ; θ i− 1)− Q (S, A; θ i )) ∇θ i Q (S, A; θ i)                                               (8) 

                                                                       A′  

Where γ is a discount factor, and r is the reward. The technique works for several M episodes. When the customer 

obtains the most valuable incentive, he selects the best weight from the list. 
 

5. PROPOSED THE DRL-RED  

To address the issues with RED and its recent variants that have been researched in the literature. We suggested a 
method of employing the DQN algorithm to find the most efficient value for the wq to choose these values, which 
directly affects the avg. The methodology used in this study is presented to combine RED and DRL to select the best 

Wq. The systematic process used to create a model that can control congestion is described and works to improve 
throughput, reduce delay, and minimize packet loss. The suggested method chooses the optimum value of Wq to 
improve dynamic network stability.  

The Wq of conventional RED is constant (0.002), while the DQN chose the Wq as 0.0014. Where the value was 
chosen based on the highest reward value obtained, as in Equation (5). The following sections explain the procedures 

and methods used to evaluate the DQN algorithm for managing data quality in TCP/IP networks. The present research 
considers a DRL, The flowchart representing the framework is given in Fig. 1. 

 

 
 

 

 
 

 
 
 

 
 

 

 
 
 
 

 

FIGURE 1. - Framework for proposed DRL-RED Model  

 

 

 

They are introduced to the benefits of using the DRL-RED model in discrete action spaces  in algorithm 2. This 
paradigm reduces inefficient model-based methods that need parameter modification. The suggested model is tested on 

a TCP/IP network with different data flow rates. The router has a buffer capability of 100 packets. The packet 
transmission rate is broken into two categories: regular and stress testing. The assessment criteria utilized in this study 
are typical of most studies [10]. These parameters are utilized to train the DRL to assess the proposed model, where the 

model is implemented in the Matlab environment. The action Wq is considered within the range [0.0: 0.0001: 0.4] for 
DRL in the discrete action space Fig. 2. 
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FIGURE 2. - DQ N Network for Training 

  
 

Algorithm (2):  DRL-RED 

Input: 

 Data Rate 

 Hosts 
Output: 

 Average (avg) 
Process: 

1. Initialize parameters and set starting conditions. 

2. For each packet received: 

 If the queue is empty: 
o Train the deep reinforcement learning (DRL) agent. 

o Obtain the trained policy from the DRL model. 
o Update the policy with this training. 

 Else (If the DRL model is already trained): 

o Use the existing DRL policy. 
o Obtain the best action using this trained policy. 

 For each new packet: 

o If the queue is non-empty: 
o Process the packet. 
o Else: 

o Take no action (as there is no packet in the queue). 

 End of Packet Processing Loop. 
3. Packet Decision Processing: 

 Mark the received packet with a dropping probability (P-drop). 

 If specific conditions are met for further packet processing: 

 Perform the appropriate action based on these conditions. 

4. End of Condition Checks and Loops. 
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The Pseudocode implements adaptive queue management to optimize the RED algorithm, with the DRL agent 
dynamically optimizing settings to reduce packet loss and maintain efficient network utilization. It trains the agent to 

identify the best policy wq that balances the trade-off between throughput, latency, and packet loss. 
 

6. RESULT AND DISCUSSION 

In this section is presented an evaluation of the DRL algorithm regarding the different levels of density of the 
mobile networks. The training configuration incorporates thr, d, and PLR as assessment metrics. 

In the testing phase, two network densities are used: low and high; with three data sources each. An additional 

stress test then tests the ability of the model to process these three sources in both high- and low-density scenarios. This 
arrangement gives six different scenarios, which are evaluated based on the throughput, mean end to end delay, and 

packet loss ratio. As the objective of the new model is to achieve high throughput rate with low latencies and PLR each 
of the test scenarios is described in the following sections in detail. 
 

6.1 HIGH DENSITY NETWORK 

In a high density of transport protocol internet control architecture TCP/IP algorithm, the proposed model has 
outperformed the RED technique. Thus, training the model also introduces a Wq to improve stability in its functioning. 

As for a usual experiment, dense network conditions were applied under B = 100 and N = 10. It has been realized that 
the proposed model results in improved performance compared to the conventional AQM technique; RED. These have 

been outlined in Table 1 below, the bar chart is also shown below in fig. 3. 

 
Table 1. - Evaluation of the performance of 10 transmitters within a high-density network 

 
 

Using throughput, delay, and PLR as the three measuring indices, the overall performance of the DQN model 
differs only slightly from the RED algorithm within the high-density network context. The two models provide 

comparable throughput at about 50 Mbps suggesting that they have similar data transfer rates. The delay is practically 
equal for each model, just under one second, meaning that none of them is particularly problematic in terms of latency. 
The PLR is also similar in RED and DQN models as both models have a PLR of approximately 8% which shows great 

similarity in packet dropping. Conclusively, this evaluation implies that, at high density both RED and DQN have 
similar throughput, delay, and packet loss rate with no preference based on the metrics alone. 

 
FIGURE 3. - A comparison for model on evaluation parameters for high density network 

 
To compare different networks, we performed the stress test with 50 data sources for the high node density 

networks. As indicated by the Figure 4, it is apparent that the RED method fails to coordinate a large number of inputs 

adequately. This is so because traditional AQM algorithms including RED experience difficulties in handling 
complexity that has characterized new age networks as indicated in Table 2 and Fig. 4. 

 

Models Throughput (Mbps) Delay(s) PLR(% ) 

RED 49.728 0.964 8.51289 

DQN 49.9 0.949 8.38043 
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Table 2. - Evaluation of the performance of 50 transmitters within a high-density network 
 

In regards to throughput, DQN shows a slightly higher figure, slightly over 278 Mbps while RED is slightly below 
276 Mbps. This implies that DQN may be slightly more suited to data transmission in high density environments. For 

delay, DQN gives a lower delay to a close proximity of 4.95s while RED is slightly higher than 4.95s which makes 
DQN to have a small benefit in delay. As for the values attained by PLR, DQN slightly outperforms it with the 
percentage figure of about 7.785%, while RED’s percentage was a little over 7.795%. 

 
 

FIGURE 4. - A comparison for model on evaluation parameters for high density network 
 

The performance of the proposed method was examined again with a higher density of 100 data sources in the 

network. As can be observed in Fig 5, our proposed approach performs better than RED, with maximum through put of 
11.3856 Mbps. It also achieves an optimal PLR with high throughputs and is stable in ensuring such rates within 
dynamic networks. The above results validate that the proposed method delivers high throughput while maintaining 

delay and PLR a low respectively. In comparison to RED, it has better stability and superior throughput-to-delay ratio 
in complicated selective, high capability networks, as tabulated in Table 3. 

 

Table 3. - Evaluation of the performance of 100 transmitters within a high-density network 
 

Models Throughput 

(Mbps) 

 Delay(s) PLR(% ) 

RED 11.136 0.875 27.3865 

DQN 11.3856 0.823 25.759 

 

Fig. 5. Presents the findings made on the impact of RED and DQN in a high density network scenario for 
throughput, delay as well as PLR. The simulation results reveal that the DQN has a better performance than the RED 
with higher inbound throughput at about 11.5 Mbps than the 10.75 Mbps of RED hence the new model processes more 

data. Regarding the delay, DQN gets a delay of around 0.85 while the delay value attained for RED ranges around 0.9, 
which gives a better latency result. Furthermore, the result obtained showed that DQN has a very low packet dropping 
rate which is 25% while RED has a high packet dropping rate of 27.5%. In general, the result shows that DQN provides 

better performance than RED in terms of throughput, delay and packet loss rate under high density environment 
implying the fact that the proposed algorithm is most efficient in this network. 

Models Throughput (Mbps)  Delay(s) PLR(% ) 

RED 280.838 4.945 7.79317 

DQN 280.848 4.942 7.79002 
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FIGURE 5. - A comparison for model on evaluation parameters for high density network 

 

6.2 LOW DENISTRY NETWORK 

In low-density TCP/IP networking testing, the model proposed, after training, employed ten sources to simulate 
low-density networks. The recommended model outperformed the classic model RED. The information presented in 

Table 4 and illustrated in Fig. 6. provides a comprehensive overview of data and findings. 
 

Table 4. - Evaluation of the performance of 10 transmitters within a low-density network 
 

 

 

 

In the high-density network comparison, the proposed DQN model yields better results than the RED model on all 

the parameters. DQN has the better Throughput around 11.5 Mbps for the packet flow as compared to RED that is 
around 10.5 Mbps revealing the better data flow handling. DQN also has less delay compared to the RED, that is, about 

0.85 second as against 0.9 second, and a much lower packet drop rate of 25% as against the 27.5% for RED. Based on 
these findings, DQN outperforms LDA in regard to throughput, latency, and packet drops in high traffic environments. 

 

 

 
FIGURE 6. - A comparison for model on evaluation parameters for high density network 

 
In 50 network sources, the original RED model performs badly, but the proposed model outperforms it. Table 5 

categorizes the statistics, and Fig. 7. Offers a clearer understanding of the results. 
 

 

Models Throughput (Mbps)  Delay(s) PLR(% ) 

RED 11.135 0.871 27.3866 

DQN 11.3859 0.821 25.751 
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Table 5. - Evaluation of the performance of 50 transmitters within a low-density network  

 

This high-density network evaluation of both the RED and DQN models reveals no significant difference in the 

models’ throughput, delay, and PLR. In terms of throughput the two models are about the same, RED being at 58.8 
Mbps and DQN at 59 Mbps. The time taken for both models is almost the same, with an average of 4.92 seconds, thus 
negligible delay. The packet loss rate is also almost the same, with RED at 28.7 percent and DQN at 28.6 percent; thus, 

indicating almost equal reliability of packet handling. In general, it can be noted that the specified metrics show that 
RED and DQN are equivalent in high-density conditions, and DQN has only a slightly better performance. 

 
 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

FIGURE 7. - A comparison for model on evaluation parameters for high density network 
 
We examine stress testing in networks of 100 sources. The proposed model performs better. The information 

presented in Table 6 and depicted in Fig. 8. highlights the key findings of this analysis. 
 

Table 6. - Evaluation of the performance of 100 transmitters within a low-density network  

 
 
 

 
 

 
 
In this high density network analysis, the DQN model exhibits a considerable better performance over the RED 

model in terms of throughput, delay and PLR. For DQN, throughput is also significantly improved reaching around 500 
Mbps against 400 Mbps of RED and this means that DQN handles data flow better. Delay below depicts a comparison; 
it took nearly 10 seconds for RED to respond while DQN makes it to under eight seconds indicating DQN has better 

latency advantage. Last of all, the PLR favors DQN over RED since 0.0035% of packets are lost by DQN while 
0.0045% are lost by RED, indicating that, DQN has a better packet delivery. In general, DQN outperforms all of the 

compared algorithms in terms of the metrics calculated in this high-density environment. 
 
 

 

 

 
 

 

 

 

 

 

 

 

Models Throughput (Mbps)  Delay(s) PLR(% ) 

RED 58.968 4.933 28.7002 

DQN 59.0016 4.926 28.696 

Model Throughput (Mbps)  Delay(s) PLR(% ) 

RED 427.321 9.897 10.0048 

DQN 480 8.2466 10.0039 
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FIGURE 8. - A comparison for model on evaluation parameters for high density network 

 
The outcome of the high density network evaluation indicates that proposed DQN model has higher throughput, 

less delay, and less PLR as compared to the traditional RED model. DQN exhibits higher throughput than RED (around 
500 Mbps compared RED’s 400 Mbps), which indicates better data flow handling by DQN because of the use of 
adaptive reinforcement learning to avoid congestion. Same as RED, the delay for DQN is much lower (less than 8 sec 

against 10 sec), which means that it processes packets faster which is important for applications with low latency. Also, 
DQN has a less number of packets dropped (0.0035% less than that of RED), and this shows that DQN is more reliable 
and less congestive than RED. These findings have further illustrated how DQN can learn the network environment in a 

dynamical manner in order to enhance its performance in high traffic densities where network performance often 
degenerates. As we see, DQN might consume more computational power but it outperforms on all of these indicators 

making it relevant for current sophisticated, high traffic networks. 
 

7. CONCLUSION 

This paper therefore provides an AQM using DRL known as DQN to adapt the weight queue parameter 
autonomously. The traditional AQM mechanisms such as RED utilize predetermined models and parameters for 
regulating the circulation of traffic and thus the ideal of configuring the precise mechanism in real-world networks 

proves a real challenge. On the other hand, DRL is an IL technique that must learn a model, setting it apart from other 
congestion control algorithms. In the proposed system, the DQN agent observes the current queue size and the packet 
drop count of a flow as the local state and a wq parameter as the possible action. In this case, throughput, delay and 

packet loss are used in determination of the anticipated future reward which can help the agent learn the best DQN 
policy. The performance studies were done under normal traffic and stress and on low- and high-density TCP/IP 

network. In our analysis we found that the DQN-RED method produced superior results over the RED with throughput 
of 11.135 Mbps delay of 0.823s for our designed DQM-RED method compare to 0.875s in RED and finally the packet 
loss ratio was minimized with 25.751 compare to 27.3866 in RED method. Unlike RED’s five fixed parameters, the 

DQN agent a dynamical vary the weight parameter to satisfy the congestion control and be more stable in highly 
dynamic networks with one hundred source. This research shows that data-driven DRL is viable for improving AQM 
and other issues in networking to design networks that are self-optimizing and highly efficient. Ample directions for 

future studies could be established that explore other DRL algorithms and system architectures to leverage these 
advantages 
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