
Volume 11 Issue 1 Article 2 

Gauss-Lobatto Method for Nuclear Reactivity Calculation Gauss-Lobatto Method for Nuclear Reactivity Calculation 

Daniel Suescún-Díaz 
Department of Natural Sciences, Avenida Pastrana, Universidad Surcolombiana, 410001, Neiva, Huila, Colombia, 
daniel.suescun@usco.edu.co 

Luis E. Cardoso-Páez 
Department of Natural Sciences, Avenida Pastrana, Universidad Surcolombiana, 410001, Neiva, Huila, Colombia 

Diego Peña-Lara 
Grupo de Transiciones de Fases y Materiales Funcionales, Universidad del Valle, 760032, Cali, Colombia; 

Follow this and additional works at: https://kijoms.uokerbala.edu.iq/home 

 Part of the Engineering Physics Commons, and the Nuclear Commons 

Recommended Citation Recommended Citation 
Suescún-Díaz, Daniel; Cardoso-Páez, Luis E.; and Peña-Lara, Diego (2024) "Gauss-Lobatto Method for Nuclear 
Reactivity Calculation," Karbala International Journal of Modern Science: Vol. 11 : Iss. 1 , Article 2. 
Available at: https://doi.org/10.33640/2405-609X.3384 

This Research Paper is brought to you for free and open access 
by Karbala International Journal of Modern Science. It has been 
accepted for inclusion in Karbala International Journal of 
Modern Science by an authorized editor of Karbala International 
Journal of Modern Science. For more information, please 
contact abdulateef1962@gmail.com. 

https://kijoms.uokerbala.edu.iq/home/
https://kijoms.uokerbala.edu.iq/home/
https://kijoms.uokerbala.edu.iq/home/vol11
https://kijoms.uokerbala.edu.iq/home/vol11/iss1
https://kijoms.uokerbala.edu.iq/home/vol11/iss1/2
https://kijoms.uokerbala.edu.iq/home?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol11%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/200?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol11%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/203?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol11%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.33640/2405-609X.3384
mailto:abdulateef1962@gmail.com
https://uokerbala.edu.iq/en/
https://uokerbala.edu.iq/en/


Gauss-Lobatto Method for Nuclear Reactivity Calculation Gauss-Lobatto Method for Nuclear Reactivity Calculation 

Abstract Abstract 
In this paper, we introduce a novel approach to numerical solving for nuclear reactivity using the inverse 
equation of point kinetics as a model. Our method leverages the Gauss-Lobatto quadrature, incorporating 
multiple time steps and nodes derived from Legendre polynomials of varying orders. To enhance the 
accuracy of the differential component of the inverse equation, we employed a differential scheme based 
on the Gauss-Lobatto quadrature nodes. To address fluctuations in neutron population density, we 
implemented a second-order low-pass Butterworth filter with a minimal window length of M = 3 samples. 
Through extensive numerical simulations, we assessed the precision of our proposed method and 
filtering process by varying time steps and standard deviations associated with noise or uncertainty. 
Additionally, we benchmarked our results against the Savitzky-Golay filter, which uses a significantly 
larger sampling window of M = 225. Our findings reveal that the integration of the Gauss-Lobatto 
quadrature method with the Butterworth filter not only significantly reduces fluctuations but also 
demonstrates potential for effective implementation in digital reactivity meters. 

Keywords Keywords 
nverse point kinetic equations; Gauss-Lobatto quadrature; nuclear reactivity; Butterworth filter; Numerical 
simulation 

Creative Commons License Creative Commons License 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 
License. 

This research paper is available in Karbala International Journal of Modern Science: https://kijoms.uokerbala.edu.iq/
home/vol11/iss1/2 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://kijoms.uokerbala.edu.iq/home/vol11/iss1/2
https://kijoms.uokerbala.edu.iq/home/vol11/iss1/2


RESEARCH PAPER

Gauss-Lobatto Method for Nuclear Reactivity
Calculation

Daniel Suescún-Díaz a,*, Luis E. Cardoso-P�aez a, Diego Pe~na-Lara b,c

a Department of Natural Sciences, Avenida Pastrana, Universidad Surcolombiana, 410001, Neiva, Huila, Colombia
b Grupo de Transiciones de Fases y Materiales Funcionales, Universidad del Valle, 760032, Cali, Colombia
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Abstract

In this paper, we introduce a novel approach to numerical solving for nuclear reactivity using the inverse equation of
point kinetics as a model. Our method leverages the Gauss-Lobatto quadrature, incorporating multiple time steps and
nodes derived from Legendre polynomials of varying orders. To enhance the accuracy of the differential component of
the inverse equation, we employed a differential scheme based on the Gauss-Lobatto quadrature nodes. To address
fluctuations in neutron population density, we implemented a second-order low-pass Butterworth filter with a minimal
window length of M ¼ 3 samples. Through extensive numerical simulations, we assessed the precision of our proposed
method and filtering process by varying time steps and standard deviations associated with noise or uncertainty.
Additionally, we benchmarked our results against the SavitzkyeGolay filter, which uses a significantly larger sampling
window of M ¼ 225. Our findings reveal that the integration of the Gauss-Lobatto quadrature method with the But-
terworth filter not only significantly reduces fluctuations but also demonstrates potential for effective implementation in
digital reactivity meters.

Keywords: Inverse point kinetic equations, Gauss-Lobatto quadrature, Nuclear reactivity, Butterworth filter, Numerical
simulation

1. Introduction

T he energy in a nuclear reactor comes from a
large chain of reactions involving the fission of

heavy atoms such as U-235 within the reactor core.
The programmed motion of the control rods can
stabilize chain reactions. Moving the control rods
generates variations in the density of the neutron
population, which in turn causes changes in nuclear
reactivity [1]. One technique used to program the
motion of the control rod banks is calculating nuclear
reactivity through the inverse point kinetic equation
(IPKE). This method is often the primary tool for
developing nuclear reactivity meters in power re-
actors [2]. To solve the IPKE, the density of the
neutron population inside the reactor core must be
known. In practice, this can be determined with
measuring devices, but due to the stochastic nature

of nuclear reactions within the reactor core, the data
obtained from measurements have fluctuations that
make the numerical calculation of nuclear reactivity
complex [3].
There are different tasks in nuclear power plants,

the most important of which is the safe control of
the reactor through reactivity [4]. A reactivity-initi-
ated accident is a typical nuclear reactor accident
during which the core fission rate and power in-
crease unexpectedly [5]. Research has been carried
out in a BAEC TRIGA Mark-II research reactor to
study the effects of reactivity insertion and in a
prototype fast breeder reactor [6]. Some authors
estimate reactivity on an experimental basis [7].
Typically, the model takes the neutron density as an
input function and information that can be obtained
with devices such as ionization chambers [8]. An
accurate reactivity value can predict changes in the
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neutron population density and neutron detector
location [9]. A work helps to improve safety features
in a nuclear reactor through reactivity [10]. In
another method, the reactivity is obtained by the
first-order perturbation calculations [11].
This work proposes using a recently published

second-order low-pass Butterworth filter [12] in
conjunction with the numerical calculation of nu-
clear reactivity using Gauss-Lobatto quadrature to
minimize fluctuations. One of the main character-
istics of this filter is its feedback term, which ne-
cessitates fewer coefficients for filtering operations,
resulting in improved computational efficiency with
a smaller sampling window.

2. Theoretical considerations

In the study of a nuclear reactor's dynamic
behavior, a set of m þ 1 strongly coupled differential
equations arises, associated with m groups of de-
layed neutron precursors. These equations describe
the temporal behavior of the density of the neutron
population and the concentration of delayed neutron
precursors inside the core of a nuclear reactor.
The formalism for the point kinetics equations is

obtained after making several physical assumptions
from a more general equation associated with a
neutron diffusion equation that describes the
spatiotemporal evolution of neutron density.
The mathematical form of the point kinetic

equations for six groups of delayed neutron pre-
cursors (m ¼ 6) can be expressed as [13],

dNðtÞ
dt

¼
�
rðtÞ � b

L

�
NðtÞ þ

X6

i¼1

liCiðtÞ ð1Þ

dCiðtÞ
dt

þliCiðtÞ ¼ bi

L
NðtÞ ð2Þ

where N(t) represents the neutron density (propor-
tional to the nuclear power), Ci(t) is the concentration
of the i-th group of delayed neutron precursors, r(t)
the reactivity, li is the decay constant of the i-th
group of delayed neutron precursors, bi the effective
fraction of the i-th group of delayed neutrons, b is the
total effective fraction of delayed neutrons, and L is
the neutron generation time. Equations (1) and (2)
with the initial conditions Nðt¼ 0Þ ¼ N0 and Ciðt¼ 0Þ
¼ biN0=ðliLÞ allow us to find the population density
and the neutron concentration at each time step.
This work will consider its inverse process when

calculating nuclear reactivity. One can invert equa-
tions (1) and (2) to derive an expression for nuclear
reactivity, assuming the neutron density is known.
This results in an integral-differential equation [14],

rðtÞ¼bþ L

NðtÞ
dNðtÞ
dt

� 〈N0〉
NðtÞ

X6

i¼1

bie
�lit

� 1
NðtÞ

X6

i¼1

ðt
0

libie
�liðt�t0ÞNðt0Þdt0

ð3Þ

where 〈N0〉 is the average initial value of all fluctu-
ating measurements before time t0 ¼ 0.
Equation (3) is known as the inverse equation of

point kinetics, and it is a model that allows the
development of digital meters of nuclear reactivity
[2]. The differential part of this equation is associ-
ated with the reactor's period, and the integral part
is related to the reactor's power history.
Due to the integral-differential nature of this

expression, a method must be capable of solving the
integral and differential parts jointly and accurately.
For this reason, the construction of a numerical
scheme that uses the Gauss-Lobatto quadrature is
proposed.

3. Proposed method

In this section, the Gauss-Lobatto numerical
integration method is presented. This method is
based on interpolating polynomials with pre-
assigned abscissas at the ends and internal points of
the integration interval. It can be expressed as
shown in equation (4) [15]:

ð1
�1

f ðtÞdt¼ 2
nðn� 1Þ

�
f ð�1Þþ f ð1Þ�þXn�1

j¼2

wjf
�
xj
�þE

�
f
�

ð4Þ

where n is the number of points that the quadrature
takes to approximate the polynomial of degree n e
1, xi the internal evaluation points or quadrature
nodes; wj are the weight coefficients, and E( f ) is the
term associated with the error.
The nodes xi are given by the zeros of the poly-

nomial resulting from the derivative of the inter-
polating Legendre polynomial Pn (x):

d
dx

�
pn�1ðxÞ

�¼0 ð5Þ

Once the nodes xi are known, the weight co-
efficients wi can be found as:

wj¼ 2

nðn� 1Þ�pn�1
�
xj
��2;xs±1 ð6Þ

where the error is expressed as [16].
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E
�
f
�¼ �nðn� 1Þ322n�1½ðn� 2Þ!�4

ð2n� 1Þ½ð2n� 2Þ!�3 f ð2n�2ÞðxÞ;�1< x<1

ð7Þ
Since equation (4) is defined at an interval be-

tween [�1, 1], a change of variable can be used to
apply the quadrature to a general interval between
[a, b]. When considering the change of variable t ¼
ða þ bÞdt=2þ ðb � aÞx=2, with dt ¼ ða � bÞdx= 2. In
this way, the quadrature scheme becomes [17]:ðb

a
f ðtÞdt¼ b� a

nðn� 1Þ
�
f ðaÞ� f ðbÞ�

þ b� a
2

Xn�1

j¼2

wjf
�ðb� aÞxj þ aþ b

2

	

þb� a
2

E
�
f
�

ð8Þ

With equation (8), a compound quadrature rule
can be constructed by dividing the integration in-
terval [a, b] into a number z of small subintervals of
size Dt where the integral will be evaluated in each
subinterval to ultimately add all the evaluations and
thus obtain the value of the integral over the entire
interval as shown in equation (9)ðtf

0
f ðtÞdt¼

ðDt
0
f ðtÞdtþ

ð2Dt
Dt

f ðtÞdtþ :::

þ
ððkþ1ÞDt

kDt
f ðtÞdt ¼

Xz�1

k¼0

ððkþ1ÞDt

kDt
f ðtÞdt

ð9Þ

The integration interval [t0, tf] is discretized such
that t0 ¼ 0 and tf ¼ zDt, then we apply the variable
transformation shown in equation (8) to each term
in equation (9) within the limits a ¼ kDt and b ¼
ðkþ1ÞDt where 0 � k< z. Consequently, the com-
pound quadrature rule is formulated as shown in
equation (10),ðtf

0
f ðtÞdt¼

Xz�1

k¼0

"
Dt

nðn� 1Þ
�
f ðkDtÞþ f ððkþ1ÞDtÞ�

þDt
2

Xn�1

j¼2

wjf
�
Dt
2

�
xjþ2kþ1

�	

�nðn� 1Þ3 22n�1½ðn� 2Þ!�4
ð2n� 1Þ½ð2n� 2Þ!�3 f ð2n�2ÞðxÞ

#
ð10Þ

where the error term also moves in the interval
kDt< x< ðk þ 1ÞDt. The notation of equation (10) can
be simplified by considering that the sum of nodes
and weights takes the values w1 ¼ wn ¼ 2=nðn�1Þ
x1 ¼ � 1;xn ¼ 1. In this way, once these conditions
are established and neglecting the error term, the

quadrature scheme of equation (10) can be applied
to an integral part of equation (3), resulting in:

ðt
0
e�liðt�t0ÞNðt0Þdt0zDt

2

Xz�1

k¼0

�
Xn

j¼1

wje
�li

�
t�Dt

2 ðxjþ2kþ1Þ
	
N
�
Dt
2

�
XJ ¼2K¼1

�	

ð11Þ

The expression obtained in equation (11) is
replaced in equation (3). Then, the corresponding
discretization is carried out in the temporal variable.
This changes a continuous scheme to a discrete one
where only the values of the neutron density at
points given by the nodes of the Gauss-Lobatto
quadrature are needed.

rðtzÞzbþ L

NðtzÞ
dNðtzÞ
dt

� 〈N0〉
NðtzÞ

Xm
i¼1

bie
�litz � Dt

2NðtzÞ

�
Xm
i¼1

Xz�1

k¼0

Xn

j¼1

libiwje
�li

�
tz�Dt

2 ðxjþ2kþ1Þ
	

�N
�
Dt
2

�
xjþ2kþ1

�	
ð12Þ

The triple summation of equation (12) can be
simplified if a new temporal vector is constructed,
given by the evaluation of the nodes of the quad-
rature t n kþj ¼ ðxj þ 2k þ 1Þ Dt=2, where tz ¼ tnz,
with this, a vector that contains the information
related to the six groups of precursors can be con-
structed, as shown in equation (13):

h
�
t n kþj

�¼ Xm
i¼1

l ibie
�l iðt n kþjÞ: ð13Þ

Once equation (13) is constructed, it is necessary
to incorporate the weights wj given by the
quadrature,

H
�
tn kþj

�¼wj h
�
tn kþj

�¼wj

Xm
i¼1

libie
�l iðtn kþjÞ ð14Þ

In this way, a substitution is made such that s ¼
nkþ j, in which s is defined between 1 � s � nz.
Thus, substituting equation (14) into equation (12)
and considering that tz ¼ tnZ, it is possible to obtain
the expression shown in (15),
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rðtnzÞzbþ L

NðtnzÞ
dNðtnzÞ

dt
� 〈N0〉
NðtnzÞ

Xm
i¼1

bie
�li tnz

� Dt
2NðtnzÞ

Xnz
s¼1

Hðtnz� tsÞNðtsÞ
ð15Þ

The triple sum shown in equation (12) is a
convolution product but is different due to the
weights wi given by the quadrature. The convolu-
tion term of equation (15) can be interpreted as the
product between the impulse response H(t) and the
neutron population density N(t).

3.1. Differential scheme

A differential scheme is proposed to take advan-
tage of the nodes given by the Gauss-Lobatto
quadrature. Different applications have been solved
using fractional derivatives [18]. However, in this
paper, we do not consider such development. The
neutron population density is approximated with a
Lagrange interpolating polynomial passing through
the nodes, as shown in equation (16),

N ð tzÞz
Xm
i¼1

Yn
j¼1

jsi

t� tj
ti � tj

N ð tiÞ: ð16Þ

Once the interpolating polynomial has been con-
structed for the neutron population density, it is
possible to derive equation (16), thus obtaining:

d
dt
NðtzÞz

Xm
i¼1

NðtiÞ ddt

0
BBBB@

Yn
j¼1

jsi

t� tj
ti � tj

1
CCCCA

t¼tz

: ð17Þ

When evaluating equation (17), considering that
tj ¼ tn zþj ¼ zDtþ ðxj þ 1ÞDt=2, a scheme for the
numerical derivative that uses the nodes given by
the quadrature can be obtained, as shown in equa-
tion (18),

d
d t

NðtzÞ¼ 1
D t

Xn

j¼1

ujN
�
tn zþj

�
; ð18Þ

In which uj are the weight coefficients that result
from implementing the differential scheme pro-
posed in equation (17).
If the differential quadrature obtained in equation

(18) is substituted into the equation of interest given
in equation (15), a numerical expression is finally
obtained to calculate nuclear reactivity.

rðtkÞ¼bþ L

NðtkÞ
1
Dt

Xn

j¼1

ujN
�
tkþj

� 〈N0〉
NðtkÞ

Xm
i¼1

bie
�li tk

þ Dt
2NðtkÞ

Xk

s¼1

Hðtk� tsÞNðtsÞ

ð19Þ
where k ¼ nz (z ¼ 1, 2, 3, …) The nuclear reactivity
equation, shown in equation (19), can be solved by
knowing the density of the neutron population
within the reactor core.
This information can be obtained using mea-

surement sensors such as ionization chambers or
fission chambers. The data obtained by these in-
struments may exhibit fluctuations caused by oscil-
lations within the reactor, such as displacement of
core components and changes in temperature or
density. Additionally, detection noise generated by
the measurement equipment [3] may also contribute
to these fluctuations.
For this work, it is assumed that these fluctuations

can be represented by a multiplicative Gaussian
white noise around a mean value, as shown in
equation (20).

NP ð t Þ¼N ð t Þ þ sN ð t Þ x ð t Þ; ð20Þ
where NP(t) is the density of the perturbed neutron
population, NðtÞ is the average population density,
x ð t Þ is white noise and s refers to the magnitude of
the deviations introduced.
The fluctuations in NP(t) can be reduced by means

of a low-pass filter to reduce their impact on the
calculation of nuclear reactivity. As consequence of
such filtering, NP(t) is expected to be approximately
equal to N(t).

3.2. Butterworth filter design

The Butterworth filter is a type IIR (infinite im-
pulse response) filter with a flat maximum fre-
quency response throughout the passband. The
transfer function of a second-order low-pass But-
terworth filter can be written as in equation (21) [19],

HðsÞ¼ 1

s2 þ ffiffiffi
2

p
sþ 1

; ð21Þ

where s represents the complex plane where the
transfer functions of the analog filter are defined. In
order to take equation (21) to a digital format, we
apply the bilinear transform,

s¼1
c
1� z�1

1þ z�1
; ð22Þ
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where the Z-transform gives a complex number, c is
a positive constant that can be set to map from an
analog frequency to a digital frequency.
In the case of a low-pass filter, c is typically used to

adjust the cut-off frequency to be identical in analog
and digital cases.
The nonlinear relationship between the analog

angular cut-off frequency and the digital angular
cut-off frequency produced by the bilinear trans-
formation can be determined by evaluating in
equation (22), thus obtaining an expression as
shown in equation (23) [20].

wa¼1
c
tan

�
wcT
2

	
; ð23Þ

where T ¼ 1/fs is the sampling period, fs refers to the
sampling frequency (Hz), wc ¼ 2p fc with fc being the
cut-off frequency (Hz).
Furthermore, to find an appropriate value of c, a

normalization condition is established when wa ¼ 1,
and by solving for c in equation (23), we obtain
equation (24),

c¼ tan
�
pfc
fs

	
: ð24Þ

Now, if equation (22) is substituted back into
equation (21), it results:

HðzÞ¼ 1�
1
c
1�z�1

1þz�1

	2

þ ffiffiffi
2

p �
1
c
1�z�1

1þz�1

	
þ 1

; ð25Þ

By developing the expressions in equation (25), we
can write:

HðzÞ¼

�
c2

c2þ ffiffi
2

p
cþ1

	
ð1þ 2z�1 þ z�2Þ

1þ 2c2�2
c2þ ffiffi

2
p

cþ1
z�1 þ c2� ffiffi

2
p

cþ1
c2þ ffiffi

2
p

cþ1

; ð26Þ

If equation (26) is compared with a transfer func-
tion of a second-order digital filter, the following
coefficients can be obtained [21],

b0 ¼ b2 ¼ c2

c2 þ ffiffiffi
2

p
cþ 1

;b1 ¼ 2b0

a0 ¼ 1;a1 ¼ 2c2 � 2

c2 þ ffiffiffi
2

p
cþ 1

;a2 ¼ c2 � ffiffiffi
2

p
cþ 1

c2 þ ffiffiffi
2

p
cþ 1

;

ð27Þ

The parameters bi and ai are the coefficients that
control the characteristics of the digital filter.
Once the coefficients in equation (27) have been

determined, a second-order difference equation is

constructed to carry out the filtering process as
follows:

y½k�¼b0x½k� þ b1x½k�1� þ b2x½k�2� � a1y½k�1�
� a2y½k�2�; ð28Þ

here y [k] is the filtered output signal that is ob-
tained as a linear combination of present x [k] and
past inputs (signal with fluctuations) minus a linear
combination of past outputs (feedback term).
If a signal with fluctuations is considered, as in

equation (20), equation (28) can be written as:

Nf ½k�¼b0NP½k� þ b1NP½k�1� þ b2NP½k�2�
� a1Nf ½k�1� � a2Nf ½k�2� ð29Þ

whereNf ½k� is the filtered signal at the instant k and
NP ½k� is the density of the perturbed neutron
population given by equation (20).
Equation (29) generates a delay of two samples,

which implies that to filter the first sample in N f [t1],
it is necessary to know the filtering of the two pre-
vious samples.
These samples canbedeterminedby setting thefirst

and second filtered samples equal to the initial con-
dition of the neutron population densityN f [t-1]¼ N f
[t0] ¼ N0.

4. Results

This section shows results from different numer-
ical experiments using the Gauss-Lobatto quadra-
ture and the Butterworth filter in the presence of
noise given by equation (20) with a seed generating
random numbers of 231e1 and standard deviations
(s) between [0.01, 0.1].
The numerical simulations are carried out

considering a quadrature of three (Glo-3) and four
(Glo-4) points, which result when implementing
n ¼ 3 and n ¼ 4, correspondingly, in equation (4).
The physical parameters of a thermal reactor that

uses Uranium-235 as fuel are considered [22]. The
physical values for these parameters are
bi ¼ {0.000266, 0.001491, 0.001316, 0.002849, 0.000896,
0.000182}, b ¼ P

bi ¼ 0.007, li ¼ {0.0127, 0.0317, 0.115,
0.311, 1.4, 3.87} s�1 and L ¼ 2 � 10�5 s.
The passage of time in the calculation of reactivity

varies between DT ¼ 0.1 s and DT ¼ 0.01 s where the
total simulation time of each numerical experiment
is T ¼ 1000 s, T ¼ 800 s, T ¼ 5 00 s, T ¼ 600 s,
T ¼ 150 s, T ¼ 60 s for u ¼ 0.00243 s�1,
u ¼ 0.006881 s�1, u ¼ 0.01046 s�1, u ¼ 0.02817 s�1,
u ¼ 1.00847 s�1, u ¼ 11.6442 s�1, and T ¼ 300 s for
u � 0.12353 s�1, with u being the roots of the inhour

16 D. Suescún-Díaz et al. / Karbala International Journal of Modern Science 11 (2025) 12e19



equation, it is for the exponential density of the
neutron population [22].
The Butterworth filter is taken as second order in

the filtering process with a sampling window M ¼ 3.
The exact solution of equation (3) is used as a
reference to validate the efficiency of the proposed
method with the Butterworth filter, where the den-
sity of the neutron population N(t) is assumed to be
known and without fluctuations. Another way to
validate the efficiency of the Butterworth filter pro-
cess is to use common quadratures. For this reason,
a SavitzkyeGolay (SGF) filter that uses a Gram
polynomial of order d ¼ 2 with a sampling window
of M ¼ 225 was implemented [23]. In addition, the
need to carry out a filtering process on the neutron
population density to calculate nuclear reactivity is
also shown when comparing the results of the pro-
posed method when no filtering process is carried
out.
Since the Butterworth and the SavitzkyeGolay

(SGF) filters need several M samples to start the
filtering process, in all numerical experiments, M
samples are discarded at the beginning and end of
each simulation to compare them. This is because in
the SGF filter, the delay time introduced is M DT.
For all numerical experiments presented in this

work, a neutron population density of the form
N(t) ¼ exp(ut) was considered for different values of
u. Results shown are in pcm (parts per hundred
thousand) to maximize the differences in reactivity,
MDR, and absolute mean errors.
Tables 1 and 2 show results for mean absolute

errors with DT ¼ 0.1 s and s ¼ 0.1 and s ¼ 0.01, in
the given order. Six columns of results are shown;
the first two correspond to the calculation of reac-
tivity with a three-point quadrature, Glo-3, and a

four-point quadrature, Glo-4, when no filtering
process is carried out on the neutron population
density. The following two columns correspond to
the validation method, which uses the SGF filter
with a window width of M ¼ 225 samples to calcu-
late the reactivity with the Glo-3 and Glo-4 quad-
ratures. Finally, the last two columns correspond to
the results of the proposed method, which imple-
ments the three- and four-point Gauss-Lobato
quadratures and the second-order Butterworth fil-
ter, BTW, with a window width of M ¼ 3 samples for
calculating nuclear reactivity.
The results show that the BTW filter with three

samples produces consistent results of a similar
order of magnitude to the FSG filter, which uses 225
samples. However, it does introduce a delay of
22.5 s.
Additionally, a significant improvement in the

results is observed when a filtering process is
implemented, compared to those presented in Glo-3
and Glo-4. The cut-off frequencies for these exper-
iments were fc ¼ 0.03 s�1 for u � 0.01046 s�1,
fc ¼ 0.024 s�1, fc ¼ 0.042 s�1, fc ¼ 0.45 s�1 for
u ¼ 0.02817 s�1, u ¼ 0.12353 s�1, u � 1.00847 s�1

respectively.
The numerical experiments in Tables 3 and 4

show the maximum differences and mean absolute
error for DT ¼ 0.01 s with s ¼ 0.01.
These results show that in the case of the Glo-3

and Glo-4 quadratures, when the BWT filter is used,
their results are similar. It is also evident that the
absolute mean values for u � 0.016957 s�1 the
method improves the results. However, in the
maximum differences, the method presents results
like those obtained with the FSG filter. It is also

Table 1. Mean absolute error for DT ¼ 0.1 s and s ¼ 0.1.

N(t) ¼ exp(ut) Glo-3 Glo-4 Fsg-3 Fsg-4 Btw-3 Btw-4

u ¼ 0.00243 61.12 67.14 3.55 3.99 2.84 3.20
u ¼ 0.00688 58.56 64.72 3.27 3.71 2.71 3.06
u ¼ 0.01046 57.18 63.59 3.04 3.36 2.78 2.93
u ¼ 0.02817 51.64 57.92 2.57 2.89 2.56 4.95
u ¼ 0.12353 38.61 46.20 1.82 1.76 3.81 3.40
u ¼ 1.00847 19.07 26.32 2.86 33.50 3.53 3.80

Table 2. Mean absolute error for DT ¼ 0.1 and s ¼ 0.01.

N(t) ¼ exp(ut) Glo-3 Glo-4 Fsg-3 Fsg-4 Btw-3 Btw-4

u ¼ 0.00243 5.98 5.74 0.35 0.39 0.33 0.34
u ¼ 0.00688 5.73 6.34 0.32 0.41 0.45 0.37
u ¼ 0.01046 5.61 6.25 0.30 0.33 0.70 0.56
u ¼ 0.02817 5.06 5.68 0.25 0.25 0.67 0.67
u ¼ 0.12353 3.80 4.53 0.17 0.20 0.94 0.85
u ¼ 1.00847 1.87 2.58 0.28 2.65 0.65 1.17

Table 3. Maximum differences for s ¼ 0.01 and DT ¼ 0.01 s.

N(t) ¼ exp(ut) Glo-3 Glo-4 Fsg-3 Fsg-4 Btw-3 Btw-4

u ¼ 0.00243 77.88 126.04 2.75 2.67 1.51 1.59
u ¼ 0.00688 76.42 124.85 2.63 2.47 2.54 2.02
u ¼ 0.01046 124.05 75.45 2.55 2.40 3.57 2.73
u ¼ 0.02817 72.03 121.25 2.27 2.24 5.90 4.48
u ¼ 0.016957 73.98 122.85 2.43 2.34 3.55 2.89
u ¼ 0.12353 64.25 114.85 1.62 1.74 5.78 5.25
u ¼ 1.00847 47.20 95.16 0.94 2.05 7.82 7.07

Table 4. Mean absolute error for s ¼ 0.01 and a DT ¼ 0.01 s.

N(t) ¼ exp (ut) Glo-3 Glo-4 Fsg-3 Fsg-4 Btw-3 Btw-4

u ¼ 0.00243 12.17 20.53 0.50 0.52 0.33 0.34
u ¼ 0.00688 12.00 20.41 0.47 0.50 0.32 0.33
u ¼ 0.01046 20.37 11.87 0.45 0.47 0.34 0.33
u ¼ 0.02817 11.42 19.98 0.40 0.43 0.39 0.38
u ¼ 0.016957 11.67 20.20 0.43 0.45 0.43 0.43
u ¼ 0.12353 10.43 19.06 0.29 0.33 0.84 0.93
u ¼ 1.00847 8.95 17.79 0.12 1.24 0.74 1.61
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evident that for u � 0.016957 s�1 the method im-
proves the absolute mean values. However, in the
maximum differences the method presents similar
results to those obtained with the FSG filter. For
these experiments the cut-off frequencies are
fc ¼ 0.215 s�1 for u � 0.01046 s�1, fc ¼ 0.35 s�1,
fc ¼ 0.4 s�1, fc ¼ 3 s�1 and fc ¼ 7 s�1 for the other
values of u, respectively.
Tables 5 and 6 present the maximum differences

and the mean absolute error with a s ¼ 0.1 and a
step size of DT ¼ 0.01 s. The results show that for
s ¼ 0.1 when no filtering is applied (Glo-3 and Glo-
4), the errors are considerably high in both
maximum differences and mean error compared to
when a filtering process is applied using the SGF
and BWF filters, where it can be noted that the er-
rors are significantly reduced.
Additionally, it can be observed that the proposed

method, when using the BWF, produces lower
maximum differences and mean errors in the reac-
tivity calculation when compared to the SGF. In
these experiments, the cut-off frequencies were
fc ¼ 0.215 s⁻1 for u � 0.01046 s⁻1, fc ¼ 0.35 s⁻1, and
fc ¼ 0.4 s⁻1 for the other values of u, respectively.
Fig. 1 shows the behavior of the nuclear reactivity

calculation with the three-point quadrature and the
Butterworth filter, Glo-3þBTW, compared to the
reference method. A maximum difference of 3.5556
pcm and a mean error of 0.47 pcm are achieved for a
time step size DT ¼ 0.01 s and s ¼ 0.01.
Fig. 2 shows the behavior of the error in the

calculation of nuclear reactivity with the same
simulation parameters as in Fig. 1. It is evident that
the maximum difference was obtained in the first
moments of the simulation, since every filter has a
characteristic stability and a memory process as
represented in equation (29), after filtering, the method stabilizes and the errors decrease, showing

an average error of 0.47 pcm.

5. Conclusions

A method was presented to reduce fluctuations in
the calculation of nuclear reactivity using the in-
verse equation of point kinetics. The proposed
method is based on the Gauss-Lobatto quadrature
with n ¼ 3 and n ¼ 4 points that uses a Legendre
polynomial of degree n e 1 to approximate the in-
tegral contained in the IKPE.
To reduce fluctuations, a second-order low-pass

Butterworth filter that uses only three samples was
used to carry out the filtering process if the density
of the neutron population within the reactor core
presents a Gaussian noise distribution around a
mean value. From the results it is possible to notice
that fluctuations in nuclear reactivity can be reduced

Table 5. Maximum differences for DT ¼ 0.01 s y s ¼ 0.1.

N(t) ¼ exp(ut) Glo-3 Glo-4 Fsg-3 Fsg-4 Btw-3 Btw-4

u ¼ 0.00243 1389.4 1961.0 28.54 26.70 14.85 15.56
u ¼ 0.00688 1363.2 1942.4 27.31 25.62 13.52 14.82
u ¼ 0.01046 1345.9 1930.0 26.49 24.88 13.04 13.73
u ¼ 0.02817 1285.0 1886.5 23.59 22.26 16.88 17.94
u ¼ 0.016957 1319.8 1911.4 25.25 23.77 19.64 20.65

Table 6. Mean absolute error for DT ¼ 0.01 s and s ¼ 0.1.

N(t) ¼ exp(ut) Glo-3 Glo-4 Fsg-3 Fsg-4 Btw-3 Btw-4

u ¼ 0.00243 123.85 208.27 5.06 5.26 3.33 3.43
u ¼ 0.00688 122.05 207.02 4.75 5.01 3.10 3.28
u ¼ 0.01046 120.66 206.76 4.57 4.78 3.01 3.09
u ¼ 0.02817 116.04 202.81 4.04 4.33 3.51 3.69
u ¼ 0.016957 118.67 205.00 4.35 4.56 4.10 4.19
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Fig. 2. Error in the nuclear reactivity calculation Numerical reactivity.

50 100 150 200 250 300
70

75

80

85

90

95

100

105

R
ea

ct
iv

ity
 [ 

pc
m

 ]

Time [ s ]

 Glo-3+Btw
 Reference Method

Fig. 1. Numerical reactivity for u ¼ 0.016957 s�1.
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with the Butterworth filter, showing that the filter
turns out to be very useful for different time step
sizes and standard deviations when compared to a
filter that uses a greater number of samples such as
the SavitzkyeGolay filter with M ¼ 225 samples that
produces a greater delay in the calculation of
reactivity.
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