Analysis of a neutronic computational model for the core of material testing reactor MTR by using SQUID code

Mohammed Haider Al-Taweel Science college – Kufa University

Abstract:

It is a conventional practice in the design of nuclear reactor to introduce calculation of hot points to determine spatial variation for energy generated and then determine power distribution .The study had been carried out for core of a reactor type (MTR) by the neutronic code SQUID. In this study, we replace the reflector of the reactor by H_2O instead of D_2O as originally the reactor designed.

From the study we conclude that the reactor can operates safely ,to make sure of that we calculate the multiplication factor where their values ranged from (1.0854) when all control rods are up to (1.001)when three control rods are up . Also the values of hot points were calculated and compared with French documents results with D_2O as a reflector where the difference is (0.19%),and with light water as reflector instead of heavy water was calculated . For different cases according to control rod position , the values of hot point ranged between (0.46) to (1.64) in case all control rods are up also the values of the average power distributed on different fuel cells were calculated in case of light water as reflector firstly with three control rods are down and the maximum value $(2.13*10^{-2} M_W)$. Secondly in case of four control rods are down, the maximum value $(1.925*10^{-2} M_W)$ we notice almost coincidence between the neutron flux distribution through the core of reactor and in different positions of control rods.

Key word: Hot points, Power distribution, Multiplication factor

تحليل نموذج حسابي نيوتروني لقلب مفاعل اختبار المواد MTR باستخدام البرنامج SQUID

محمد حيدر الطويل كلية العلوم ـ جامعة الكوفة

الخلاصة:

أن من المناسب عند تصميم أي مفاعل نووي الأخذ بحسابات النقاط الحارة لتحديد تغيرات الطاقة المتولدة ومن ثم تحديد توزيع القدرة ، أجريت الدراسة لقلب مفاعل نوع MTR باستخدام البرنامج النيوتروني SQUID ، في هذه الدراسة تم استبدال العاكس للمفاعل النووي بالماء الخفيف بدلا من الماء الثقيل الذي هو مصمم لقلب المفاعل النووي أصلا حيث تم الاستنتاج بإمكانية عمل المفاعل النووي بالماء الخفيف بدلا من الماء الثقيل الذي هو مصمم لقلب المفاعل النووي أصلا حيث تم الاستنتاج بإمكانية عمل المفاعل النووي أصلا حيث تم الاستنتاج بإمكانية عمل المفاعل النووي بالماء الخفيف بدلا من الماء الثقيل الذي هو مصمم لقلب المفاعل النووي أصلا حيث تم الاستنتاج بإمكانية عمل المفاعل النووي أصلا من وذلك من خلال حساب عامل التكاثر النيوتروني الذي تتراوح قيمته بين 1084 في حالة أعمدة السيطرة جميعها مرفوعة إلى الأعلى و 1001 في حالة ثلاثة أعمدة سيطرة مرفوعة إلى الاعلى كذلك فان قيم النقاط الحارة قد حسبت بوجود الماء الثقيل كعاكس وقررنت مع النتائج المنشورة في الوثائق الفرنسية وكان الفرق بينهما (%100) ، كذلك حسبت النقاط الحارة في حالة الماء الخفيف كعاكس وقررنت مع النتائج المنشورة في الوثائق الفرنسية وكان الفرق بينهما (%100) ، كذلك حسبت النقاط الحارة في حالة الماء الخفيف كعاكس وقررنت مع النتائج المنشورة في الوثائق الفرنسية وكان الفرق بينهما (%100) ، كذلك حسبت النقاط الحارة في حالة الماء الخفيف كعاكس ولعدة حالات حسب موضع أعمدة السيطرة وكانت القيم تتراوح بين (0.46) إلى (1.64) في حالة جميع أعمدة السيطرة مرفوعة إلى الاعلى كذلك وكان الفرق بينهما (%200) ، كذلك حسبت النقاط الحارة في حالة وماء الخفيف كعاكس ولعدة حالات حسب موضع أعمدة السيطرة وكانت القيم تتراوح بين (0.46) إلى (1.64) في حالة جميع أعمدة السيطرة مرفوعة إلى الاعلى كذلك وكان الفرق بين (0.46) إلى (1.64) في حالة وماء الحود ومن ألماء الخفيف كعاكس ولعدة حالات حسب موضع ألم في نقيم مانول وكانت أعظم قيمة للقدرة في مالة وحود الماء الخفيف كعاكس أولا في حالة أعمدة السيطرة ألمدة من ماذ قربي ماء من أولا في حالة أعمدة السيطرة مرفرة ثلاثة منو موزعة على خلايا الوقود المختلفة قد حسبت في حالة وجود الماء الخفيف كعاكس أولا في حالة أعمدة ألمية من وي ماء مان أولا في أولا في ماء ما ألم ماء النفي مورني أولام في حالة أعمدة السيطن أولا ألمى ألمم

الكلمات المفتاحية: تصمم قلب المفاعل النووي، عامل التكاثر النيوتروني، حسابات النقاط الحارة

1. Introduction:

A great deal of effort is devoted to ensure the nuclear reactors operators safety [1], the core thermal design is usually based on the introduction of safety factors such a hot channel and hot spot factors The fuel assembly having the maximum power output is defined as the hot assembly. The hot spot in the core in the point of maximum heat flux or linear power density, while the hot channel is defined as the coolant channel in which the hot spot occurs or along which the maximum coolant enthalpy increase occurs.

The nuclear hot channel is defined to take into account the variation of flux and fuel distribution within the core.

The radial nuclear hot channel factor is

defined as the following:

The Nc here is the total number of channels in core, H is channels height and $q^{=}(r)$ is the heat flux distribution.

In similar manner , the axial nuclear hot channel factor is defined as the following

$$F_Z^N = \frac{\max imum.heat.flux.of.hot.channel}{average.heat.flux.of.the.hot.channel} = \frac{\frac{\max}{Z} [q^{=}(rHC)]}{\frac{H}{\frac{1}{-H}} q^{=}(r_{HC})dz}$$

The total nuclear hot channel factor or nuclear heat flux is then

$$F_q^N = \frac{\max imum.heat.flux.in.the.core}{average.heat.flux.in.the.core} = F_R^N \cdot F_Z^N$$

The nuclear hot channel must not exceeds 2.6 Such factors are in general the result of local deviations in behavior from strictly adherence to that predicted by theoretical predictions of the fuel and coolant temperatures , fuel dimensions , coolant flow , local fuel and core heat generation etc. Such deviations are due to many factors, such as flux distribution and mechanical factors. Local deviations are

caused by so many factors such as nonhomogeneity of fuel, the presence of structural materials, control rod position in core, non-homogeneity of moderator [2].

Our main goal in this study is to calculate the hot points power distribution, the multiplication factor and flux distribution when we replace light water instead of heavy water as reflector. The neutron flux, multiplication factor and power distribution in principle can be obtained as a solution of linear Blotzmann equation [4].

2. Description of Reactor [7]:

The MTR reactor is a research reactor for material testing with a maximum power of 0.5 MW. The maximum fast and thermal neutron fluxes are on the order of 10^{13} and $10^{14}N/cm^2$.sec respectively outside the core tank , one of the reactor sides accommodates light water instead of heavy water as in the design of osiris reactor as a reflector tank .

The core tank is made of zircoloy 2. The 1st load of the core contains four types of fuel elements each with enrichment 90% normally

Besides these fuel elements the core contains six control an safety elements, which consist of fuel part and a neutron – absorbing part.

The fuel part of the control elements contains 13.21 gm U235/plate and B^{10} contain 605 μ .gm/cm². The number of fuel plates in the fuel elements is 24 and in the control elements are 20. in additions to the standard fuel elements and control elements the core tank is designed to contain such other components as Beryllium reflector elements , aluminum element and in-core water chambers as shown in fig(1).

Туре	of	weight	of	Boron	-10
fuel		U235]	per	contents	in
element		plate	in	µ.gm/cm	2
		gm		. 0	
А		16.27		580	
В		13.18		440	
С		11.56		440	
D		9.2		0	

3.Methodology:

The core under consideration is cold and clean (fresh fuel, no xenon) one. In order perform neutronic calculation. to homogenization and group constants for homogenized regions for all reactor material were made using cell computer code WIMS_D4 by Askew eta'l [8] .unit cell calculation based on wigner seitz cell modeling i.e. lattice structure of the core were represented in form of a cylindrical super cell. As seen in the following table ,group energy structure based on energy limits for inelastic scattering ,un-resolved resonance and neutron up-scattering was chosen as 10MeV, 0.821MeV, 5.530Kev and 0.625ev(upper energy boundaries). The 69 group library was collapsed to obtain a four - group self -shielded crosssection data set.

Grou	Region	Upper	Lower
p no.		energy	energy
		level	level
1	Fast	10Mev	0.821Me
			v
2	1/E	0.821Me	5.53Mev
		v	
3	Resonanc	5.53Kev	0.625ev
	e		
4	Thermal	0.625ev	0.0

Group energy structure and limits

Core calculation was made using detailed two-dimension (x, y) neutronic model for reactor has been built using the neutronic computer code SQUID [6].

The two dimensional diffusion code SQUID is an Italian computer program which is used to calculate the neutron flux , power distribution and multiplication factor for the MTR reactor . to carry out 2-D neutronic calculation the reactor (core , tank , reflector) is represented in coordinates , each in core components fig (1) represented with the necessary detail by a zone pattern distinguishing different types of compositions .

The MTR reactor to be calculated by two dimensional diffusion code SQUID is divided into (26) homogenized regions .

These regions are given numbers for each composition , then macroscopic cross sections for the (26) composition for diffusion calculation for neutron flux and power distribution addition to multiplication factor , these factors are our goal in this study.

4.Results and Discussion :

required All group constants were available, generated and made the calculation of hot points flux . distribution. power distribution and multiplication factor were made using the neutronic 2-D diffusion SQUID code.

Table (1) and (2) represent a comparison of hot points as calculated by SQUID code and French documents result [5] with tank of reactor filled with D_2O as reflector and the difference is (0.19%) between our results and French documents which means that the 2-D diffusion SQUID code is a good computational model for the core of MTR reactor.

Table (3) represent a comparison for average power between French document and the calculated average power by SQUID code, it's ranged from (0.57) to (1.55).

Table (4), (5),(6) and (7) represent the values of hot points with the tank of the reactor filled with H_2O we can notice that the values of hot points are less than that when the reflector is D_2O , it is more safe.

٦

		21			21			22			23			23			22			22		
	11	1	n	n	1	n	12	2	12	B	3	13	в	3	13	12	2	12	12	2	12	
		21			21		1	22			23			23			22			22		
		<u>n</u>		.,	22			-			24						23			3	.,	
		•		"	•	"		10				-		10			1	"		ľ		
		21			22	1	10.	_			24						23			23		
		21		r	15	1	82	24		ſ	15			24			15			23		
6	11	1	n	15	5	15	14	4	14	15	3	15	14	4	14	15	5	15	13	3	13	6
					15			_		ľ	15			_			15					
		21			22	-	-	24			24			24			24			23		
		-			"						-						1					
	11	1	n	12	2	12		10		14	•	14		10		34	1	14	13	3	13	
		21			22						24						24			23		
		21		,	15			24		,	15			24		—	,	7		23		
	11	1	11	15	25	15	14	4	14	15	25	15	14	4	14	9	16	19	13		13	
		-		-	25				-	-	25	-					16	ן יו		3		
					_					•				-							4 1	•
		21			15			24			15			24			9			23		
		21 21	_		15 21			24 21			15 22			24	_		9 22	I		23 23		
	11	21	11		15 21 1	n	11	24	11	12	15 22 2	12	12	24	12	12	9 22 2	12	n	23 23	13	
	11	21	11	11	15 21 1	n	11	24	11	12	15 22 2	12	12	24 22 2	12	12	9 22 2	12	13	23	13	
	11	21 23 1 21	11	11	15 21 1	n	11	24 21 1	11	12	15 22 2	12	12	24 22 2 2	12	12	9 22 2 2	12	13	23 23 3	13	
	11	21 23 1 23	11	11	15 21 1 21	n	11	24 21 1 21	11	12	15 22 2 22	12	12	24 22 2	12	12	9 22 2 22	12	13	23 23 3	13	
	33	21 21 21 7	11	11	15 21 1 21 7	n	11	24 21 1 21	11	12	15 22 2 22 7	12	12	24 22 2 22 20	12	12	9 22 2 22 7	12	13	23 23 3 23 7	13	
	33	21 23 1 21 7	33	11	15 21 1 21 7	11	11	24 21 1 21	11	12	15 22 22 22 7	12	12	24 22 2 22 20	12	12	9 22 2 22 7	12	13	23 23 3 23 7	13	
	31	21 21 1 21 7 7	33	11	15 21 1 21 7 7	11	31	24 21 1 21 7	11	12	15 22 2 22 7 7	12	12	24 22 2 22 20 26	12	12	9 22 2 22 7 20	12	13	23 23 3 23 7 7	13	

.

Fig (1) : Composition distribution for MTR reactor core for the computation model of SQUID code .

		,			6			5			4			3			2			1	
80																					
	0.78*	0.80	0.91	0.92	0.16	0.93	1.08	4.57	0.55	1.07	0.99	1.00	0.99	0.93	0.54	0.84	0.78	6.74	0.73	0.65	0.73
	0.8532**	0.063	0.9903	10	1.002	0.9976	1.156	1024	1.006	1 114	1.622	1.009	1002	0 6202	0.9043	0.8047	0.7352	0.6707	0.6589	0.5569	0.5807
	4.81	674	4.87		A 99	0.88	105	4.54	0.52	1.02	4.62	0.94	44	6.97	0.90	0.81	677	0.74	0.34	0.64	0.76
	A 8900		0.01		0.00	0.0464		0010	4406	100	4463	44644		0.01	4.6123	0.7847	0 7178	ACTIN	4.6533		4 (17)
	0.5605	4.805	0.9945	0.950	0.9605	0.9404	1121 4	3949	5,3000	1.050	4.754	0.7700	0,996.5	0.861	44/35	4.00	4.170	0.0115	4.00000	4.5445	44425
	0.57	0.96	1.00	0.99	0.96	0.91	1.07	634	0.91	1.00	0.51	0.92	0.52	0.89	0.31	0.82	0.17	0.70	0.75	0.67	0.30
	1.058	1.005	1.062	1,079	1.038	0.975	1302 0	9993	6.9535	1.049	0.932	0.9337	0.9314	11222	0.8799	0.7858	0.7212	0.6854	0.674	0.5764	0.6629
70																					
	10	0.96	1.01	121	1.12	1.07				1.16	145	1.07	1			0.91	0.86	0.86	0.85	0.76	0.92
	1.10	1 104	1.0%	1.30	1,213	116				1.213	1,678	1,077				0.8732	0.908	0.775	0.7663	0.6531	0.7612
	1 10	5 0.96	104	1.07	1.00	0.94	0		0	1.19	1.09	1.09	0		0	0.94	0.54	0.94	6.94	0.84	1.01
	1.14	1 1.043	1.127	1.85	1.5	139	0		0	1243	1.121	1.054	0		0	0.9078	0.8759	0.8488	0.8456	6,7293	0.8437
	1.1	1.00	1.05	1.11	0.91	0.95				1.19	113	1.10				0.95	0.97	0.95	6.54	0.85	1.05
	18	3 1177	1104	1.18	1.16	118				1.144	114	1.105				0.911	0.9022	0.8561	0.8434	0.729	412%
	115		1.114					_				1.167				1.000				4.145	
~			1.00	1			18						114	100		$ \rangle$				4.96	1.62
	1.0	149	105	201	1.8	200	1.30	1.18	1.0	$ \rangle$	3		114	1.02		$ \rangle$			4.50	4.300	1.07
	12	1.119	11/1	1.605	142	1454	1453	1255	1.18				110	1006	1.009	1	· ·		0.0729	61912	0.901
	11	2 1.01	1.04		¥		138	1.20	1.29				122	1.06	111				1.07	0.94	136
	1.21	9 127	127	1.54	<u>∕</u> Ω_	1.36	1475	1275	1.351				1.223	1.043	1.122				0.9574	0.8017	0.5753
	112	5 1.06	104	Lay	1.343	1485	131	1.14	120			$\langle \rangle$	1.47	1.07	119				1.05	0.95	1.18
	1.5	1 1 1 5 3	1.153	1251	120	131	1.398	1211	1252				1.156	109	1.138	1			0.9441	0.8207	1,004
				1.637	1.374	1.407															
50																					
	113	1.05	1.04	122	1.04	1.00				116	113	134				1.12	1.18	1.22	1.04	0.97	1.20
	1.25	1120	1.123	1.318	1.126	1.065				1,206	1.154	1.115				1.12	1 1,099	1,999	0.9294	0.8371	1.019
	140	891	05	1.6	1.65	0.95	6)	0	111	1.08	1.14	1 1	0	Ô	1.22	1.72	1.12	1.13	1.07	1.22
	1 116	0.00	1.000	1.00	1 112	1 445	l d	5	ò	110	1 105	1141		Ó	Ó	116	, 114	1 189	1002	6422	1.089
	1.00	0.001	0.00	1.00		0.01		-	-		1.13	1.13		-		110		1 10	1.14	105	1 16
	100	0.50	0.50	100	9.55	4.91				1 14		110						1.33	1.04		100
	1.085	03//6	0.3733	1144	1.00	0.9651				1.0	110	1.161				1 14	1.09	14	140	9318	1084
				k						<u> </u>						<u>k</u> –					
40																l∖					
	0.97	0.38	0.55	$ \rangle$			1.17	1.05	1.15		4		111	1.16	14	1 10	14	104	1.16	1.06	1.0
	1.053	0.9505	0.9556	$ \rangle$	<u>ا</u> ه.		1.248	1.102	1,193				1,207	1.128	1.238	120	111	/128	1052	0.9216	1086
	0.84	0.73	0.30				1.17	1.04	121				1.10	122	1.19		X		123	1.09	126
	0.919	0.7%0	0.8661		1		126	1.09	1254				1.293	1.187	1.328	151	/14	1.40	1.116	0.9554	1.094
	0.80	0.74	0.80				1.14	1.14	1.8				1.17	12	137	1,78	1107	/178	1.16	1.01	1.18
- 1	0.8746	0.5	0.867				1.316	1135	1.297			$\langle \rangle$	1.268	1.173	131	/19	1.35	641	1.114	0.\$\$39	1.054
																113	197.1	138			
30		1 0																			
	0.78	0.72	0.80	0.50	0.62	0.54	0.84	0.81	0.83	0.99	0.56	0.98	0.97	0.95	1.06	1.05	1.04	1.04	1.15	0.99	1.16
	0.8075	0.7812	0.9071	0.861	0.9716	0.8979	0.8921 0	18461	0.8598	1,073	0.975	0.96%	0.9711	0.9201	1,008	1.08	0.5767	0.953	1.045	0.8652	0.999
	0.67	0.62	0.74	0.75	0.80	0.89	0.9	0.5	0.9	105	4.97	1.04	1.04	1.04	1.13	1.13	1.09	1.06	1.17	0.96	1.12
	0 7342	0.6600	0.0000	0,5107	0.8548	1 94/5	09492	9397	0.921	1140	0.99933	1.022	1.04	1017	1.045	100	10%	0.9441	100	0.8455	09513
	0.07	6.74	0.00	0.00	4.00	11	11	1 11	1.00	1.1	1.11	1.14		1.20	1 22	1.12	1 17	114	134	1.00	112
	0.07	1.14	0.87	0.50	9.37		1.11			10		1.00	10	1.00		1.00	1.002	1.00	1114	1.40	0.0178
	4.7767	ervins.	0.1507	0.9685	1001	119	110	L HK	1114	146	113	1.163	1111	1104	1.341	1 1101	1999	14/58	1194	0.9534	9.7438
			-								-			1847							
					54			54			84			ню	'		86			86	

* Ref.results [5].

** Our results .

		,			6			5			4			3			2			1	
80																					
	0.65*	0.66	0.75	4.77	0.80	0.78	0.90	0.83	0.81	0.896	6.84	0.84	0.04	0.78	0.78	0.70	6.65	4.62	0.61	0.55	0.61
	0.6901**	0.6993	0.8006	0.8089	0.8381	0.3142	0.8089	0.26	0.16	0.5/24	0.0471	0.9415	0.4363	0.7491	0.76	0.69	6.74	462	462	0.53	0.64
	0.68	0.62	0.73	0.75	0./3	0.75	0,7344	0.75	0.784	4 6937	0.796	0.803	0.796	0.7265	0.7386	0.6638	0.6047	0.5647	0.5577	0.45%	0.5168
	0.92	0.78	0.34	0.54	0.82	0.78	0.916	0.81	0.79	0.87	0.78	0.80	0.30	0.77	0.78	0.70	677	4.64	0.63	0.57	0.68
	0.9555	0.8233	0.8881	0.8850	0.8590	0.8164	0.535	0.856	0.8354	0.8929	0.7968	0.804	0.9032	0.7594	0.7593	0.6769	0.617	0.5836	0.5737	0.49	0.5654
70	,																				
	0.85	0.81	0.86	1.02	0.96	0.92				1.01	0.91	0.93				0.78	674	6.73	0.72	0.64	0.78
	0.9043	0.8537	0.9035	1079	1.007	.9633				1.04	0.9273	0.9352				0.7582	0.6945	0.6636	0.6557	0.5575	0.6525
	0.89	0.81	0.99	1.07	1.00	0.94	0		0	1.06	0.97	0.96	0			0.83	6.82	0.81	0.81	0.72	0.88
	0.9472	0.8667	0.9427	1.131	1.057	0.9855			0	1.051	0.9916	.\$767	v	,	0	0.8078	0.7701	0,7404	0.7379	0.6247	0.755
	1.00	0.94	0.95	1.11	0.91	0.95				110	1.05	1.02				0.07	6.61	0.54	0.43	0.75	0.52
	1.06	0.9962	1.001	11%	1.024	0.9887				119	1.074	144		_		¥899	0.8150	6.766/	4.1999	0.0400	U./610
60	1.01	6.95	645	14	1.18	in	133	1.08	1.15				102	105	1.05				0.87	0.76	0.95
	1.076	1.007	1.006	141	130	100	1289	110	1.146	$ \rangle$			1.074	0.9404	1.012		1		0.7899	0.6611	0.8069
	0.99	0.59	0.94	1.39	Y	1.72	1.25	1.16	1.28	1.1			1.021	1.12	117		-		0.98	0.84	1.04
	1.005	0.9505	0.9699	100/	120	1.30	136	1.208	1.317				1223	1.034	1.134				0.8961	0.7382	0.8935
	1.04	0.96	0.91	1.10	121	13	1.29	1.17	1.27				1.42	1.05	121				0.99	0.\$8	1.08
	11	1.023	1.021	1.45	127	1337	1.356	1.226	1311				1249	1.113	1.173				0.9114	0.77%	0.9399
50																			· · ·		
	1.03	0.96	0.96	113	1.00	1.00				125	123	123				1.19	1.16	1.16	0.98	0.90	1.10
	1.093	1.017	1.021	1.199	1.056	1.05		^	` ^	1.28	1259	1244		•	^	1,199	1.100	10/3	0.9047	0.7987	0.9617
	0.95	0.85	0.92	1.09	1.04	1.03		ŏ	ŏ	1.03	128	132		ŏ	ŏ	1.0	1.04	1.00	1.10	100	1.04
	1.007	0.9023	0.9699	1.163	1103	1.08		•	•	1.94	1315	1393		•	•	112	1 19	1 33	1.13	1.02	1.19
	0.94	0.87	0.29	110	9.96	1.00				1.40	1 1 2 2 2	140				130	123	1,239	1046	0 91 36	1060
	1,005	0.3136	63333	1.100	1.044	1045					1.345	1.46									
40				<hr/>								7				<hr/>		7			
	0.92	0.85	0.58				131	1.24	1.40	1,00	133	115	1.46	1.35	1.42	44	1.0	ж	1.16	1.02	1.19
	0.961	0.9008	0.9331		6		1.371	1.291	1.444	LÀ	139	1475	1.474	136	1.397	1.378	(13) 9	1.265	1.081	0.9215	1.068
	0.82	0.73	0.82				1.36	1.30	1.52	1.51	×	1.57	1.60	1.47	1.55	151	X	1.42	124	1.07	1.22
- 1	0.8746	0,7739	0.8726				1.422	1.358	1.576	19	1455	1594	1.62	1,469	158	1.48	1.285	1338	1.161	0.9668	1.087
	0.80	0.75	0.85				1.48	144	1.62	155	145	No.	1.60	1.46	155	/190	135	19	1.19	1.0	1.15
	0.8519	0.7995	0.8985				1,549	1.509	1.676+	1.00	1,495	1598	140	1.46	1.523	1414	1.211	THE	1114	0.9000	1.00
30			4.75			1.00	1.04	1 24	1.44	110	1 24	116	126	110	1.20	125	111	1.07	1.18	0.98	1.11
	0.78	0.74	0.00	0.00	0.32	1.00	1.00	1067	1,129	136	1.245	1,282	136	1.155	1.185	1,191	1.075	1,009	1 102	0.8926	1008
	0.6400	0.64	0.80	0.015	0.9710	1.05	1.31	1.12	1.17	1.39	129	133	1.11	125	1,27	127	1.16	1.08	1.20	0.95	1.10
	0.7224	0.544	0.8495	0.8610	0.9487	1.111	1.122	1175	1,218	1.446	1.324	1.351	1,341	1.251	1.758	1.252	1.128	1.626	1.124	0.8728	0.9649
	0.70	0.75	0.97	0.91	1.13	1.29	1.02	1.37	1.36	1.59	1.41	1.47	1.46	1.34	1.35	1.39	1.25	1.19	1.29	1.11	1.12
	0.7415	0.8339	1.025	1.045	1.19	1.354	1.378	1.456	1.417	1.642	1.452	1.495	1.475	1.433	1.375	1.374	1,211	1.114	1.212	0.9771	0.969
		Be			Be .			k			Be			HYD			M			8e	

Table (2) : Comparison of hot points between our results and ref. results in case of three control rods up , with D_2O as reflector .

* Ref.results [5].

** Our results

1	6	5	4	3	2	1
1.96%* 1.88%**	2.28% 2.28%	2.38% 2.53%	2.37% 2.58%	2.23% 2.48%	1.90% 2.08%	1.66% 1.67%
0.69	0.76	0.81	0.01	0.81	0.65	0.57
2.50% 2.42%	2.92% 3.02%	0 0	2.09% 3.12%	0 0	2.38% 2.61%	2.20% 2.51%
0.88	0.69		0.99		0.51	0.75
2.73% 2.6%	2555 2565 1.22	1.47% 1.69%	14 H	3.16% 3.38%	AS	2.59% 2.51% 0.88
2.61% 2.46% 0.95	3.04% 3.05%	0 0 0 0 10	3.79% 3.94% 1.29	0 0 0 0 10	3.63% 3.66% 1.24	3.09% 2.84% 1.08
2.27% 2.11% 0.85	ABSU	195% 197% 1.55	2565 2565 2565 2565	433% 447%	1.79% 2006 1 1.56	3.22% 2.97% 1.10
2.47% 1.92%	2.77% 2.68%	3.37% 3.32%	1.65% 3.78%	3.74% 3.58%	3.45% 3.92%	3.04% 2.77%

Table (3) : Comparison for the average power between ref. results and our results in case of of control rods (3) and (6) are down with D_2O as reflector.

* Ref.results [5].

** Our results .

	1			6			5			4			3			2			1		
80																					
	0.462	0.48	0.578	0.588	0.636	0.65	0.757	0715	0.738	8.814	0,754	0.803	13	673	15	6.67	0.609	0.562	0.55	0.46	0.47
	0.453	0.47	0.58	0.588	462	0.662	0.778	010	0.766	0.847	0,793	0.623	022	0.768	0.784	0.707	0.646	0.558	0.589	0.478	0 51
	0.618	0.608	0.694	0.655	Q.715	0.727	845	6,806	0.812	0.897	0.842	182	0.855	1.857	0.850	0.769	0.699	0.651	0.639	a 531	0.5%
70																					
	0.65	0.64	0.714	0.54	0.635	0.362	MOCK-U	•		106	0,997	105	NOCK-U	•		0.877	0,799	0.750	0.735	475	8.8
	0.698	0.66	0.771	0.91	0.915	0.924				1166	114	116				0.992	0.938	88.0	0.855	6.708	0.756
	0.813	0.792	0,949	0,984	0.92	15				15	122	١ð				1.086	0.974	0.931	091	6.753	0.819
60				\setminus		/				\setminus		/				Ν					
	0.834	0.81	0.866	12	113	<i>)</i> 2%	127	119	13	13		X1	13	1.19	124	12		Иs	0.996	0,769	0,641
	0.842	0.7%	0.883		Ŵ		136	132	165		₩⁄	r	145	132	1.36		ЛŴ.	^	1.02	0.845	0.904
	0.925	0.901	0.961	131	嫲	133	141	135	146		<u>(</u> 10)		145	133	1.35		<u>(</u> îr,		1.008	485	495
				14	124	ЪŲ				uy 🖌	133	M				1¥	118	Ъų			
				/						18	134	1.6				13	115	μŊ			
50							MOCK-U	•													
	0.936	0.508	0.9%	142	в	1.44				145	13%	153	MOCK-U	•		134	1.203	119	0.998	0.851	0.932
	0.858	0.857	0.996	13%	1274	1.47				149	146	117				137	1.248	123	1.05	0.89	0.951
	0,94	0.924	0,99	143	136	199				149	1#	10				135	121	119	0%	0.845	1923
40										\sum		_				\sum					
	0.935	0,92	0.99	147	2	14	14	141	1.52	151	138	XM	149	135	127	135	11	105	1.006	0.95	1.05
	0.854	0.83	0.95		200		151	146	1.99		R		15	137	1.39		X		1.02	0.832	0.581
	0.847	0.856	0.586	13%	1214	M.	163	156	1.64	12	143	15	148	130	1,323	132	116	100	0.933	0,749	0.001
				18	136	199				1%	141	uЛ				18	112	0.91			
30																					
	0.825	0.84	0.99	0.99	1.03	1.13	113	11	111	13	1164	1.16	116	102	102	1.022	0.911	0.942	0.912	0.792	0.789
	0,71	0.72	0.93	0.94	1.03	1.1/	11/5	un G	1.164	1194	1202	1.199	1134	105	1058	105	0.922	\$0	0.901	0.697	0.735
	0.72	0.342	1.065	1.05	123	1.38	139	141	1.33	154	134	142	1.39	136	123	1.22	0.999	10	0.97	Q.77	0.744

Table (4) : Represent values of hot points in case of all control rods are up with H_2O as reflector

	1			\$			5			4			3			2			1		
8																					
	64	151	Ŵ2	48	44	471	\$ 2	17)	12	8.9	1285	12	612	187	44	(17)	472	1 17	1,4	45	62
	asi	14)	441	62	Q.67	471	8.84	641	15	8,9	629	694	0,94	129	492	613	4%	071	6,7	457	661
	663	162	672	17	65	477	6,90	15	12	8.9	14	195	10	۵	1.97	0.0	12	0.77	6,5	18	(#)
														9							
n																					
	665	Lis (173	LT I	677	181	MOCKAU	1		15	110	1.18	MXX4	1		1.02	63	(#)	102	4.5	1.14
	66	16	677	8.92	898	15				1.5	18	13				1.13	1.16	14	1.8	18	155
	Q77	1%	18	1.5	0.91	15				12	131	13				1.19	13	1.0	1.19	131	1.09
0				Ŵ	107	uy/				<u>/1</u>		Ŋ				NJ.		W			
	18	677	18	$ \rangle$	(85)	/	18	12	13	$ \rangle$	ĽŪ,	/	16	13	14	$ \setminus$	18,		1,658	0 91	19
	13	1.72	112)%		LIN .	138	14		M		157	14	13		М		119	0.99	1Å
	178	1.77	125	₩	()	Ψ	13	12	14	W	'n	RJ/	155	18	151	1496/	12	kψ/	117	0.9	18
				/úu	1.109	<u>Al</u>				/im	13	ЦÀ,				/a	131) Aku			
9							MOOKU	þ					MOCK-U	•							
	1,784	176	143	1.%	892	1915				1.434	102	19				1.0	136	1336	115	19	1Ø
	6,209	ព្រ	177	0.918	1,946	104				i i i i i i i i i i i i i i i i i i i	1.0	19				1.51	M	1325	18	1428	1.104
	1,78	យា	(,73)	1462	(#2	193				13	14	151				147	134	135	113	1.97	1M
4				\setminus						Ν		7				Ν		7			
	644	165 7	173	$ \setminus$	(R		122	12	136	X	136	ján –	153	16	149	∣ùx,	12	XX	114	0%	16
	0.997	15%	1679	'	1		13	1.26	18	· '	`V	/	155	14	1.50	`	VV	ŕ	144	0,5	146
	6. 577	4567	1576		1		136	12	146		\wedge		1.48	15	W		A		1.05	88	(19)
						/				1,16	137	ЪЙ				146	12	Ъų́р			
										/14	1N	NA				/13	13	134			
X																					
	1.559	0.556	1669	0.672	0.769	1.55	0.363	19	1965	116	118	13	1.14	16	1.055	10	땖	194	1.12	18	181
	1.78	0.48	164	1.64	073	181	6.8	15	105	121	12	131	1.18	112	1,127	1.07	1.MI	132	1.001	17	6.83
	1.01	1578	1.745	0,767	1,197	1063	10	117	117	13	13	19	137	13%	1.2%	1.2	LATE	13	1.16	1.5	0.84

Table (5) : Represent values of hot points in case of control rod (6) is down with H_2O as reflector .

82

	,			6			5			4			,			2			ı		
8	8.475	0,455	1.915	6,684	445	4.66	630	6.15	0,752	435	6413	0.851	6.851	6.825	6349	6.764	6,714	4,617	6.67	6.57	1.59
	1.59	18	6.59	6.599	6,634	1.6	6.77	6.733	6,755	6.54	L799	6.652	643	633	6.58	6.76	6,757	6.12	6,715	69	8.64
	6,622	44	6.815	w	U)	U	6.12	Q 77	£77	4.45	4.12	4.8	LN	6,396	696	us	UI	63	£.77	6.66	6.72
70	6.65	0,64	6.76	4.135	6.616	6.822				1.9	655	LN				15	0.52	4.99	4,555	6.75	6,54
	4.6	0.45	0.75	635	6.37	6.05				1.18	1.03	6.99				UN	Ú8	1.06	1.15	6.85	6.95
	4.77	0,75	6.7%	6313	66	4.15				LINS.	L14	1.18				1.12	un	เม	1.09	633	1.65
"	63	476	6,942	he	UR ÇR	ж	u	1.40	LH	\wedge	CR.		u	1.15	وررا	Y	13	p	1.12	1.95	1.6
	4.8	6,72	6.79	L16 L17	X	L15	LI7	1.11	13		Ľ		14	U	1.46	14	X	10	LIS	1.65	LH
	0.903	0.77	6.818				1.18	1.12	LN			\backslash	U)	N.	1.46) W	LU	Ŵ	1.12	1,45	L17
59	4.39	6.769	0.817	636	119	0.915				ы	IJ	un				146	1.39	L4	121	1.65	LB
	6.734	6.656	0.775	4.521	6354	4.95				129	821	1.44				151	Li7	151	13	1.12	1.22
	6,737	4.699	0.755	4179	1.854	6,917				66.1	1.8	1.6				1.52	1.41	м	L34	1.07	1.139
	6.72	4,656	6,753		C.R	-	12	1.15	L¥	N.	134	un	1.52	1.45	1.559	int	13	Jus	1.25	1.167	LI
	0.64	1.9	0,756		X		1.36	1.34	1.07	"	X	159	1.6	134	142		X		1.25	1.07	LI5
	6.627	6.615	0,728				ы	1.18	1.94	ü	1.0	15	1.99	1.93	157	19	un	Ψ.	1.18	4.967	LI6
N	0.6079	0.666	637	6,729	6.63	632	0.92	196	LIS	1.24	1.18	KLI	ш	1.16	121	122	112	Úľ.	1.16	6,95	1.03
	1.529	6,533	6.525	8,699	u	656	6,975	1,15	LI2	133	134	ĸ	131	124	127	127	US	1.45	1.15	6.907	6.964
	6546	8,641	6,915	4.85	1.99	17	L199	1.9	19	ß	1.34	159	1.5	1.57	L48	ы	1.24	ш	123	699	4.57

Table (6) : Represent values of hot points in case of control rods (3) and (6) are down , with H_2O as reflector .

		1			1			\$			4			3		2			1		
80																İ.			·		
	4.5 7	1.58	0.69	0.699	0.74	0.73	0.85	0.78	0.78	0.859	0.799	0.799	0.79	0.74	4.72	0.65	0.58	1.76	0.53	45	146
	0.599	4. 57	0.69	0.698	0.72	0.735	0.85	6.79	0.78	0.865	0.78	6.79	0.78	0.725	0.733	0.66	0.604	178	0.55	0.454	0.485
	6.74	4.73	0.811	0.81	0.806	0.78	0.91	0.424	0.799	6.878	0.7%	0.808	0.807	0.758	0.753	0.687	0.627	0.59	0.581	0.49	0.538
70																					
	0.777	0.75	1.13	0.975	0.935	0.915	MOOX-U			1.025	0.928	19	MOCK-UR)		0.769	0.707	0.671	0.659	0.56	0.62
	0.616	Q.77	1.12	1.08	1.00	0.55				1.08	1.001	A.99	· · ·			6.227	0.791	0,754	0.746	0.628	0.694
	0.923	0.89	0.93	1.08	0.974	0.958				1.13	110	105				0.85	0.85	0.788	0.77	0.655	0.748
60	0.937	0.902	0.942	135	1.18	1.3/	1209	112	1.18		Q.		1.20	1.15	133			7			
	0.915	0.857	0.934		QB,	/	1.33	121	134	$ \rangle$			1.34	1.17	16	$ \rangle$	α,	/	0.803	0.669	0.77
	0.967	0.925	0.966	1.37	X	1.31	1.33	123	1.33		X		1.34	1.2	16		X		0.93	0.75	0.65
				134	1.2	li)											1		0.937	0.79	0.905
												\backslash						\backslash			
Ŵ																					
	0.964	0.921	0.966	112	1.02	1.04	MOCK-U	,		132	131	1.29	MOCX-UP	•		122	116	111	0.933	0.815	0.928
	0.\$\$7	0.823	0.924	1.09	1,077	1,078				1.3	1.367	1.39				1.327	123	1.237	1.65	0.919	1.004
	0.892	0.84	0.898	0.87	1.033	1.047				1#	143	1.48				1,407	12	12	1.085	0.937	1.03
40										\setminus		7						7			
	0.\$73	0.83	0.895		ů		137	1.32	1.485	1404	ur,	/IA	1.535	1.412	1.459	1.43	um,	132	1.12	0.945	1.36
	0.777	0.717	0.856		X		1.62	1.402	1.62))((1.634	1.54	1.589		х		1199	0.994	1.05
	0.763	0.744	0,872				156	1.54	1.72	1699	1519	168	1.69	1528	1.585	1591	1.348	(L)	1.15	1,05	1.005
										163	1.55	<u>A</u> AL_				<u>/</u> \$\$\$	135	Æ			
30																					
	0.742	0.734	0.87	0.874	0.982	1.07	1.076	1.107	1.182	1.39	1297	1.337	1.12	1213	1.239	1202	1.122	1.05	1133	0.920	0.558
ŕ	0.645	0.647	0.828	0.841	0.951	1.13	1.102	1.211	1289	1.49	1.378	1.42	142	1323	1323	1307	1174	1.064	1159	0.904	0.946
	0.664	0.778	0.993	1.019	1179	1377	1.32	146	1471	1,708	156	1.6%	1.68	1編	1.558	155	1.288	1.16	129	1.008	0.971

Table (7) : Represent values of hot points in case of control rods (1) , (3) and (6) are down , with H_2O as reflector .

Table (8) gives the values of multiplication factor for four cases and these values ranged from (1.0854) when all control rods are up to (1.001) when control rods (1,3,6) are down, these values gives an indication that the reactor operates safely with (H_2O) as reflector.

Control rod situation	Multiplication
	factor
All control rods are up	1.0854
Control rod (6) down	1.059636
Control rods (3) and (6)	1.02487
down	
Control rods (1) , (3) and	1.001
(6) down	

Table (8) : Represent values of multiplication factor vs control rod situation .

table (9) represent the power distribution and it's percent on fuel rods ranged from (1.81%) to (4.58%) and the power ranged from (0.7 * $10^{-2} Mw$) to (2.29 * $10^{-2} Mw$) when control rod (1), (3) and (6) down.

Table (10) represent the values of power distribution and it's percent on fuel rods when control rods (1),(3),(4) and (6) are down, the values ranged from $(1.02*10^{-2}Mw)$ to $(1.955*10^{-2}Mw)$ and the power percent from (1.76%) to (3.91%) and from these values we conclude that reactor operates safely if we replace the reflector of the reactor by H_2O instead of D_2O as reflector.

Fig (2) represent the flux distribution in case all control rods are up.

Fig (3) represent the flux distribution in case control rods (3) and (6) are down.

Fig (4) represent the flux distribution in

case control rods (1), (3) and (6) are down

5.Conclusion:

From the above tables (4,5,6) were H_2O is a reflector we notice clearly that values of hot points are less than the hot points of and figures for the hot points in case of D_2O as reflector and the multiplication factor is in critical state in different situation of control rods also we can say that the reactor can operate safely if we replace the reflector of the reactor by $H_{2}O$ instead of D_2O . Also the computational model for the core carried out by the SQUID code is efficient.

References:

[1]Stacey weste N.M "Nuclear Reactor physics", wiley Intersience,2007.

[2]Khamias I and Ghazi.N "Indian journal of pure and Applied physics, "vol. 46,November 2008 pp755_700

[3]Anglart.H "applied Reactor Technology and Nuclear safety ",chapter(9), electronic book ,2010

[4]Cacuci DG." Handbook of Nuclear Engineering" Springer pub,1980

[5] Osirs nuclear reactor design study "French document" T42Rspol,1981

[6] SQUI D_360,"Amultigroup Diffusion program in Two Dimension with criticality search ,"user manual report 1980.

[7]Imam M."Arevised version o reactor code SQUID 360 and it's application to MTR Reactor,"IAEA_1990

[8] Askew J.R,Frayer F.J and kemshell D.B "A General Description of lattice code WIMS,D4" British Nuclaer Energy society ,1966

[9]Lewis E.E, "Fundamental of Nuclear Reactor Physics ",Elsevier International company ,2008

[10] FarhadiK." Journal of Nuclear and Radiation Physics "

Vol.3,No.1,2008,PD11-20.

_

Lattice No.	P%	Power(MW)*10 ⁻²
87	1.81	0.905
77	2.36	1.8
67	2.61	1.305
57	2.53	1.265
47	2.25	1.125
37	2.09	1.045
86	2,14	1.07
76	2.87	1.435
66	2.52	1.26
56	3.11	1.555
46		-
36	2.96	1.48
85	2.34	1.17
65	3.6	1.8
55	-	-
45	4.26	2.13
35	3.66	1.83
84	2.33	1.165
74	2.96	1.48
54	4.03	2.015
44	3.18	1.59
34	4.13	2.065
83	2.17	000
63	3.26	000
54		
43	4.58	2.29
33	3.84	1.92
82	1.77	0.885
72	2.29	1.145
62		-
52	3.65	1.825
42	2.84	1.42
32	3.5	1.72
81	1.4	0.7
71	1.91	0.955
61	2.31	1.155
51	2.78	1.39
41	3.03	1.515
31	2.91	1.455

Table (9) : Represent power distribution and its percent on fuel rods when control rod (1), (3) and (6) are down, with H_2O as reflector.

Lattice No.	P%	Power(MW)*10 ⁻²
87	2.26	1.13
77	2.87	1.435
67	3.03	1.515
57	2.77	1.385
47	2.31	1.155
37	2.31	1.02
86	2.67	1.335
76	3.44	1.72
66	2.84	1.42
56	3.20	1.6
36	2.66	1.33
85	2.88	1.44
65	3.85	1.925
55		-
45	3.53	1.765
35	2.99	1.495
84	2.86	1.43
74	3.43	1.715
64		-
54	3.54	1.77
34	3.26	1.63
83	2.67	1.335
63	3.41	1.705
53		-
43	3.91	1.955
33	3.25	1.625
82	2.2	1.1
72	2.72	1.36
52	3.68	1.84
42	2.73	1.365
32	3.3	1.65
81	1.76	0.88
71	2.31	1.155
61	2.63	1.314
51	2.98	1.49
41	3.12	1.56
31	2.93	1.465

Table (10) : Represent power distribution and its percent on fuel rods when control rod (1), (3), (4) and (6) are down, with H_2O as reflector.

87

Fig (2) : Relation between thermal flux and distance in case of D_2O or H_2O as reflector in case all control rods are up .

Fig (3) : Relation between thermal flux and distance in case of control rods (3) and (6) down , with D_2O or H_2O as reflector .

Fig (4) : Relation between thermal flux and distance in case of control rods (1) , (3) and (6) down , with D_2O or H_2O as reflector

No of	composition
composition	
1	9.2gm U253/fuel plate fuel type4
2	11.56gm U253/fuel plate fuel type3
3	13.18gm U253/fuel plate fuel type2
4	16.27gm U253/fuel plate fuel type1
5	13.21gm U253/fuel plate fuel of control role
6	Coffer of reactor core
7	Beryllium reflector
9	Outside region of control rod
10	Mock up experiment
11	Outside region –fuel type4
12	Outside region fuel type3
13	Outside region fuel type2
14	Outside region fuel type1
15	Outside region for control rod-up
16	Absorbing region for control rod-down
18	Water region- control rod-down
20	Aluminum Block
21	Boron region –fuel type4
22	Boron region fuel type3
23	Boron region fuel type2
24	Boron region fuel type1
25	Boron region for control rod- up
26	Light water

Appendix (1) : Represent the composition