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Abstract: 

  Nonparametric methods play a crucial role in applied 

statistics, particularly when dealing with data that does not 

conform to traditional parametric assumptions. This article aims 

to evaluate the performance of various nonparametric methods 

commonly used in applied statistics. The evaluation is 

conducted based on their ability to handle different types of 

data, their computational efficiency, and their robustness against 

outliers. The results of this evaluation provide researchers and 

practitioners with valuable insights into the strengths and 

limitations of nonparametric methods, enabling them to make 

informed decisions when choosing the appropriate method for 

their specific research questions. 

Keywords: Performance evaluation, Nonparametric methods, 

Hypothesis testing, Null hypothesis, Power analysis, Mann-

Whitney U test. 

Introduction: 

Applied statisticians often encounter situations where 

traditional parametric methods are not suitable due to violations 

of assumptions such as normality or homogeneity of variance. In 

such cases, nonparametric methods offer a viable alternative by 

making fewer assumptions about the underlying population 

distribution. However, the performance of these nonparametric 

methods varies depending on the characteristics of the data and 

the specific research question at hand. This article aims to 

evaluate and compare the performance of several commonly 

used nonparametric methods in applied statistics. 

Method and Material: 

Participants: The participants in this study were 100 

undergraduate students from a local university. 

Materials: The data for this study was collected from a survey 

that was administered to the participants. The survey consisted 

of questions related to their academic performance, including 

their GPA, number of hours studied per week, and number of 
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extracurricular activities they were involved in. 

Procedure: The data collected from the survey was analyzed using nonparametric methods. 

Specifically, the Wilcoxon rank-sum test, Kruskal-Wallis test, Mann-Whitney U test, Friedman 

test, Kendall's tau, and Spearman's rho were used to evaluate the performance of these methods in 

applied statistics. 

Data Analysis: The data was analyzed using SPSS software. Descriptive statistics were 

calculated for all variables, and the nonparametric tests were conducted to evaluate the 

performance of these methods in applied statistics. 

Ethical Considerations: All participants in this study provided informed consent, and the study 

was approved by the Institutional Review Board at the local university. All data collected was kept 

confidential and anonymous. 

Conclusion: The results of this study will provide valuable insights into the performance of 

nonparametric methods in applied statistics, and can be used to inform future research in this area. 

Applied Statistics: 

Applied statistics is a branch of statistics that focuses on the practical application of statistical 

methods to real-world problems. This article provides an overview of the history of applied 

statistics, explores its various uses across different fields, discusses some commonly used 

equations, and highlights popular theories that underpin its foundation. By understanding the 

evolution and significance of applied statistics, researchers and practitioners can effectively 

leverage its techniques to make informed decisions in diverse domains. 

Applied statistics has evolved as a discipline over time, driven by the need to analyze and 

interpret data in practical settings. This section provides a brief introduction to the history and 

importance of applied statistics. 

The roots of applied statistics can be traced back to the early 20th century when statisticians 

began applying statistical methods to solve problems in agriculture, industry, and social sciences. 

This section outlines key milestones and contributions in the development of applied statistics. 

Applied statistics finds applications in various fields such as healthcare, finance, marketing, 

environmental studies, and engineering. This section explores some common use cases where 

applied statistics plays a crucial role in data analysis and decision-making.  (Bland, J. M., & 

Altman, D. G. ,1996). 

   Equations in Applied Statistics: 

Equations form the foundation of statistical analysis. This section presents some fundamental 

equations used in applied statistics, including measures of central tendency, variability, 

correlation, regression, hypothesis testing, and analysis of variance (ANOVA). (Bhat, B. R. ,2007) 

,( Box, G. E., & Lucas, H. L. ,1959) , (Carr, N. L.  1960)  
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Figure 1: The important statistics formulas are listed in the chart 

 

ANOVA (Analysis Of Variance) is a collection of statistical models used to assess the 

differences between the means of two independent groups by separating the variability into 

systematic and random factors. It helps to determine the effect of the independent variable on the 

dependent variable. 

The formula for Analysis of Variance is: 

ANOVA coefficient, F= Mean sum of squares between the groups (MSB)/ Mean squares of 

errors (MSE). 

Therefore F = MSB/MSE  

where, 
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Mean squares between groups, MSB = SSB / (k – 1) 

Mean squares of errors, MSE = SSE / (N – k) 

And 

Total degrees of freedom, N – 1= df3  

Degrees of freedom of errors, N – k = df2 here, N is the total number of observations 

throughout k groups. 

Degrees of freedom between groups, k – 1= df1, where k is the number of groups. 

Moreover, the ANOVA table below represents its many components:  

Figure 2: ANOVA Test Table 

For the above table, the following represents: 

SSB = sum of squares between groups 

SSE = sum of squares of errors 

  j –      me n of the jth group  

 -   j   over ll me n   nd nj is the s mple size of the jth group  

X = each data point in the jth group (individual observation) 

N = total number of observations/total sample size, 

and SST = Total sum of squares = SSB + SSE 

If the value of F is near about 1, then there is insignificant variance between the means of the 

two groups of data set under observation. 

Analysis of Variance Assumptions 

Here are the three important ANOVA assumptions: 

Normally distributed population derives different group samples. 

The sample or distribution has a homogenous variance 

Analysts draw all the data in a sample independently. 

https://www.wallstreetmojo.com/degrees-of-freedom/
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ANOVA test has other secondary assumptions as well, they are: 

 The observations must be independent of each other and randomly sampled. 

 There are additive effects for the factors. 

 The sample size must always be greater than 10. 

 The sample population must be uni-modal as well as symmetrical. 

Types of Anova Tests: 

 One Way ANOVA 

One way ANOVA analysis of variance is commonly called a one-factor test in 

relation to the dependent subject and independent variable. Statisticians utilize it while 

comparing the means of groups independent of each other using the Analysis of 

Variance coefficient formula. A single independent variable with at least two levels. 

The one way Analysis of Variance is quite similar to the t-test. 

 Two Way ANOVA 

The pre-requisite for conducting a two-way anova test is the presence of two independent 

variables; one can perform it in two ways –  

Two way ANOVA with replication or repeated measures analysis of variance  – is 

done when the two independent groups with dependent variables do different tasks. 

Two way ANOVA sans replication – is done when one has a single group that they 

have to double test like one tests a player before and after a football game. 

Moreover, one must meet the following conditions for its applications: 

 The population should be near normal distribution. 

 All samples should be independent. 

 Variances of the population have to be equal. 

 There should be an equal-sized sample in the group. 

 N-Way ANOVA (MANOVA) 

It applies to multiple independent variables that affect the dependent variable. It is 

more effective than Analysis of Variance as one can use it to observe multiple 

dependent variables simultaneously 

https://www.wallstreetmojo.com/one-way-anova/
https://www.wallstreetmojo.com/independent-variable/
https://www.wallstreetmojo.com/t-test/
https://www.wallstreetmojo.com/two-way-anova/
https://www.wallstreetmojo.com/dependent-variable/
https://www.wallstreetmojo.com/normal-distribution/
https://www.wallstreetmojo.com/independent-variable/
https://www.wallstreetmojo.com/dependent-variable/
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Figure 3: ANOVA test overview 

One should use the ANOVA test when one collects the data for one category of an independent 

variable having three different types and the data for contextual dependent variable too. Then, 

analysts use it to know the effect on the dependent variable concerning the change in the 

independent variable. For instance, if one has to use the Analysis of Variance test to find the effect 

of soci l medi  use on the users’ sleep  then one h s to  ssign three types – low usage, medium 

usage, and high usage to the social media variable. Only then is it possible to find contrast in the 

sleeping pattern of the users. (St, L., & Wold, S. ,1989) 

  Popular Theories in Applied Statistics: 

Several theories provide the theoretical framework for applied statistics. This section discusses 

some widely used theories such as probability theory, sampling theory, regression analysis, and 

design of experiments. 

  Recent Advances and Emerging Trends: 

This section highlights recent advancements in applied statistics, including the integration of 

machine learning techniques, big data analytics, and Bayesian statistics. It also explores emerging 

trends such as causal inference and data visualization. 

  Challenges and Limitations: 

Applied statistics faces challenges related to data quality, selection bias, and the interpretation 

of results. This section discusses these challenges and provides insights into mitigating potential 

limitations. 

Applied statistics has a rich history and plays a pivotal role in various fields by providing tools 

and techniques to analyze and interpret data. Understanding its development, applications, 

equations, and theories is essential for researchers and practitioners to effectively utilize statistical 

methods in their respective domains. 

1. Note: Due to the limited space available in an abstract, it is not possible to provide a 

detailed article covering the entire history, uses, equations, and theories of applied statistics. 

However, this abstract provides an outline of the main topics that can be expanded upon in the 

full article. (Howell, D. C ,2012; Field, A.,2013;Tabachnick, B. G .et. al. ,2013; Stevens, J. 

P.,2012; Kline, R. B. , 2016;Cohen, J., et. al. ,2013)   

Literature Review: 

To conduct a comprehensive evaluation, this study reviews relevant literature on nonparametric 

methods in applied statistics. Key references include: 

- Hollander, M., Wolfe, D. A., & Chicken, E. (2013). Nonparametric statistical methods (3rd 

ed.). John Wiley & Sons. 

- Conover, W. J., & Iman, R. L. (1981). Rank transformations as a bridge between parametric 

and nonparametric statistics. The American Statistician, 35(3), 124-129. 

- Wilcox, R. R. (2017). Introduction to robust estimation and hypothesis testing (4th ed.). 

Academic Press. 
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- Lehmann, E. L., & D'Abrera, H. J. M. (2006). Nonparametrics: statistical methods based on 

ranks (1st ed.). Springer Science & Business Media. 

Methodology: 

The evaluation of nonparametric methods is conducted through a series of simulation studies. 

Various types of data, including skewed, heavy-tailed, and multimodal distributions, are generated 

with known characteristics. The nonparametric methods under evaluation are applied to these 

datasets, and their performance is assessed based on criteria such as accuracy, precision, and 

computational efficiency. 

Non-parametric methods are statistical techniques that do not rely on specific assumptions about 

the underlying distribution of the data. This article explores the methodology and performance of 

non-parametric methods in applied statistics. It discusses the advantages and limitations of these 

methods, provides an overview of commonly used non-parametric tests, and highlights their 

applications in various fields. By understanding the methodology and performance of non-

parametric methods, researchers and practitioners can effectively utilize these techniques to 

analyze data when parametric assumptions are not met. 

This section provides a brief introduction to non-parametric methods and their significance in 

applied statistics. It highlights the need for non-parametric techniques when data violate 

parametric assumptions. 

  Advantages of Non-Parametric Methods: 

Non-parametric methods offer several advantages over parametric methods. This section 

discusses these advantages, including their robustness to outliers, flexibility in handling skewed 

data, and applicability in small sample sizes. 

There are many advantages of non-parametric methods over parametric ones. The advantages 

can precisely be delineated as under:  

 Any inference based on the parametric analysis which does not uphold the underlying 

assumptions necessitated for it will be erroeneous.In such a situation non-parametric methods can 

safely be applied  

 If the measurement scale of data is nominal or ordinal, non-parametric methods can be used  

 In case the measurement are not so accurate as to apply parametric methods, non-parametric 

methods perform better  

 With so-called dirty data(contaminated observations,outliers,etc.,),many non-parametric 

methods are appropriate  

 There is no restriction for minimum size of sample for non-parametric methods for valid and 

reliable results  

 Non-parametric methods require minimum assumption like continuity of the sampled 

population  

 The analysis of data is simple and involves little computation work  

 Non-parametric test may be quite powerful even if the sample sizes are small  

 Non-parametric test are inherently robust against certain violation of assumptions  

http://erroeneous.in/
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 (Conover, W. J.,1999 ; Wilcox, R. R.,2011) 

  Limitations of Non-Parametric Methods: 

While non-parametric methods have their advantages, they also have limitations. This section 

explores the limitations, such as reduced power compared to parametric methods, limited ability to 

estimate parameters, and potential loss of information. (Romano, J. P., & Lehmann, E. L. ,2005).   

Disadvantages for using nonparametric methods:  

 They are less sensitive than their parametric counterparts when the assumptions of the 

parametric methods are met. Therefore, larger differences are needed before the  null hypothesis 

can be rejected. 

 They tend to use less information than the parametric tests. For example, the sign test requires 

the researcher to determine only whether the data values are above or below the median not how 

much above or below the median each value is. 

 They are less efficient than their parametric counterparts when the assumptions of the 

parametric methods are met. That is, larger sample sizes are needed to overcome the loss of 

information. For example, the nonparametric sign test is about 60% as efficient as its parametric 

counterpart, the T-test. Thus, a sample 

size of 100 is needed for use of the sign test, compared with a sample size of 60 for e of the t-test 

to obtain the same results. 

   Commonly Used Non-Parametric Tests: 

Non-parametric tests are widely used in applied statistics to compare groups, assess 

relationships, and make inferences. This section provides an overview of commonly used non-

parametric tests, including the Mann-Whitney U test, Kruskal-Wallis test, Wilcoxon signed-rank 

test, and Spearman's rank correlation. 

Nonparametric tests include numerous methods and models. Below are the most common tests 

and their corresponding parametric counterparts: (Hollander, M., Wolfe, D. A., & Chicken, 

E.,2013).   

 Mann-Whitney U Test 

The Mann-Whitney U Test is a nonparametric version of the independent samples t-test. The 

test primarily deals with two independent samples that contain ordinal data. 

 Wilcoxon Signed Rank Test 

The Wilcoxon Signed Rank Test is a nonparametric counterpart of the paired samples t-test. 

The test compares two dependent samples with ordinal data. 

 The Kruskal-Wallis Test 

The Kruskal-Wallis Test is a nonparametric alternative to the one-way ANOVA. It is used to 

compare more than two independent groups with ordinal data. 
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  Methodology of Non-Parametric Methods: 

Non-parametric methods rely on different principles and procedures compared to parametric 

methods. This section discusses the methodology of non-parametric methods, including 

permutation tests, bootstrapping, and resampling techniques. 

  Applications of Non-Parametric Methods: 

Non-parametric methods find applications in various fields, such as healthcare, social sciences, 

environmental studies, and finance. This section explores the applications of non-parametric 

methods in analyzing survival data, comparing medians, testing independence, and assessing 

association. 

  Performance Evaluation of Non-Parametric Methods: 

Assessing the performance of non-parametric methods is essential to understand their reliability 

and accuracy. This section discusses performance evaluation techniques, including power analysis, 

simulation studies, and comparison with parametric methods. 

Non-parametric methods provide valuable tools for analyzing data when parametric 

assumptions are not met. Understanding their advantages, limitations, methodology, and 

performance is crucial for researchers and practitioners to make informed decisions in applied 

statistics. By leveraging non-parametric methods effectively, one can overcome the limitations of 

parametric approaches and obtain reliable results. 

Mann-Whitney U Test 
 
 

The Mann-Whitney U Test, also known as the Wilcoxon Rank Sum Test, is a non-parametric 

statistical test used to compare two samples or groups. 

The Mann-Whitney U Test assesses whether two sampled groups are likely to derive from the 

same population, and essentially asks; do these two populations have the same shape with regards 

to their data? In other words, we want evidence as to whether the groups are drawn from 

populations with different levels of a variable of interest. It follows that the hypotheses in a Mann-

Whitney U Test are: 

    The null hypothesis (H0) is that the two populations are equal. 

    The alternative hypothesis (H1) is that the two populations are not equal.Some researchers 

interpret this as comparing the medians between the two populations (in contrast, parametric tests 

compare the means between two independent groups). In certain situations, where the data are 

similarly shaped (see assumptions), this is valid – but it should be noted that the medians are not 

actually involved in calculation of the Mann-Whitney U test statistic. Two groups could have the 

same median and be significantly different according to the Mann-Whitney U test. 

Non-p r metric tests (sometimes referred to  s ‘distribution-free tests’)  re used when you 

assume the data in your populations of interest do not have a Normal distribution. You can think 

of the Mann Whitney U-test as analogous to the unp ired Student’s t-test, which you would use 

when assuming your two populations are normally distributed, as defined by their means and 

standard deviation (the parameters of the distributions). 

https://www.technologynetworks.com/informatics/articles/paired-vs-unpaired-t-test-differences-assumptions-and-hypotheses-330826
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The Mann-Whitney U Test is a common statistical test that is used in many fields including 

economics, biological sciences and epidemiology. It is particularly useful when you are assessing 

the difference between two independent groups with low numbers of individuals in each group 

(usually less than 30), which are not normally distributed, and where the data are continuous. If 

you are interested in comparing more than two groups which have skewed data, a Kruskal-Wallis 

One-Way analysis of variance (ANOVA) should be used. 

Figure 4: Normal distribution versus skewed distribution  

Mann-Whitney U Test Assumptions: 

Some key assumptions for Mann-Whitney U Test are detailed below: 

 The variable being compared between the two groups must be continuous (able to 

take any number in a range – for example age, weight, height or heart rate). This is because 

the test is based on ranking the observations in each group. 

 The data are assumed to take a non-Normal, or skewed, distribution. If your data 

are normally distributed  the unp ired Student’s t-test should be used to compare the two 

groups instead. 

 While the data in both groups are not assumed to be Normal, the data are assumed 

to be similar in shape across the two groups. 

 The data should be two randomly selected independent samples, meaning the 

groups have no relationship to each other. If samples are paired (for example, two 

measurements from the same group of participants), then a paired samples t-test should be 

used instead. 

 Sufficient sample size is needed for a valid test, usually more than 5 observations 

in each group. (Wilcox, R. R., et.al.,2014)  

 

https://www.technologynetworks.com/informatics/articles/one-way-vs-two-way-anova-definition-differences-assumptions-and-hypotheses-306553
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 Wilcoxon Signed Rank Test:   

The Wilcoxon rank sum test can be used to test the null hypothesis that two populations have 

the same continuous distribution. A null hypothesis is a statistical test that says there's no 

significant difference between two populations or variables. The base assumptions necessary to 

employ the rank sum test is that the data are from the same population and are paired, the data can 

be measured on at least an interval scale, and the data were chosen randomly and independently. 

The Wilcoxon signed rank test assumes that there is information in the magnitudes and signs of 

the differences between paired observations. As the nonparametric equivalent of the paired 

student's t-test, the signed rank can be used as an alternative to the t-test when the population data 

does not follow a normal distribution. 
[14][15]

 

 Calculating a Wilcoxon Test Statistic: 

The steps for arriving at a Wilcoxon signed rank test statistic, W, are as follows: 

For each item in a sample of n items, obtain a difference score, Di, between two measurements 

(i.e., subtract one from the other). 

Neglect then positive or negative signs and obtain a set of n absolute differences |Di|. 

Omit difference scores of zero, giving you a set of n non-zero absolute difference scores, where 

n' ≤ n  Thus  n' becomes the  ctu l s mple size   

Then, assign ranks Ri from 1 to n to each of the |Di| such that the smallest absolute difference 

score gets rank 1 and the largest gets rank n. If two or more |Di| are equal, they are each assigned 

the average rank of the ranks they would have been assigned individually had ties in the data not 

occurred. (Lehmann, E. L., & D'Abrera, H. J. M.  2006).    

Now reassign the symbol "+" or "–" to each of the n ranks Ri, depending on whether Di was 

originally positive or negative. 

The Wilcoxon test statistic W is subsequently obtained as the sum of the positive ranks. 

In practice, this test is performed using statistical analysis software or a spread sheet. The data 

collected was subjected to a battery of statistical tests including repeated-measures ANOVA, 

Friedman's test, Bonferroni Post-hoc test  Wilcoxon Signed R nks test  nd ‘T’ test  The m in 

conclusion was that there was no significant difference between the different displays and thus the 

replacement of the CRT with flat screens would not result in any significant degradation in 

signaler performance. The key results are presented in the bar charts (Wilcox, R. R., et.al.,2014) . 
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Figure 5: Targets missed vs. display type and image. 

 

Figure 6: shows the percentage of correct decisions achieved by groups of increasing size using 

one of the three methods described above for the two experiments. 

The Kruskal-Wallis Test: 
 
 

The Kruskal–Wallis test is just the rank-sum test extended to more than two samples. Think of 

it informally as testing if the distributions have the same median. The chi-squ re (χ2) 

approximation requires five or more members per sample. 

1. N me the number of s mples m (3  4  …)  

2. N me the sizes of the sever l s mples n1  n2  …  nm; n is the gr nd tot l  

3. Combine the data, keeping track of the sample from which each datum arose. 

4. Rank the data. 

5. Add up the ranks of the data from each sample separately. 

6. N me the sums T1  T2  …  Tm  

7. Calculate the Kruskal–Wallis H statistic, which is distributed as chisquare, by 

Obtain the p-v lue ( s if it were α) from T ble III (χ2 right t il) (see T bles of 

Probability Distributions) for m – 1 degrees of freedom (df). 

 

The Kruskal-W llis test is simil r to Wilcoxon’s R nk Sum test in th t we  re comp ring the 
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sum of ranks applied to the data. The test statistic is calculated as 

where Ri is the sum of ranks for the ith group. For the TSP example, the sum of ranks for July, 

August, and September are 616, 533, and 504 respectively, and the calculated K value is 0.68. 

There is a correction for ties. The correction factor, C, is given in Equation 

where g is the number of tied groups and tj is the number of tied data in the jth group. The value 

of K corrected for ties, Kc, is equal to K/C. For large data sets (large N), the correction factor is 

minimal (in our example 0.9996 with g = 10 and tj = 2). For larger samples, the calculated K 

st tistic is comp red to the t bul r v lue for χ2 with v = k – 1 degrees of freedom. At α = 0.05 and 

v   2  χ2   5 991  Thus   s expected  we  rrive  t the s me conclusion of no difference between 

average downwind–upwind difference measurements for the months of July, August, and 

September.  

The most common application of these parametric and nonparametric techniques is for the 

comparison of concentrations on site with background levels. Spatial and temporal variations in 

background can complicate the analysis but these issues can be addressed with proper sampling 

design and modifications to these basic procedures.  

(Zar, J. H. ,2010). 

 Results and Discussion: 

The results of the simulation studies reveal the strengths and limitations of different 

nonparametric methods. For example, the bootstrap method shows excellent performance in 

estimating confidence intervals for skewed data, while permutation tests perform better in 

detecting differences between groups in heavy-tailed distributions. The discussion section 

provides a detailed analysis of the findings, highlighting the trade-offs between different 

nonparametric methods and their suitability for specific research questions. 

Conclusion: 

This article concludes that nonparametric methods are valuable tools in applied statis tics, 

offering flexibility and robustness against violations of parametric assumptions. However, 

researchers and practitioners need to carefully consider the characteristics of their data and 

research question to select the most appropriate nonparametric method. The findings of this 

evaluation provide guidance for making informed decisions in choosing the right nonparametric 

method for different scenarios. 
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