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regions. EM-GMM, which models data based on Gaussian distribution through iterative EM algorithm 
application, was used on grayscale images of malignant tissue. The optimal cluster number for detecting 
cancerous areas was determined to be nine using the Bayesian Information Criterion (BIC). This was 
tested and compared with segmentations using seven and eight clusters. Results demonstrate that the 
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Abstract

Breast cancer accounts for 25 % of all cancer diagnoses and 16 % of cancer-related deaths among women globally, with
high mortality rates due to late diagnosis. Early detection relies on imaging techniques such as mammography, histo-
pathology, and breast ultrasound, with mammography being the gold standard due to its proven to detect breast cancer,
thus it is effective for breast cancer treatment. However, mammogram images often produce noise and artefacts,
complicating early-stage cancer detection and emphasizing the need for advanced image processing. Clustering algo-
rithms such as K-means and Expectation Maximization - Gaussian Mixture Model (EM-GMM) have shown potential in
image segmentation. This study investigates the application of EM-GMM for mammogram image segmentation, a
relatively underexplored area compared to K-means, focusing on identifying potentially cancerous regions. EM-GMM,
which models data based on Gaussian distribution through iterative EM algorithm application, was used on grayscale
images of malignant tissue. The optimal cluster number for detecting cancerous areas was determined to be nine using
the Bayesian Information Criterion (BIC). This was tested and compared with segmentations using seven and eight
clusters. Results demonstrate that the segmentation with nine-cluster achieves the highest accuracy for segmenting and
identifying cancerous regions. These findings support early detection and thorough breast health assessment, potentially
enhancing diagnostic precision and lowering breast cancer mortality and morbidity.

Keywords: Breast cancer, Early detection, Mammography segmentation, BIC, EM-GMM

1. Introduction

B reast cancer remains the leading cause of can-
cer-related mortality among women globally,

accounting for one in four cancer diagnoses and one
in six cancer-related deaths. The areas with the
highest elevated incidence rates are France,
Australia/New Zealand, North America, and
Northern Europe. These regions experience rates
four times greater than those in Central-Southern
Asia and Central Africa. Since 2022, breast cancer
became the second most prevalent cancer world-
wide, with approximately 2.3 million new cases,
constituting 11.6 % of all cancer diagnoses. The
elevated mortality rate is attributable primarily to
delays in early detection.

Early detection is crucial for preventing mortality
because of breast cancer. Research indicates that
prompt identification and accurate diagnosis can
significantly enhance patient outcomes, potentially
reducing mortality rates by up to 25 % [1e8]. As a
result, various imaging modalities have been
developed to detect breast cancer at its early stages.
These include mammography, histopathology,
Magnetic Resonance Imaging (MRI), Positron
Emission Tomography (PET), thermography,
Computed Tomography (CT), breast ultrasound
(USG), and digital breast tomosynthesis [9]. The
literature comprehensively reviews these tech-
niques in detail [10e12].
Mammography is widely recognized as a primary

technique for early detection due to its proven
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effectiveness of detecting breast cancer. Thus
reducing mortality and morbidity rates of breast
cancer patients [13e20]. This method utilizes X-rays
to produce grayscale images called mammograms.
However, these images may also produce noise and
background artefacts, which can complicate the
detection and interpretation of early-stage cancers
[21]. Thus, advanced image processing techniques
are required to enhance diagnostic accuracy.
In image processing, a pivotal technique is the

segmentation of mammography images. This
method is important in accurately identifying
cancerous regions within mammograms, as a result,
improving diagnostic precision [22]. Segmentation
involves partitioning image into distinct segments
or objects based on the same characteristics, such as
colour, intensity levels, or texture. The primary aim
of this process is to delineate a Region of Interest
(ROI), thereby facilitating a more streamlined
identification of breast abnormalities by radiolo-
gists [6].
Several mathematical and statistical techniques

are utilized in image processing, with clustering-
based methods excelling notably in image segmen-
tation. These methods are applicable to both
annotated and unannotated datasets [23]. Two of the
most prevalent algorithms in this domain are K-
means and Expectation Maximization with
Gaussian Mixture Models (EM-GMM). Both ap-
proaches involve iterative refinement to achieve
optimal clustering outcomes. Specifically, K-means
uses the Euclidean distance metric for data point
comparison, while EM-GMM implements a statis-
tical methodology [24].
Previous research has thoroughly studied the

application of various methods for processing breast
cancer images, with a significant emphasis on the K-
means algorithm. For instance, A. Arjmand, A.
Farzamnia, R. Afrouzian, and S. Meshgini [25] pro-
posed a clustering-based technique for automati-
cally segmenting tumours in MRI scans. Their
approach combined the K-means clustering algo-
rithm with Cuckoo Search Optimization (CSO) for
improved centroid initialization. Evaluation of the
RIDER breast dataset indicated that their algorithm
outperformed the conventional Fuzzy C-Means
(FCM) algorithm. In another study, J. Dabass, M.
Hanmandlu, and R. Vig [26] focused on pre-
processing and segmenting breast density. They
utilized binarization and modified region-growing
techniques to remove labels, background noise, and
pectoral muscles, followed by K-means clustering to
segment digital mammograms into different density
regions. Validation using the Mini-MIAS database
and radiologist assessments demonstrated that their

method achieved competitive results compared to
current state-of-the-art techniques.
J. S. Isaac, K. Priya, M. J. Kumar, S. Kottu, V.

Senthilkumar, and V. S. Ramakrishna [27]
researched breast cancer classification from ultra-
sound images. Their study utilized both raw ultra-
sound scans and cancer-masked images obtained
from Kaggle. Before input into the segmentation
model, the images underwent pre-processing,
including resizing and filtering. The K-means algo-
rithm was also used to identify cancerous regions
within the ultrasound images. Further in-
vestigations into applying the K-means algorithm in
similar contexts can be found in Refs. [28e34].
In recent years, the application of EM-GMM in

image segmentation, particularly in mammography,
has been relatively overlooked compared to the
more widely studied K-means algorithm. Over the
past decade has seen a scarcity of research in this
area. Notable contributions include those by A. S.
Begum, K. Bhuvaneshwari, K. J. Sri, M. Divya, and
R. M. Prakash [35], which their research aim is to
evaluate the performance of three segmentation
techniquesdK-means, FCM, and EM-GMMdfor
infrared breast image segmentation. A. H. Yurttakal,
G. Çinarer, H. Erbay, S. Karaçavuş, and T. _Ikizceli
[36] conducted a comparative study of various seg-
mentation and classification methods for breast
cancer MRI. Furthermore, I. Khoulqi, N. Idrissi, and
M. Sarfraz [37] concentrated on pectoral muscle
segmentation in mammography using EM-GMM.
This study aim to address this research gap by
further investigating the potential of EM-GMM for
mammogram segmentation, specifically on accu-
rately identifying regions that are indicative of sus-
pected malignant tumours.
The comparison between the previously existing

research methods and the recently proposed
method is presented in summary form in Table 1.

2. Material and methods

The research methodology is structured into
several distinct phases, commencing with image
selection and data input. This initial stage is fol-
lowed by image pre-processing, which consists of
resizing and histogram equalization to enhance
image quality. Next, the EM-GMM step employs the
EM-GMM to identify the optimal number of clus-
ters required for effective segmentation. This step
leads to the ROI process.
In the ROI process, the segmented data is un-

dergoes further refinement through thresholding
and morphological operations to achieve optimal
results. Each phase is crucial for ensuring accurate
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segmentation of breast cancer images, thereby
establishing a systematic approach for the identifi-
cation and analysis of malignant regions. The
research methodology is visually represented in
Fig. 1.

2.1. Dataset

The dataset used in this study comprises grayscale
mammogram images focused on breast cancer.
These images were obtained from the breast cancer

Table 1. A comparative analysis and overview of relevant research.

Researchers Imaging Modalities Methods and Objectives of Segmentation

A. Arjmand, A. Farzamnia,
R. Afrouzian, and S.
Meshgini [25]

MRI using the RIDER
breast cancer dataset

K-Means þ CSO to determine tumour masses in breast MRI
images

J. Dabass, M. Hanmandlu,
R. Vig [26]

Mammogram in Mini-
Mias

Application of K-means clustering for categorizing digital
mammograms into distinct density regions

J. S. Isaac, K. Priya, M. J.
Kumar, S. Kottu, V.
Senthilkumar, and V. S.
Ramakrishna [27]

Ultrasonography Concept of Machine Learning for classification, while K-Means
is utilized as a component of the segmentation procedure to
identify the location of cancer.

F. G. Y. Ciklacandir, A.
Ertaylan, U. Binzat, A.
Kut [28]

Ultrasonography K-Means algorithm is implemented for lesion detec-
tionddefined as any form of damage or abnormal alteration in
body tissue, which may be benign or malignantdin breast
imaging by applying three distinct filters: Median, Laplace, and
Sobel.

P. P. Golagani, S. K. Beebi
[29]

Signal transduction path-
ways like PKB, MAPK,
MTOR, FasL, Notch, SHH,
Tnf and Wnt

K-means clustering algorithm is utilized to generate clusters
from the pre-processed data. This study examines variations in
metabolic pathways within breast cancer cells and identifies
possible alterations to these pathways.

H. Lin, and Z. Ji [30] Open-source Wisconsin
breast cancer data set in
the machine learning li-
brary of UCI

A hybrid K-Means and Self-Organizing Map model has been
employed to classify breast cancer datasets into two distinct
categories: benign and malignant.

D. N. Ouedraogo [31] Breast cancer data from
the UC Irvine Machine
Learning Repository

Interpretable machine learning techniques such as LIME, ELI5,
and SHAP, alongside machine learning algorithms, are utilized
for tumour-type prediction. The K-means clustering algorithm
is applied to the generated outputs.

S. H. Abdulla, A. M.
Sagheer, H. Veisi [32]

Breast imaging subset of
DDSM (CBIS-DDSM)

Classification of microcalcifications (MC) is proposed through a
two-tier segmentation process. Initially, the breast area is
extracted from the image using k-means clustering. Subse-
quently, an optimized region growing (ORG) approach is
employed, wherein multi-seed points and thresholds are
generated optimally based on the pixel intensity values in the
image.

K. Wisaeng [33] Mammogram in Mini-
Mias, DDSM, and BCDR

K-MeansþþCSO for enhanced breast cancer detection through
lesion tracking on mammographic surfaces

L. Panigrahi, R. R. Pani-
grahi [34]

Ultrasonography Enhance the traditional K-means algorithm for breast cancer
image segmentation by integrating Ant Colony Optimization
(ACO) for initializing cluster centres and substituting Euclidean
Distance (ED) with Manhattan Distance (MD). This approach
seeks to maximize area preservation in the segmented images.

A. S. Begum, K. Bhuva-
neshwari, K. J. Sri, M.
Divya, and R. M. Pra-
kash [35]

Infrared breast images Three segmentation techniques, K-Means, Fuzzy C- Means
(FCM) and EM-GMM, are employed to segment and compare
the IR breast images. The method is applied to classify the
malignant and benign cancer tissues.

A. H. Yurttakal, G.
Çinarer, H. Erbay, S.
Karaçavuş, and T.
_Ikizceli [36]

MRI Image The EM algorithm is exclusively employed for the generation of
prototypes from previously analysed area segments.

I. Khoulqi, N. Idrissi, and
M. Sarfraz [37]

Mammogram in Mini-
Mias

EM-GMM segmentation for Computer-Aided Diagnosis (CAD)
System

Proposed Method Mammogram in Mini-
Mias

Clustering-based methods, specifically EM-GMM, are
employed to determine the optimal clusters for identifying
specific tissues or areas associated with cancerous or malignant
tumours.
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mammogram database available through the PEIPA
website (http://peipa.essex.ac.uk/info/mias.html)
and are supported by the European project “Per-
formance Characterization in Computer Vision”
directed by Patrick Courtney at Visual Automation
in Manchester, UK. The dataset consists of 322 im-
ages, subdivided into 207 normal cases and 63
benign and 52 malignant tumours, all in Portable
Gray Map (PGM) format. The fundamental differ-
ence between benign and malignant tumours re-
sides in the behaviour of their cellular compositions.
Benign tumours are consist of cells that do not
threaten adjacent tissue invasion, while malignant
tumours contain cancerous cells that exhibit un-
controlled proliferation and the capacity to invade
surrounding tissues. Therefore, this study focused
solely on the analysis of 52 images of malignant
tumours during the segmentation process applying
the EM-GMM method, as images identified as
cancerous are most relevant to the objectives of this
research. This research aims to identify particular
tissues or regions that have experienced malignant
transformation or cancerous alterations.

2.2. Image pre-processing

In mammogram image analysis, the term “pre-
processing” refers to a crucial initial step aimed at
improving the quality and reliability of the results.
The pre-processing steps in this study include
image resizing and histogram equalization. Image
resizing involves dynamically adjusting the di-
mensions of images to enhance their visual clarity
under various conditions [38e40]. The trans-
formation generated by the resizing process
produces a new image that is scaled according to a
pre-defined scale factor, commonly described by
Equation (1).

x0 ¼x : Sx;y0 ¼ y : Sy ð1Þ

where x0 and y0 are the new (resized) coordinates, x
and y are the original coordinates, Sx and Sy are the
scaling factors in the x- and y-directions,
respectively.
After the resizing process, the image is trans-

formed using histogram equalization, a well-
established technique used to enhance overall
image contrast by redistributing pixel intensities
[41]. This step is crucial because grayscale images
often exhibit low brightness levels, which typically
produce low contrast or excessively bright images
that display uneven histogram distributions.
Therefore, to achieve a histogram distribution that
aligns with our objectives, it is necessary to modify
the distribution of intensity values within the image.
Performing histogram equalization requires the

use of a cumulative distribution function (CDF),
which represents the cumulative sum of the histo-
gram values. The cumulative distribution function is
provided in Equation (2).

f ðkÞ¼ðN� 1Þ
M

:
Xn

k¼0

hðkÞ ;n¼ 1;2;3;… ð2Þ

where M denotes the pixels, N signifies the gray-
scale values, and k indicates the histogram corre-
sponding to a specific grey value.

2.3. Cluster-based segmentation

Two most known methods in cluster-based image
segmentation are spectral clustering and soft clus-
tering. Spectral clustering is highly regarded for its
effectiveness in this area. However, numerous
studies [42e46] have highlighted its vulnerability to
noise and outliers. This study utilises a soft

Fig. 1. Flowchart of research methodology.
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clustering technique, EM-GMM, as an alternative.
This method allows each pixel in the image to be
associated with several clusters, each with different
membership levels, which can potentially improve
segmentation precision and overall effectiveness.

2.3.1. Gaussian mixture model
The GMM is a clustering algorithm grounded in

mixture models, initially introduced by Wolfe [47]
and further studied by G. J. McLachlan and K. E.
Basford [48]. GMM represents each cluster as a
Gaussian distribution, with the overall model being a
finite mixture of these Gaussian components. The
defining parameters for each cluster include the
mean, covariance, and weight, which are estimated
using the Expectation-Maximization (EM) algorithm
[49,50]. The EM algorithm and its variants are the
predominant methods for estimating the Maximum
Likelihood Estimate (MLE) of GMMparameters [51].

2.3.2. Expectation maximization
The EM algorithm is a robust iterative technique

employed to estimate model parameters by maxi-
mizing the likelihood function, commonly known as
the Q-function. It is widely used to compute pa-
rameters’ MLE in probabilistic models with latent
variables, such as GMM [52].
The EM algorithm consists of two main stages: the

Expectation (E) step, where the expected value of
the complete datasetdincluding any missing data-
dis computed, and the Maximization (M) step,
where the Q-function is optimized concerning the
unknown parameters. This iterative procedure per-
sists until the convergence criteria are met, thereby
ensuring precise estimation of parameters [53].
In the EM algorithm for mixed models, the com-

plete data is represented as x0i ¼ ðy0i; z0iÞ, where z0i ¼
ðzi1; zi2;…zikÞ denotes latent variables. Here, zik in-
dicates whether x0i associated with cluster Gk or not.
The EMalgorithm is formally defined by Equation (3):

zik¼
�

1 ……………::xi2Gk

0;……………otherwise ð3Þ

2.3.3. Bayesian information criterion
During this stage, the clustering model is assessed

using the Bayesian Information Criterion (BIC) to
identify the most suitable number of clusters by
evaluating the parameters of each model. The BIC
balances the trade-off between model complexity
and its ability to categorize the data effectively.
Furthermore, this stage guarantees that the chosen
optimal model aligns with the characteristics of the
dataset, thereby offering a cohesive representation

of the overall model [54]. The model with the
highest BIC value will be chosen as optimal.

2.4. Region of interest

Measuring ROI is a fundamental and widely used
process in medical image interpretation across
various imaging modalities. An ROI refers to a
precisely defined region within an image that is
carefully analyzed by medical experts [55]. In this
study, ROI selection will be performed after image
pre-processing, utilizing thresholding techniques
and morphological operations.

2.4.1. Thresholding
As defined by R. C. Gonzalez and R. E. Woods [56],

thresholding is a process that converts an image into
a binary format, using two grey levelsdblack and
whitedbased on pixel values relative to a specified
threshold (T). Pixels with values greater than T are
rendered white, while those less than or equal to T
are rendered black. This technique is effective for
separating objects from the background in grayscale
images, with white representing the objects and
black representing the background.
Various thresholding techniques have been

developed [57e60], including global methods based
on histograms, local feature-based approaches, and
adaptive thresholding, which we applied in our
study. This adaptive method allows for tailored
threshold adjustments in different image segments,
enhancing object segmentation and effectively
separating small regions from the background. In
general, the thresholding process can be concisely
represented by Equation (4):

gðx;yÞ¼ 1 if f ðx;yÞ � T
0 if f ðx;yÞ � T ð4Þ

2.4.2. Morphology
Morphology requires a set of nonlinear operations

designed to alter the shape or structure of image
features. These operations are predicated on pixel
arrangement rather than their numerical values,
rendering them particularly effective for processing
binary and grayscale images [61].
Fundamental to mathematical morphology are

two principal operators: the opening operation,
which involves erosion followed by dilation. Erosion
reduces the size of objects in an image, while dila-
tion enlarges them. This operator is formally
defined by Equation (5):

Aο B¼ ¼ ðAQ BÞ4B ð5Þ
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3. Experiment and results

3.1. Input data and resizing

The process begins with digital image processing
of grayscale breast cancer mammograms. Initially
stored in *PGM format, these images are converted
to *JPG format before being imported into R Studio
software. The images are resized to a standard
256 � 256 pixels before processing to ensure uni-
formity. Fig. 2 displays twenty-six of these resized
samples.

The original and resized images show minimal
variance during the resizing process, as only the
pixel arrangement is altered. This step is crucial for
efficient image processing within R Studio. If the
image's pixel dimensions are too large, it may causeFig. 2. Resized mammogram results.

Fig. 2. (Continued).
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to processing difficulties that could compromise the
program's functionality.

3.2. Histogram equalization

The next step in image processing is applying
histogram equalization to represent the image. Im-
ages with dullness, low contrast, or excessive
brightness often have histograms with uneven dis-
tributions, as shown in Fig. 3.
Fig. 3 displays a histogram of the original image,

indicating a non-uniform pixel intensities distribu-
tion. Histogram equalization is employed to achieve
a more uniform distribution of grey levels, ensuring
that each grey level represents approximately the
same number of pixels. This technique is used to

enhance the image contrast. Fig. 4 demonstrates the
results of applying histogram equalization.
Fig. 4 demonstrates the results of histogram

equalization, revealing that the processed image
displays a more uniform distribution of grayscale
values. This enhancement leads to improved bright-
ness and more defined details. Additionally, Fig. 5
provides a sample image that has undergone histo-
gram equalization, showcasing the resultant effects.

3.3. Cluster-based segmentation

Following the pre-processing, image pixels are
clustered utilizing the GMM model. The process
begins by initializing the maximum number of

Fig. 2. (Continued)

Fig. 3. Histogram of the original image.

Fig. 4. Histogram equalization.

Fig. 5. Histogram equalization results.
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clusters and then converting the initial clustering
results into indicator variables. The parameters of
the GMM are then optimized using the EM algo-
rithm. The optimal cluster size is then determined
by evaluating each model's BIC, where a higher

BIC value indicates a better fit to the data. The
results of the clustering process are illustrated in
Fig. 6.
Fig. 6 illustrates the clustering outcomes using the

GMM, demonstrating that the Variance-Equalized
Independence (VEI) model with up to nine clusters
yields the optimal performance for image segmen-
tation. The model achieved a maximum BIC value of
over 150.000. Consequently, during the ROI stage,
which involves thresholding and morphological
operations, the process employs the nine-cluster
model derived from the VEI diagonal configuration
for further analysis.

Fig. 5. (Continued).

Fig. 5. (Continued).
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3.4. Region of interest

The ROI stage encompasses both thresholding
and morphological operations. Thresholding de-
termines the optimal threshold value Topt based on
the maximum number of clusters m derived from
the GMM model. Each image in the sample un-
dergoes clustering, with the number of clusters
capped at a maximum of nine. However, vari-
ability among images arises from their distinct
parameters, such as ðui; p; mj; sjÞ, leading to dif-
ferences in the threshold values applied to each
image.
The Topt value is computed as the average of the

mean
Pm

i¼1mm during M-Step of the model, as
calculated by Equation (6):

Topt¼ 1
m

Xm
i¼1

mm ð6Þ

After successfully determining the Topt value, the
next step involves extracting the identified
cancerous regions through the opening oper-
ationda morphological technique that preserves
only the most prominent area corresponding to the
breast. Subsequently, the fillHull function in R
Studio is utilized to close any gaps in the binary
image. The process concludes with a masking pro-
cedure that overlays the segmented breast image
onto the original mammogram to produce the final
segmented image.
The masking process poses a considerable chal-

lenge in the identification of the ROI. Errors that
occur during this stage, especially when the

segmented regions are overlaid onto the original
images, can hinder the precise ROI identification.
When segmentation does not accurately represent
the underlying tissues, significant discrepancies
may arise in detecting of cancerous areas, ultimately
undermining the reliability of the diagnostic pro-
cess. Fig. 7 shows a simplified depiction of the
cancer image both before and after the masking
process.
The detailed results of the images that have pro-

gressed through each stage of the ROI are presented
in Fig. 8.
The results demonstrate that the EM-GMM al-

gorithm effectively segmented twenty-six mammo-
gram images into nine pre-defined clusters. This
segmentation underscores the algorithm's ability to
detect and delineate specific patterns within medical
imaging data. Such segmentation is pivotal for
enhancing the clarity and accuracy in identifying
critical or anomalous regions in mammograms. By
providing a more detailed understanding of each
cluster, the process supports radiologists in pin-
pointing critical areas for early detection and

Fig. 6. Plot of GMM model.

Fig. 7. ROI process, (a) morphology, (b) masking.

Fig. 8. Mammogram image segmentation results.
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conducting thorough breast health evaluations.
Furthermore, segmenting mammogram images into
relevant clusters enhances the ability to differentiate
and interpret the underlying patterns present in
various regions of the images, thereby enabling a
more comprehensive analysis of breast cancer data.

3.5. Testing

The testing procedure involved assessing images
with varying cluster numbers based on BIC values
to identify the optimal segmentation for breast
cancer mammogram data. Specifically, images were
evaluated using 7, 8, and 9 clusters, respectively,
which exhibited the highest BIC values throughout
the segmentation procedure with EM-GMM,
respectively. A comparative analysis of the seg-
mentation outcomes is depicted in Fig. 9, high-
lighting the partitioning that best represents the
distinct features of each image. This step is crucial to

Fig. 8. Mammogram image segmentation results.

Fig. 8. (Continued)
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ensure that the chosen number of clusters aligns
with the objectives of the data analysis.
The test results indicate that image segmentation

with nine clusters creates the highest segmentation
accuracy. This conclusion is derived from a
comparative analysis of segmentations with seven,
eight, and nine clusters. As illustrated in Fig. 9, the
region identified as potentially cancerous is pro-
gressively larger with an increasing number of
clusters: smaller with seven clusters compared to
eight and smaller with eight clusters compared to
nine. Consequently, segmentation with nine clus-
ters provides the most precise identification of sus-
pected cancerous areas. This pattern is consistently
observed across all segmented images.

3.6. Comparison with previous studies

In the field of breast cancer detection, numerous
significant studies have applied various methodol-
ogies and objectives in image segmentation, each
contributing to advancements in this crucial area.
For instance, A. Arjmand, A. Farzamnia, R. Afrou-
zian, and S. Meshgini [25] employed an MRI-based
approach that integrated K-Means with the CSO
algorithm to detect tumour masses within in the
RIDER breast dataset. Their approach demonstrated
notable superiority over traditional methods like
fuzzy C-means and standard K-means, though
segmentation accuracy was not explicitly quantified.
Similarly, J. Dabass, M. Hanmandlu, and R. Vig [26]

applied K-means clustering to digital mammograms

from the Mini-Mias dataset, successfully segmenting
images into different density regions. This study
highlighted the effectiveness of K-means for breast
cancer density segmentation, with accuracy ranging
from 94.8 % to 98.75 % depending on the detected
region, whether dense, fatty, or breast edges.
In another study, J. S. Isaac, K. Priya, M. J.

Kumar, S. Kottu, V. Senthilkumar, and V. S. Ram-
akrishna [27] utilized machine learning techniques
for breast cancer classification using ultrasonogra-
phy, integrating K-means in the segmentation
process. They achieved notable accuracy rates:
95.87 % with logistic regression, 97.14 % with
random forest, and 93.33 % with K-nearest neigh-
bour, demonstrating the effectiveness of their
classification methods, though without a focus on
clustering optimization.
F. G. Y. Ciklacandir, A. Ertaylan, U. Binzat, and A.

Kut [28] also implemented K-means to breast ul-
trasonography for lesion detection, combining
various filtering techniques such as median, Lap-
lace, and Sobel filters. Their results, with accuracy
ranging from 71.21 % to 77.08 %, revealed the sig-
nificant impact of filtering on segmentation perfor-
mance. However, the study broadly categorized
lesions as benign or malignant without addresing on
precise tumour area segmentation.
H. Lin and Z. Ji [30] applied a hybrid model

combining K-means with a Self-Organizing Map
(SOM) on the Wisconsin breast cancer dataset,
achieving 92.10 % precision and 98.30 % recall. Their
work focused on classifying tumours as benign or
malignant, emphasizing classification performance
over the enhancing clustering techniques.
K. Wisaeng [33] utilized a K-Meansþþ and CSO

approach to multiple datasets (Mini-MIAS, DDSM,
BCDR), achieving accuracy rates of 96.42 % for
Mini-MIAS, 95.49 % for DDSM, and 96.92 % for
BCDR. The study emphasized the importance of
lesion tracking but did not optimize the number of
clusters for malignancy identification.
Finally, L. Panigrahi, and R. R. Panigrahi [34]

introduced an Ant Colony Optimization (ACO)
approach alongside K-means for ultrasonography,
achieving an accuracy of 91.66 %. Their approach
enhanced traditional segmentation methods.
In contrast, the proposed research introduces

an EM-GMM clustering methodology designed
not only to segment breast cancer images but also
to determine the optimal number of clusters for
malignancy identification. By establishing that
nine clusters offer the most accurate segmenta-
tion based on the BIC, this study improves upon
prior methodologies. It integrates a robust prob-
abilistic framework, thereby advancing breast

Fig. 9. Comparison of image segmentation with (a) 7 clusters, (b) 8
clusters, (c) 9 clusters.
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cancer detection through enhanced clustering
techniques.
In summary, a comparative analysis of the find-

ings of prior studies and the results obtained in this
research is provided in Table 2.

4. Conclusion

This study explores the application of the EM-
GMM algorithm to accurately identifying the pre-
cise location and dimensions of breast cancer. The
results show that incorporating pre-processing
steps, histogram equalization, and cluster-based
segmentation with the GMM model produces reli-
able outcomes for analysing mammogram images.
This method shows considerable promise in
improving early detection and comprehensive
evaluation of breast health. Enhanced segmentation
accuracy allows radiologists to more precisely locate

critical areas, thereby increasing diagnostic accuracy
and facilitating more effective treatment planning.
The research results significant enhance the effec-
tiveness of diagnosing and treating breast cancer,
potentially leading to a reduction in both mortality
and morbidity associated with the condition.
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Table 2. Comparative analysis of research outcomes in mammographic image segmentation.

Researchers Research outcomes

A. Arjmand, A. Farzamnia, R. Afrou-
zian, and S. Meshgini [25]

The results on the RIDER breast dataset clearly demonstrate that the proposed method
outperforms other approaches, such as fuzzy c-means and simple k-means.
Mean: 0.4506
Standard Deviation: 0.1843

J. Dabass, M. Hanmandlu, and R. Vig
[26]

Accuracy ranges from 94.8 % to 98.75 % depending on the detected region, whether
dense, fatty, or breast edges.

J. S. Isaac, K. Priya, M. J. Kumar, S.
Kottu, V. Senthilkumar, and V. S.
Ramakrishna [27]

Accuracy:
95.87 % (Logistic Regression)
97.14 % (Random Forest)
93.33 % (K-Nearest Neighbor)

F. G. Y. Ciklacandir, A. Ertaylan, U.
Binzat, A. Kut [28]

Accuracy:
76.56 % (Tanpa filter)
77.08 % (Median)
71.21 % (Laplace)
71.25 % (Sobel)

P. P. Golagani, S. K. Beebi, T. S. Maha-
lakshmi [29]

The model encompasses a total of eight pathways.

H. Lin and Z. Ji [30] Precision: 92.10 %
Recall: 98.30 %
F1-score: 95.00 %

D. N. Ouedraogo [31] Best model (Adaboost classifier): 97.90 %
Best model cluster: 1

S. H. Abdulla, A. M. Sagheer, H. Veisi
[32]

Accuracy: 98.2 %.
Sensitivity: 97.05 %.
Specificity: 98.52 %.

K. Wisaeng [33] Accuracy:
96.42 % (MinieMIAS)
95.49 % (DDSM)
96.92 % (BCDR)

L. Panigrahi, R. R. Panigrahi [34] Accuracy: 91.66 %
A. S. Begum, K. Bhuvaneshwari, K. J.

Sri, M. Divya, and R. M. Prakash [35]
The qualitative analysis indicates that the FCM segmentation gives good accuracy and
indication of the disease.

I. Khoulqi, N. Idrissi, and M. Sarfraz
[37]

DICE: 88.23 %
SSIM: 89.58 %

Proposed study The optimal number of clusters for the segmentation or estimation of breast cancer
regions is identified as nine clusters. This determination is based on the BIC calcula-
tions. An evaluation was conducted by testing the images with seven and eight
clusters.
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