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The transition matrix estimators of the Markov chain are not
accurate and the transition matrix is considered given. There are
many methods that are used to estimate the transition probabilities
matrix for different cases, the most famous of which is the Maximum
Likelihood Method, in order to find a good and new estimator for the
transition probabilities matrix of the Markov chain, a method was
proposed, which is a modification of the Bayes method, to reach the
transition probabilities with the least variance. This method assumes

chain, MLE, Bayes, PSO, DNA.

that the values of a;; in the initial probability are estimated by two
methods: Maximum Likelihood Method (MLE), and the algorithm of
particle swarm (PSO), The Escherichia Coli (E.Coli) gene chain was
chosen as an applied aspect of the study due to its importance in
medical research and for the purpose of discovering and
manufacturing treatments by knowing the final form of its gene
chain. After testing the E.Coli gene chain, it was found that is
represents a Markov chain, and then both the transition probabilities
matrix and the transition probabilities variance were estimated, and
it was found that the proposed method for transitional probabilities
is better than the method of greatest possibility depending on the
variance.
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1. Introduction

Markov chains are considered one of the most important stochastic processes, as the scientist
Andrei Markov published a set of scientific papers in 1907. These papers represented the
development of the Calton-Watson process, as it is considered the beginning of Markov chains.
Through these papers presented by Markov, he set a condition for the use of Markov chains. This
condition represents the Markovian property, which states: “The future states of the process depend
only on the current state of the process and are independent of the previous states” [1]. There are
four cases of Markov chains, as is the case in stochastic operations, where both time and state space
can be continuous or discontinuous, and among the most widely applied and famous Markov chains
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are those in which both state space and time are discontinuous. So the elements of the state space
can be sign with integers (1,2,3, ...). If the discontinuous random variable X,, represents a state seen
at time n , the stochastic process can be sign in a discontinuous state space in the form { X, ;n =
0,1,2,3, ... }, where the index n sign to time or location somewhere, and it can be any other index.
Since the index n represents time, it represents the present, and n — c represents the past before c
units of time, and n + c represents the future after ¢ units of time.
The stochastic process X, is called the Markov process, as it achieves the following[2]:
P{Xn=JjlXn1=0,Xn2=¢, .. Xy =k}=P{Xn=j|Xn1 =10} 1)

Where this conditional probability shows that the process in case (i) will move to case ( j )after
one step and with a probability of P;;, and the researcher G. Wang in the date of 2010 published a
research on estimating transitional probabilities[3], and the researchers Junsheng Ma, and others in
2014 published a paper on the Bayes method in estimating the transition probabilities matrix for
discontinuous-time data of the Markov process[4], and Lee, and others in 1968 published a paper
on the Bayes estimator and the greatest possibility of transitional probabilities[5],and
KALBFLEISCH and LAWLESS were also presented in 1984 Least squares estimation of
transitional probabilities from data collection[6].

2. The theoretical side
Building a model of a Markov chain by assuming a chain of observations. The first thing

that is observed is the observations of that chain, which may be letters or integers. From these
observations, the transitions from one state to another are calculated to form a matrix that includes
these transitions, called the iterations matrix and denoted by the symbol F. Assuming that the case
space s ={1,2,3,..,n} the iterations matrix is as follows:

1 2 3 en
f11 f12 f13 f1n
F= 2 fg1 f22 .f23 fZ-n (2)

n

fnl fnz fn3 fnn
Since the state space is discontinuous and finite, it is possible to express the probabilities of
transitions to and from different states after one step in the form of a matrix called the Transition
Matrix and denoted by the symbol P, and the element (i,j) of this matrix is represented by the
probability of transitions from state i to state j with a probability P;; = (X, = j|X;,-; = i) . Also,
the transition matrix P is a stochastic matrix and it must fulfill the two conditions:
> All of its elements are non-negative and greater than zero (being probability values).
» The sum of each of its rows is equal to one (since the sum of the total probabilities is equal to
one).

2.1 Estimating the Transition Probability Matrix

There are many methods that are used to estimate the transition probabilities matrix for
different cases, and in this research the method of greatest possibility was used and a proposed
method for estimating the transition probabilities matrix.

2.2 Estimating transition matrix using MLE method

Let xq, x5, x5, ..., X, be the observations of a random sample drawn from collection with a
probability density function f(x, P) . Then the possibility function of the sample observations can
be defined as the joint distribution of those observations. Let L(P) be a symbol for the possibility
function, then this function takes the form[7, 8]:
L(P)Z ?=1f(xifp)
L(P) = P(xy) [1¢=2 P(x¢|xe-1)

L(P) = P(xl) H?ZZ th_lxt (3)
After rewriting the transition probabilities to obtain the possibility function of the transition matrix
L(P) = PCxe) [T, 15y P 4)

Where n;; is the number of transitions from i to ;.
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By maximizing the above equation by taking the natural logarithm, we get:

lnL(P) =lnP(x1)+Zl,]nUlnPU (5)
For the purpose of finding transition probabilities from the equation of greatest possibility above,
we follow the Lagrange multiples method

L(P,/l) = lnP(xl) + Zi,jnij lnPL-j - (2{=1AL(ZJPU - 1)) (6)
A;j - Lagrange multiples,P;;: transition probabilities
where: Y P;; = 1
and by taking the partial derivation of equation (6) with respect to P;;and A;, we get:

oL
since ,; P;; = 1, that is% =0.
oL _ my o
ary By M (8)
by equating the above equation to zero, we get:
Mji_oy=0 2 =2U
Py T hPy
nij
Py =5 ©)
and by taking the sum of both sides of the equation above to ( n ) with respectto (j ), we get:
1=73,;7 (10)
Ai = Xjn; (11)
substituting equation (11) into equation (9), we get:
(MLE) _ nyj
pMLE) — S (12)

Therefore, formula (12) represents an estimator for the transition probabilities matrix of the
Markov chain using the method of greatest possibility.
2.3 Proposed method for estimating transition matrix
It was proposed to use the Bayes method to estimate the transition matrix by estimating
parameters based on a traditional method MLE and an intelligent method PSO, so that we have
D = (x4, %5, ..., Xp,) representing the observed data, so Bayes theory can be written in the following

form:
P(6|D) = ZEL2E (13)
Where P(6|D) is the subsequent distribution which represents the probability of the model
parameters (0) conditioned by the observed data. The value P(D|8) is the conditional probability of
the data given the parameters of the model, and this value represents the possibility function.
Whereas P (D) is the probability of the model data. The value P(0) represents the initial probability
and the initial probability reflects our belief about the parameters before we see the data. In our
case, the initial probability for each row of the transition matrix is the Dirichlet distribution.
Let us have the variables (x4, x,,...,x;, ) and these variables must satisfy x; € [0,1] and

kK x; =1, and the distribution parameters (aj,a,,..,a), @y = Y, @; ,50 the Dirichlet
dlstrlbutlon is in the form [9, 10]:
I(TE, @)
f(x1, %2, oo, Xp; A1, Agy e, Ag) = e 1;(6() ]_[l 1x (14)
the expected value of the Dirichlet distribution is:
a;

the variance of the Dirichlet distribution is:
) — a;j(ap—a;)

Var(x; 22 @or)

(16)
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This method assumes that the a;; values in the initial probability (which follows the Dirichlet
distribution) are estimated by the Dirichlet distribution, so the initial probability is of the form:

_ I'Xjaij) al] 1
PO) =i 7y Ly (17)

and the conditional probability of the data given the parameters of the model is of the form:
P(D16) = PCe) I 1, P (18)
and the probability of the model data is in the form:
P(D) = [P(D|6) P(6) db (19)
substituting equation (17) and equation (18) into equation (19), we get:
T8 s BT
P(D) = [ PO TLIL PV T2 11, P

[T T(aij)
since

au 1

nlJ+aU 1 _ ]'[]-F(nij+aij)
fH] i d6 = rjngj+aij))
_ @ jaip) [T T (nijt+ai))
P(D) = PCx) Il; [1;T(a T X j(nj+a;j)) (20)
The subsequent distribution of the proposed method in estimating the transition probabilities
matrix is obtained by substituting equation (17), equation (18), and equation (20) into equation (13),

we get:
nl]+al.] 1T jngj+a)
P@6|D) =[L;I1;P . T, Mg ) (21)
Equation (10) represents the subsequent distribution of the proposed method in estimating the
transition probabilities matrix, and by analogy with equation (10) to the Dirichlet distribution with
parameters (n;; + a;;) and therefore the rate and variance of the subsequent distribution is:

gt
[ U] Yj(nij+aij) (22)
Var[Pij] _ (ij+ai ) j(nij+ai)-mgj+a;))) (23)

Cjjrai))?@j(nij+aij)+1)
When the value of a;; approaches the value of n;;, therefore, the variance of the proposed
method approaches from the variation of the method of greatest possibility MLE, and it is in the

form[8]:
_ 2n;; (ZTli_—ZTli]')
Var|Pj] = G Gmrn)
Therefore, then the proposed method estimator for the Markov chain transition matrix is:

P(a) nijt @i (25)

Yi(ngi+ aif)
It has]betjan pjroposed to use two methods to estimate the Dirichlet distribution parameter «;; , the

first is traditional and the second is intelligent, as follows:

2.3.1 Estimation of a;;using MLE

Let's have the variables x; = {x;,x5,...,xx } , and the distribution parameters a; =
{a,,a,, ..., a; } So the Dirichlet distribution function is of the form[11]:

I, @)
[ @) = g T«
The possibility function for this distribution is:

(24)

N
I L D) (26)
e r@)” YT
and by maximizing equation (15) by taking the natural logarithm, we get:
InL=NIn(TEC,a)) =N In(JIL, T(@)) + N (2, — 1) Inx; (27)
and by taking the derivative of equation (16) with respect to «; , we get:
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dinL dln F(Z{'C=1 a;) dln H{'(=1 I(ay) k  d((a;j—1) Inx;)
d_ai =N ( da; ) —-N ( da; ) + Nzi=1 da; (28)
Equation (28) is an equation for estimating the values of a;; using the Maximum Likelihood
estimator method, and a program in R language has been used to estimate the parameter &;; .

2.3.2 Estimation of a;; using PSO

The (PSO) algorithm was proposed in 1995 by researchers James Kennedy and Russel
Eberhart to solve the unconstrained continuous improvement problem [12].

The particle swarm algorithm is inspired by biological examples of the natural and
collective behavior of a community of animals, insects, and creatures that live in groups, such as
wasps, bees, termites, and geese, and from the animal community, groups of fish and flocks of
birds. Swarm intelligence is used to describe systems to achieve an optimal state, whereby decisions
in a swarm are made decentralized by individuals on the basis of information obtained from their
environment [13].

The PSO algorithm aims to find the optimal solution by repeatedly updating the position and
speed of each particle based on the movement of the particles in the swarm. The basis for the work
of this algorithm is the particles, as it simulates the natural behavior of swarms of particles in a
computer program, where the particles are initially configured and each of these particles has its
own speed and position, and those particles fly in the search space, and the speed of the particles is
modified by controlling their current location and speed, and they are updated in each iteration of
the algorithm, so those particles have a tendency to fly towards the best solution in the search space,
and the update equations for the particle position and speed are as follows:

Vi = oV + e11(Ppest — XD + ca72( Gpest — X{) (29)
X = xt+ oyttt (30)
where: X2 ~U(Xyin » Xnrax)
that is
Xio = Xuin+ 1 (XMax - XMin) , i~ U0,1) (31)
where that

Vit 1 is the particle speed at k repetitions
X[*1: the particle position at k repetitions
w . isa positive constant representing the inertial weight
c1,C, - Acceleration coefficients regulate how far a particle can move in one repetition
11,75 Random numbers from the regular distribution
So the main steps of the PSO algorithm can be summarized as follows:
» Initializing the position by assigning a random position to each particle
» Computing an appropriate value for each particle within the swarm
» The local best position is updated if it is better than the previous
» The global best position is updated if it is better than the previous one
» Calculate the speed of each particle using equation (29)
» Update the particle position using equation (30)
» Steps (2-6) are repeated until the completion condition is met
3. Discuss the results
Bioinformatics is widely used in the study of the genomes of living organisms in the
determination of Deoxyribonucleic acid DNA sequences. And that the science of bioinformatics
depends on each of the sciences of statistics, mathematics, computer, chemistry and medicine in
data analysis. Bioinformatics was used to determine Deoxyribonucleic acid DNA sequences, and
nucleic acid is a complex chemical compound responsible for determining genetic traits and is
present in all living organisms. Deoxyribonucleic acid (DNA) is found in the cell nucleus within the
chromosomes that consist of the chromatin network. In 1900, deoxyribonucleic acid was defined as
a long strand consisting of four nitrogenous bases, which are of two types:
» Purines rules, which are:
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a. Adenine and symbolized by the symbol A

b. Guanine and symbolized by the symbol G
» Pyrimidines rules, which are:

a. Cytosine and symbolized by the symbol C

b. Thiamin and symbolized by the symbol T

The DNA strand consists of the linking of nitrogenous bases with each other, as thymine
binds with adenine, and cytosine binds with guanine. Data for Escherichia Coli (E.Coli) were
obtained from the website of the National Center for Biotechnology Information through the link
https://www.ncbi.nlm.nih.gov,as this website provides a database that is available For researchers
for the purposes of development and scientific research, the gene chain of E.Coli with a length of
1039 nitrogenous bases was chosen as an applied aspect of the study due to its importance in
medical research and for the purpose of discovering and manufacturing treatments by knowing the
final form of its gene chain.

And using the program prepared for this purpose in the MATLAB R2021a programming
language, a matrix of repeats was formed for the E.Coli gene chain, which includes the number of
transitions between the four nitrogenous bases.

A T C G f;

86 65 68 46| 265

47 76 42 81| 246
74 49 65 73| 261

57 56 86 68] 267
fj 264 246 261 268 N =1039

The E.Coli gene chain was tested under both the null hypothesis and the alternative
hypothesis, which states:
H,y: The E.Coli gene chain is not a Markov chain
H,: The E.Coli gene chain is represents a Markov chain

And that the statistical laboratory that tests whether the E.Coli gene chain represents a
Markov chain or not follows y,, with a degree of freedom (s — 1)2, where:
S : represents the number of cases in the iterations matrix
n;;: represents the observation i, j in the iterations matrix
n; : represents the sum of the row in the iterations matrix
n ;: represents the sum of the column in the iterations matrix
N : represents the sum of the iterations matrix

By comparing the calculated value of y,, which is equal to (1361.4) with the value of the
tabular y,, which is equal to (27.88), we reject the null hypothesis and accept the alternative
hypothesis, that is, the E.Coli gene chain represents a Markov chain.

Translational probabilities matrix estimation of the E.Coli gene chain

The transitional probabilities matrix of the E.Coli gene chain was estimated using the
method of Maximum Likelihood Method and the proposed method of using the PSO algorithm and
the MLE method to estimate the values of the parameter &;;, and the following table shows the
elements of the transitional probabilities matrix.

oy
I
DO
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Table (1): Transitional probabilities of the E.Coli gene chain using different estimation

methods.
probability of Transition
Transition Proposed Method (PM)
MLE PSO to estimate @;; MLE to estimate @;;
AA 0.3245 0.3225 0.3035
AT 0.2453 0.2460 0.2474
AC 0.2566 0.2573 0.2556
AG 0.1736 0.1743 0.1936
TA 0.1911 0.1918 0.208
TT 0.3089 0.3109 0.2928
TC 0.1707 0.1715 0.1925
TG 0.3293 0.3258 0.3067
CA 0.2835 0.2818 0.2743
CT 0.1877 0.1884 0.2043
CC 0.249 0.2496 0.2497
CG 0.2797 0.2802 0.2716
GA 0.2135 0.2141 0.2237
GT 0.2097 0.2105 0.2209
GC 0.3221 0.3201 0.3015
GG 0.2547 0.2554 0.2539

Table (2): Comparison of the estimation methods used for the transition matrix depending on
the minimum of variance.

Variance of Transition
o Method
Transition Proposed method (PM) MOV
MILE PSO to estimate @;; MLE to estimate @;;
AA 0.00041282 0.0003907 0.00035739 PM
AT 0.00034862 0.00033167 0.00031481 PM
AC 0.00035924 0.00034169 0.0003217 PM
AG 0.00027016 0.00025738 0.00026392 PM
TA 0.0003135 0.00028806 0.0002885 PM
TT 0.00043306 0.00039811 0.00036258 PM
TC 0.00028719 0.00026403 0.00027214 PM
TG 0.00044797 0.00040816 0.00037233 PM
CA 0.00038841 0.00033898 0.00033837 PM
CT 0.00029157 0.00025607 0.0002763 PM
CC 0.00035759 0.0003137 0.00031848 PM
CG 0.00038521 0.00033775 0.00033628 PM
GA 0.00031385 0.00030031 0.00029229 PM
GT 0.00030981 0.00029664 0.00028967 PM
GC 0.00040813 0.0003885 0.0003545 PM
GG 0.0003548 0.00033944 0.00031888 PM

4. Conclusions

In recent years, the study of Bioinformatics is one of the important topics that researchers
have been interested in, especially DNA data. Therefore, the aim of the research was to choose one
of the types of E.Coli bacteria as an applied aspect of the research.
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A new method was proposed to estimate the transition probabilities matrix by estimating the
Dirichlet distribution parameter a;; using the MLE method and the PSO intelligence method, and
comparing the results with the Maximum Likelihood Method to estimate the transition probabilities
matrix.

It was concluded that the proposed method for estimating the transitional matrix is better
than the Maximum Likelihood Method, and the proposed method gave a simpler way to estimate
the transitional probabilities matrix using the PSO algorithm.
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