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ABSTRACT

Lignin has useful and significant properties such as stiffness, resistance to UV radiation, antioxidant, antimicrobial,
high thermal stability, and high carbon content. Due to these properties, lignin can be used for several applications
including wood adhesive and carbon-based material, and can be developed as a functional material composite. Isolation
and utilization of lignin from lignocellulosic biomass offers significant opportunities in various now and future industrial
applications mainly for development of advanced materials. In this study, isolation and characterization of lignin from oil
palm shells (OPS) was conducted. Lignin was isolated from OPS using the precipitation method with sulfuric acid and
coagulation using polyaluminum chloride (PAC). The isolated lignin was identified using Fourier Transform Infrared
(FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Based on the FTIR analysis, lignin was
successfully separated from cellulose. The crystallite size of isolated lignin is the smallest (25.37 nm) as compared
to commercial alkaline lignin (28.49 nm) and OPS (25.99 nm). The isolated lignin is amorphous with crystallinity of
6.43% and its morphology is a spherical. Overall, this study shows that the isolation method using sulfuric acid (H2SO4)
and PAC is not only effective in separating lignin from OPS, but also minimizes the environmental impacts, thus certainly
making it a promising choice for more environmentally friendly industrial applications.

Keywords: Hydrothermal, Lignin, Oil palm shell, Precipitation method, Sulfuric acid and Polyaluminum chloride

1. Introduction

Biomass is non-fossil organic matter derived from
plants and animals, including microorganisms. Poten-

tial biomass includes wood, animal, and plant wastes
[1]. Usually biomass is grouped into six main groups,
namely (i) wood and woody, (ii) herbaceous and agri-
cultural plants, (iii) aquatic organisms, (iv) animals,

Received 6 October 2024; accepted 26 October 2024.
Available online 20 November 2024

* Corresponding author.
E-mail address: eny.k@ui.ac.id (E. Kusrini).

https://doi.org/10.70176/3007-973X.1016
3007-973X/© 2024 Al-Ayen Iraqi University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://orcid.org/0000-0002-7919-0083
mailto:eny.k@ui.ac.id
https://doi.org/10.70176/3007-973X.1016
http://creativecommons.org/licenses/by-nc-nd/4.0/


78 AUIQ COMPLEMENTARY BIOLOGICAL SYSTEM 1 (2024) 77–85

(v) industrial semi-biomass, and (vi) mixed biomass
[2]. Numerous studies have explored biomass for
many applications including adsorbent to eliminate
emerging contaminants from water sources [3, 4].
Biomass is not expensive material, thus has attracted
for many researchers. The sol-gel process produced
xerogel from palm kernel shell biochar (PKSB) to be
used as an adsorbent has been investigated by Mahdi
et al. [3].

On the other hand, Reghioua et al. [4] reported
kaolin clay functionalized with cellulose extract ob-
tained from peanut shells as adsorbents for the
removal of organic dyes, such as cationic (methy-
lene blue, MB) and anionic (Congo red, CR) from
an aqueous environment. It is noted that biomass
from plants has high contents of cellulose, hemicel-
lulose, and lignin, but has relatively low contents of
pectin, protein, extractives, and ash. Therefore, this
biomass is often referred to lignocellulosic biomass
[5]. Lignocellulosic biomass includes various agri-
cultural residues, such as wood from deciduous and
coniferous trees, municipal solid waste (MSW), and
waste from the pulp and paper industry. The main
components of lignocellulosic biomass are cellulose
(35%–50%), hemicellulose (20%–35%), and lignin
(10%–25%) [6]. Lignin can be found in the plant cell
wall, usually about 10 – 40% weight of biomass [7].
In plants, lignin is used for strength and stability of
cell walls, and forms essential hydrophobic surface
and enhances the structurcal integrity [8]. The func-
tional groups and molecular weight of lignin can be
different depending on the source of lignin and type
of plant or wood.

The utilization of biomass of date palm (Phoenix
dactylifera) and pineapple (ananas comosus) as adsor-
bents has been reported to produce a sulphonated
date palm [9] and activated carbon [10]. Isola-
tion and utilization of lignin from lignocellulosic
biomass offers significant opportunities in various
industrial applications. Lignin is a friendly biopoly-
mer and has various antimicrobial, antifungal, an-
tioxidant, and functional physical properties, such
as stiffness, resistance to UV radiation, high ther-
mal stability, and high carbon content [11, 12].
Due to these properties, lignin can be applied
as wood adhesive, carbon-based material, and can
be developed as a functional composite material
[13]. On the other hand, nano lignin can be used
in various fields such as food packaging, emul-
sion, drug delivery, and biomedical applications
[7].

The kraft, soda, and organosolv are involved in
pulping processes for isolating lignin from lignocel-
lulosic biomass [14]. These pulping processes can

produce high yields of lignin; especially the Kraft
pulping process produces around 100 million tons
of lignin annually in the form of black liquor. One
of the common methods for isolation of lignin is
the precipitation method using acid, such as sulfu-
ric acid (H2SO4). However, the use of sulfuric acid
can disrupt the balance of chemical cycles in solu-
tion. Therefore, some modifications are implemented
in the precipitation method to minimize the use of
acid. For instance, lignin was extracted from oil palm
empty fruit bunch and purified from black liquor,
or wastewater from bioethanol production, by acid
precipitation using hydrochloride acid (HCl) and sul-
furic acid (H2SO4) combined with coagulation using
polyaluminum chloride (PAC) [15]. By extraction and
purification using PAC 10% and H2SO4 5%, the lignin
can be obtained about 98.6% and used as flame retar-
dant additives [15].

PAC is used as a coagulant to reduce the use of
strong acid such as sulfuric acid. In this study, PAC
can be used to reduce the pH and help to precipitate
lignin. The use of PAC as a coagulant in the lignin
isolation process shows progress in reducing the envi-
ronmental impacts caused by the use of sulfuric acid.
In addition, the use of lignin as a raw material in var-
ious functional products shows high potential to sup-
port sustainability and efficiency in industry. With its
high content of cellulose, hemicellulose, and lignin,
lignocellulosic biomass is not only a renewable en-
ergy source, but also a valuable raw material for var-
ious technological applications. This potential needs
to be continuously explored and developed to support
the development of a greener and more sustainable
industry.

In this study, the isolation of lignin from oil palm
shell (OPS) using the precipitation method with sul-
furic acid and PAC as a coagulant is investigated.
Palm kernel shell (PKS) is well-known as OPS and
has a lignin content of about 50% [16, 17]. As
Southeast Asia is a largest producer of palm oil in
the world, huge quantities of biomass wastes includ-
ing empty fruit bunches, oil palm shells, oil palm
trunks, and palm fibers are produced in this area.
By production of lignin using OPS as a precursor,
the problem of biomass waste in the oil palm indus-
try can be reduced. On the hand, this research can
support the circular economy by using biomass, and
produce useful valuable products. This process is in
parallel producing lignin useful for many applications
such as wood adhesive, carbon nanofiber, functional
composite material, food packaging, emulsions, drug
delivery, and biomedical applications. This product
is also a major source for production of renewable
aromatic chemicals [18].
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2. Materials and methods

2.1. Material

OPS as the main source in lignin isolation was
obtained from local market of Riau Plantation (Su-
matera, Indonesia). Technical sodium hydroxide is
used in lignin delignification process that forms
black liquor, while sulfuric acid was purchased from
Merck Sigma-Aldrich EMSURE CAS: 7664-93-9. PAC
was purchased from TUV CERT CPR-30. Commercial
lignin in the from of alkaline lignin (CAS: 8068-05-1)
was purchased from Merck Sigma Aldrich.

2.2. Method

Preparation of lignin from OPS was according to
method reported by Burhani & Nugroho [15]. The
collected OPS (250 g) was put into the digester con-
taining 2 L NaOH with a concentration of 20% w/v
to produce a black liquor. This black liquor was
prepared by using the hydrothermal method at a tem-
perature of 170◦C for 6 h. 800 mL of the black liquor
product was taken and put into a 2L beaker glass.
The black liquor is very alkaline with the pH of 14,
then sulfuric acid (H2SO4) 5% v/v was added until
the pH reached 4, followed 10% w/v of PAC. The
black liquor was mixed and homogenized using a hot

plate stirrer for 1 h. The mixed solution was precipi-
tated overnight until the filtrate and supernatant are
formed. The filtrate and supernatant were separated
and the filtrate was then soaked using distilled water,
the process of precipitation, separation, and addition
of distilled water was repeated until a neutral pH
was achieved. After reaching a neutral pH of ≈6–7,
the filtrate was dried at a temperature of 80 ◦C for
12 hours using an oven. The output from the oven
was lignin in solid form. The solid lignin was ground
using a mortar and sieved until it passed a size of
400 mesh. Scheme for isolation of lignin from OPS
as a raw material using the hydrothermal method at
170◦C for 6 h, which precipitated with 10% PAC and
5% sulfuric acid, is presented in Fig. 1.

2.3. Characterizations

The functional groups of the samples in this
study were analyzed using Fourier transform infrared
(FTIR) spectroscopy on Perkin-Elmer Spectrum Two
with Universal ATR FT-IR Spectrometer over the
range of 400–4000 cm−1 scanning number of 12, res-
olution of 4 cm−1 and temperature of 25◦ Celsius. The
surface morphology of the samples was characterized
using a Scanning electron microscopic (SEM) imaging
on FEI Inspect F50 series. The crystallinity of the sam-
ples were analyzed by X-ray diffraction on MAXima_X

Fig. 1. Schematic for isolation of lignin from OPS as raw material with hydrothermal at 170◦C for 6 hours, precipitated with 10% PAC and
5% sulfuric acid.
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Table 1. Characteristics absorption bands of OPS, isolated lignin from OPS, and commercial lignin.

Wavenumber (cm-1)

Commercial
OPS OPS lignin lignin Functional group

3288 3334 3318 -OH stretching vibration of aromatic and aliphatic (lignin)
2922 2875 2931 C-H2 stretching vibration (guaiacyl-syringyl)
1622 — — C=O stretching vibration of carbonyl bond
1512 1511 1582 C=C stretching vibration of the aromatic ring (guaiacyl-syringyl)
— 1595 — R-C=O
1455 1452 1452 C-H deformation in lignin
— — 1335 C-H vibration
— — 1259 C-O stretching in lignin
1235 1210 1213 C-O stretching in lignin and syringyl ring
— — 1126 C-O stretching
— 1111 — C-O-C stretching
1032 1029 1028 C-H in-plane deformation in guaiacyl
534 555 513 C-H bending

XRD-700 (Shimadzu) with λ = 1.54184 nm under
ambient conditions. The isolated lignin from OPS was
characterized using XRD to determine its structure
and crystallite size. The average crystallite size of
samples were determined using the Debye Scherrer
Eq. (1);

D = Kλ/β cos θ (1)

where D is the nanoparticles crystallite size, K rep-
resents the Scherrer constant (0.98), λ denotes the
wavelength (0.154 nm), β denotes the full width at
half maximum (FWHM)

3. Results and discussion

3.1. FTIR analysis

The surface functional groups of isolated lignin
from OPS as a raw material were identified through
FTIR analysis. Two distinct regions of fingerprints
and functional groups infrared region in the ranges
from 400 to 4000 cm−1 were analysed. The FTIR
spectra of OPS, lignin from OPS, and commercial
lignin were described in Fig. 2 and Table 1. The raw
OPS, isolated lignin from OPS, and commercial lignin
have strong absorption at 3288, 3334 and 3318 cm−1,

Fig. 2. Comparison FTIR spectra of OPS, isolated lignin from OPS and commercial lignin.
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respectively, that represents the stretching vibrations
of aromatic and alcoholic hydroxyl groups of lignin.
These bands appear at frequencies lower than those
found in the hardwood kraft lignin (HKL) at 3396
cm−1 [19].

The band at 2900 cm−1 was assigned as the C-
H vibration of the −CH2 asymmetric vibration of
guaiacyl-syringyl in the structure of lignin. This peak
is comparable with HKL at 2917 cm−1 [19]. The band
of 1622 cm−1 was attributed to the C=O stretching
vibration of carbonyl bond that commonly found in
lignin and cellulose derivatives. However, this peak
was not found in both the isolated lignin and com-
mercial lignin, indicating that lignin was separated
from cellulose during the lignin isolation process.
The bands at 1511, 1512, and 1585 cm−1 were
attributed to the C=C stretching vibration of the aro-
matic ring (guaiacyl-syringyl) found in the structure
of lignin. This is similarly observed for industrial
hardwood kraft lignin with the peak intensity of
1512 cm−1 that assigned for the aromatic ring vibra-
tions of the phenyl-propane skeleton unit in lignin
[19].

In commercial lignin, both bands at 1135 cm−1 and
1259 cm−1 were attributed to the stretching vibration
of C-H and C-O of methoxy group. These peaks are
related to the type of alkaline lignin and only found
in alkaline lignin because the latter has more phenolic
groups. These bands were comparable with methoxy
group of lignin for stretching vibrations of C-O at
1270 and 1151 cm−1 [20, 21].

Different bands of lignin spectra at 1210, 1213, and
1235 cm−1 were observed and assigned as the C-O
stretching of lignin and syringyl ring for the isolated
lignin, commercial lignin and OPS, respectively. The
C-O stretching was observed for commercial lignin,
showing the presence of ether and alcohol groups in
alkaline lignin at 1126 cm−1. The C-O-C stretching
was only observed for isolated lignin from OPS at
1111 cm−1 because it is an acid lignin that cannot
break the ether bond significantly. In the commercial
alkaline lignin, this peak was not observed because
this bond is broken in the present of alkaline. The
bands at 1028, 1029, and 1032 cm−1 were assigned
for the C-H in-plane deformation peaks in guaiacyl,
while the bands related to the C-H bending appear
at 513, 534, and 555 cm−1 found for all samples
[22–24].

The OPS, isolated lignin, and commercial lignin
have aromatic groups, dominated by guaiacyl and
syringyl which represent a hardwood lignin. In FTIR
spectrum of OPS, the C=O group is still observed
to represent lignin and cellulose. However, after the
isolation process of lignin, this band does not con-
tain cellulose. There are differences in the peaks of

isolated lignin from OPS and commercial lignin that
caused by differences in the isolation processes. The
sulfuric acid is used to produce an acidic lignin, while
for the commercial lignin, alkaline is used, thus both
spectra of lignin are different, as it has also been
confirmed by Zhou et al. [25]. The FTIR spectrum of
isolated lignin from OPS showed a new peak at 1595
cm−1 that related to R-C=O group. This peak has been
assigned to lignin glyoxalation by ether bond forma-
tion, and the similar pattern has also been observed
by Ghahri & Park [19] and Ding et al. [26].

3.2. X-ray diffraction analysis

XRD was used as an analytical method to provide
an information about the structure of substances at
the atomic level such as the crystallinity degree of
substances. Usually, the diffractogram is divided into
two phases, namely (i) crystalline cellulose and (ii)
amorphous. These two phases are estimated based
on XRD peak areas, which are further considered
proportional to the volume of each phases. The XRD
patterns of isolated lignin from OPS, and raw material
OPS were compared to observe the structural changes
that occur during the lignin isolation process. In the
diffraction pattern of materials that have a crystal
structure will produce a sharp peak pattern while
for materials that have an amorphous structure will
produce a broad peak. The diffraction pattern of OPS,
lignin from OPS and commercial lignin is presented
in Fig. 3.

In the raw OPS, a broad peak at 2θ of 15◦ and a
sharp peak of 22◦ were observed, which represent the
peaks of the type I cellulose polymorph which are
commonly found in nature. On the other hand, the
broad peak at 15◦ represents lignin and hemicellulose
which have an amorphous structure and at 22◦ repre-
sents cellulose crystals [27]. In the isolated lignin, the
2θ peaks were observed at 15, 20, and 22.5◦, where
the peak at 15◦ and 20◦ are the hemicellulose and
lignin originated from type II cellulose polymorphs,
while 2θ at 22.5◦ is the hardwood acid lignin peak
[28]. In this study, lignin was isolated from OPS using
the hydrothermal method in sulfuric acid. OPS is clas-
sified a biomass that has a hardwood category [28].
In the commercial alkaline lignin sample, a broad
hump-shaped peak was observed at 2θ of 20◦ and
30.6◦ which represent hemicellulose and lignin [29].

Based on the XRD diffraction pattern, lignin peaks
were observed, but a hemicellulose was still observed
in the lignin sample. This could be because some
lignins may contain hemicellulose fractions that are
left behind or physically bound to lignin during the
extraction and isolation process. In addition, hemi-
cellulose and lignin have some structural similarities
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Fig. 3. Comparison XRD patterns of OPS as raw materials, isolated lignin from OPS and lignin commercial.

Table 2. Crystallite size and crystallinity index of samples.

Samples 2θ (◦) hkl Crystallinity (%) Crystal size (nm)

Raw OPS 15 (101) 8.45 25.99
22 (002)

Isolated lignin from OPS 15 (101) 6.43 25.37
20 (200)
22.5 (002)

Alkaline Lignin (commercial) 21.3 (200) 15.32 28.49
30.6 (004)

in terms of polymerization and structural arrange-
ment, which may result in overlapping in the XRD
pattern. However, based on the FTIR analysis, the
functional groups of lignin is dominated by S and G
which represent hardwood lignin, and also carbonyl
bonds, indicating that lignin and cellulose were only
observed in OPS, indicating that cellulose is only
found in OPS.

The crystal size of each sample is listed and com-
pared in Table 2. The isolated lignin from OPS has
a smaller crystallite size (25.37 nm) as compared to
commercial alkaline lignin (28.49 nm). These crystal-
lite sizes of isolated lignin from from OPS and com-
mercial lignin were smaller than those found in lignin
nanoparticles (31 nm) that isolated from almond peel
[7]. This lignin crystallite particles were isolated us-
ing almond peel extract through a straightforward hy-
drothermal method. The difference may be caused by
the different raw materials and the isolation methods.
Based on several studies, the crystallite size of lignin
ranges from 2-200 nm. There are a decrease in crys-

tallinity from raw OPS with lignin due to the absence
of a peak in the crystalline cellulose structure after the
lignin isolation process, thus reducing the crystallite
sizes of lignin [30, 31]. Crystallinity of isolated lignin
is the smallest (6.43%). Based on the XRD pattern,
the isolated lignin is amorphous. In contrast, com-
mercial lignin shows higher crystallinity at 15.32%,
compared to 6.43% for the isolated lignin from OPS.

3.3. The surface morphology

The surface morphology of isolated lignin particles
showed stacked layer, like a plate-compact, fragile,
many void like a porous, and unregular size. Non-
uniform particle distribution and morphology were
observed in hardwood lignin, where hydrophobic
lignin will melt upon re-polymerization during the
isolation process and form a morphology like spheri-
cal and plane stacking (see Fig. 4). The formation of
spherical droplets in lignin may be occured during the
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Fig. 4. SEM images of isolated lignin from Oil Palm Shells with
different magnifications; a) 5,000×, b) 10,000× and 20,000×.

hydrothermal process at 170◦C for 6 h. SEM results
of the isolated lignin from OPS show likely a compos-
ite of lignin or lignin-like (pseudo lignin) materials
[32]. This isolated lignin is a promising candidate for
further applications, such as the production of car-
bon nanofibers for supercapacitor technologies. This
is also in accordance with previously research that
reported by Arundina et al. [33] that palm oil empty
fruit bunches are as cellulosic sources for preparing
the activated carbon-based electrodes for supercapac-
itors application with specific capacitance of 389.122
F/g at a current density of 1 A/g with energy and
power densities of 13.511 Wh/kg and 125 W/kg,
respectively.

4. Conclusions

Isolation of lignin, separated from cellulose of oil
palm shells (OPS) has been investigated using the
hydrothermal treatment. In this process the precipita-
tion with sulfuric acid and coagulation using polyalu-
minum chloride (PAC) were employed. FTIR spectra
confirmed that isolated lignin from OPS was ob-
tained, and revealed differences in functional groups
between isolated lignin and commercial alkaline
lignin, which were related to the use of sulfuric acid
isolation methods for isolated lignin from OPS and
alkaline for commercial lignin. XRD analysis showed
that isolated lignin had a smaller crystallite size
than that of commercial lignin. These results provide
important insights into the physical and chemical
characteristics of lignin from OPS, which may affect
lignin applications in various industries. The lignin
isolated from OPS is a promising candidate due to its
significant potential for further applications, such as
the production of carbon nanofibers, composites, and
its use in supercapacitor technologies.
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