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Abstract

Identifying microorganism species, such as Lactobacillus, is essential in ensuring the food products' quality and
safety. Traditional laboratory practice requires expert knowledge and experience, but the method is expensive and time-
consuming due to complex sample preparation. Faster, more accurate, and cheaper computational methods, such as
transfer learning technology, are needed for the Lactobacillus species classification. The technique has been effective in
a variety of image recognition contexts. Deep learning architecture can also be applied as an innovative strategy for
digital image-based identification. Therefore, this research aims to compare several deep-learning architectures in
classifying bacterial strains of Lactobacillus. The four architectures (Inception V3, MNASNet, RegNet, and Xception)
used have excellent performance with accuracy above 95 %. Among those architectures, the mobile neural architecture
search network (MNASNet) exhibits the most potential, with 99.15 % accuracy, 99.09 % precision, 99.14 % sensitivity, and
99.11 % F1 score. This performance is particularly notable given that MNASNet operates with 3.1 million parameters.
Although RegNet has a slightly lower parameter count at 2.68 million, it achieves the accuracy, precision, sensitivity, and
F1 score of 98.73 %, 98.73 %, 98.77 %, and 98.75 %, respectively. Xception, with over 20 million parameters, attains 98.99 %
accuracy, 98.71 % precision, 98.78 % sensitivity, and 98.74 % F1 score. In addition, the MNASNet architecture is highly
efficient, making it very suitable to be implemented or embedded on mobile devices. The model is promising regarding
the deep learning architecture prospects for classifying microscopic images of Lactobacillus species.

Keywords: Classification of Lactobacillus, Deep learning, Identification, Inception V3, MNASNet, RegNet, Xception

1. Introduction

T he digital revolution has arrived, and devel-
opment experts have a long way to go to solve

the challenge of global food security. Nowadays,
people not only need food to fulfill basic nutritional
requirements but also look for additional functions
for health [1]. Hence, functional foods are trending
and answer to the demand [2]. One of the most
important lactic acid bacteria, Lactobacillus [3]. This
bacteria also has nutrition and is beneficial for
health [2]. Lactobacillus play a vital role in the
fermentation of several dairy products [4]. It is used
commercially in producing multiple products, like

yogurt and kefir, partially due to its ability to release
lactic acid and improve specific sensory character-
istics [5].
Beyond food production, Lactobacillus species are

being explored for their potential in various in-
dustries, e.g., pharmaceutical, nutraceutical, and
agriculture. In the pharmacy, these bacteria are used
to develop probiotic supplements to prevent and
treat various gastrointestinal disorders [6]. In agri-
culture, Lactobacillus enhance plant growth and
protect crops against pathogens by producing
bioactive compounds [7]. Their multifunctionality
highlighted the importance of accurately identifying
Lactobacillus species to ensure the quality and safety
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of food products and the efficacy of probiotic treat-
ments and agricultural applications [8].
Traditional laboratory methods for identifying the

species require experts with experience and
knowledge. Conversely, most automatic and rapid
microbiological identification methods are based on
biochemical or modular biological technologies
[9,10]. The methods are expensive and time-
consuming due to the requirements of complex
samples [11]. Using digital images as information
opens new opportunities to optimize the identifica-
tion of Lactobacillus species.
Automating the identification process is very

promising in bioimage informatics. The strategy is
reasonable for particular image analysis, e.g., mo-
tion analysis, morphometric features, or object
detection [12]. Most image analysis algorithms have
been expanded for particular biological assays [13].
More precise, less expensive, and faster computa-
tional methods for classifying species are needed.
Therefore, accurate and efficient Lactobacillus clas-
sification ensures quality and food sustainability.
Transfer learning technology using deep archi-

tecture has been proven effective in various image
recognition [14]. The technology can be applied as
an innovative method in the digital image-based
identification of Lactobacillus species. Transfer
learning can improve accuracy and efficiency by
leveraging existing knowledge from models trained
on image datasets [15]. Identifying Lactobacillus
species is based on microscopic images.
Several research have adopted deep learning

architecture to classify bacterial species using
microscopic images. Zielinski et al. [16] used a deep-
learning method for classifying bacterial colonies.
Convolutional neural networks (CNN) were used as
a feature extractor, support vector machine, and
random forest classifier. In 2018, Nasip and Kenan
[17] used another method to solve digital image of
bacterial species (DIBaS) classification tasks. The
two different architectures classified bacteria using a
VGGNet [18] and AlexNet [19] to achieve accuracies
of 98.25 % and 97.53 %, respectively. Subsequently,
three works using the DIBaS dataset were published
in 2019. The first achieved 98.22 % classification
accuracy with a deep CNN and a data augmentation
method known as “deep bacteria” [20]. In the second
publication, “deep bacteria” was exceeded by
achieving 99.2 % classification accuracy and retun-
ing the trained model from ResNet-50 [21]. For the
third publication, Rujichan et al. [22] achieved a
classification accuracy of up to 95.09 % by returning
a previously trained version of the MobileNet V2
architecture Sandler et al. [23], and adopting several
augmentations.

A classification accuracy of 98.68 % was achieved
using fractional sequential orthogonal moments to
extract features and propose a new selection method
called salp swarm algorithm þ teaching-based
learning optimization (SSATLBO) [24]. Meanwhile,
Satoto et al. [25] also achieved 98.59 % accuracy
using a custom CNN topology and data augmenta-
tion methods. García et al. [15] adopted 4 different
architectures using data augmentation methods,
namely shufflenet, MobileNet, Squeezenet, and
Efficientnet. Each classification has an accuracy of
96.35 % (shufflenet_v2_x1_0), 97.38 % (mobile-
net_v3_large), 91.36 % (squeezenet1_1), and 97.20 %
(efficient net-b0). Reddy et al. [26] used semi-auto-
matic labeling and semantic segmentation
(ResUNetþþ) to achieve an average accuracy of
95 %. Additionally, Singh et al. [27] used AlexNet
and GoogleNet to achieve an accuracy of 97.14 %
and 98.67 %, respectively. Amri et al. [28] reported
accuracy of 91.67 % and 94.44 % for ResNet and
VGGNet, respectively. According to Kristensenet
et al. [29], DIBas is first subjected to a feature
extraction process before the classification stage is
carried out. The extracted features are color and
morphological, with a classification accuracy of 99 %
using the random forest algorithm. Jamshidi et al.
[30] used 2722 data collected with the same number
of bacteria. The EfficientNetV2 architecture formed
a classification accuracy of up to 99.33 %.
Despite the significant progress achieved in pre-

vious studies, several challenges and gaps remain in
applying CNN architectures within microbiology,
particularly concerning the generalization of models
across datasets and circumstances. One of the crit-
ical challenges is the limited exploration of the latest
architectures that may offer superior performance
or efficiency in classifying Lactobacillus species.
Existing researches mainly focus on the broader
classification of bacterial species, leaving a gap in
the specific application of Lactobacillus strain classi-
fication methods.
Recent studies have begun to address these chal-

lenges and gaps in current methodologies. For
instance, García (2022) [15] highlighted the limita-
tions of current CNN-based approaches in differ-
entiating closely related bacterial species under
various imaging conditions. The findings highlight
the necessity for further research into more robust
architectures, training, strategies, and the stan-
dardization of experimental data. Therefore, it is
necessary to improve the accuracy and reliability of
CNN models in identifying Lactobacillus species.
This study compares several deep-learning archi-

tectures in classifying bacterial strains of Lactoba-
cillus. The experiments were carried out with an
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architecture proposed as an efficient solution for
image classification with low computing cost
regarding memory and number of calculations. The
architecture was initialized by pre-training the
model with the ImageNet dataset [31]. In addition,
the architecture was evaluated using a confusion
matrix with the augmented DIBas dataset. The con-
tributions of this study include:

� The first research uses the Lactobacillus species
dataset as a classification target on MNASNet
and RegNet.

� The performance is close to state-of-the-art
using a network architecture with less than 5
million parameters.

� The network's efficient and low-resource nature
increases the ease of adapting and implementing
on a mobile device.

2. Materials and method

This research developed and tested 4 deep
learning architectures with several parameters of
less and more than 10 million (Table 1). The archi-
tecture was trained using imagenet, and the model
was transferred by adjusting the dataset to be pro-
cessed, including the number of adjusted targets, as
shown in Fig. 1.
The selection of deep learning architectures plays a

critical role indetermining the success of classification
and identification Lactobacillus species based on
microscopic images. This study chooses four archi-
tectures (MNASNet, RegNet Xception, and Incep-
tionV3) due to their unique characteristics and
compatibility with the dataset. This selection is based
on proven performance in general image classifica-
tion tasks and the classificationofLactobacillus species.
MNASNet is an architecture developed focusing

on efficiency, especially in its application to mobile
and embedded systems. The architecture is
designed with principles that optimize computa-
tional resources without significantly compromising
accuracy. However, the efficiency advantage also
comes with challenges. MNASNet, despite its effi-
ciency, may struggle when applied to highly com-
plex datasets. This is caused by its more minimalist
architecture than the more significant and deeper
models [32]. RegNet is a stand-out architecture that

offers robust regulation through its flexible and
scalable design. RegNet can reduce the risk of
overfitting, a common problem often in classifica-
tion tasks with limited or particular datasets. The
strong regulation ensures the model learns from the
training data and generalizes well to unseen data.
However, it needs for carefully tuned to achieve
optimal performance. The process requires signifi-
cant time and computational resources, especially if
the dataset is highly complex or has highly varied
[33]. Xception, for extreme inception, is an archi-
tecture that leverages depthwise separable convo-
lutions to enhance model efficiency and accuracy.
The approach allows Xception to capture fine details
in images more efficiently, making it a strong choice
for complex image recognition tasks. In Lactobacillus
species classification, Xception's ability to capture
fine details is crucial. Microscopic images often have
tiny variations between one species and another,
and models that can capture the subtle differences
will have a clear advantage in accuracy. However,
like RegNet, Xception also requires significant
computational resources, mainly when applied to
large or highly complex datasets [34]. InceptionV3 is
an architecture known for its Inception modules,
which allow multi-scale information processing
within a single layer. The multi-scale approach is
beneficial in analyzing complex images, such as
microscopic images, where details at various levels
of resolution can provide different and essential
information for classification tasks. The main
advantage of InceptionV3 lies in its flexibility in
handling multi-scale information, making it highly
useful in classifying Lactobacillus species where
morphological details can vary greatly. However,
the challenge faced when using InceptionV3 is its
optimization and implementation complexity. Its
modular structure, while highly flexible, can also be
more challenging to optimize than simpler archi-
tectures [35]. The stages of the architecture use Py-
thon 3.10.12 with Pytorch 2.0.0 library.

2.1. Data acquisition and preparation

This research adopted data from DIBaS [16]. DIBaS
contains 660 microscopic images evenly distributed
among 32 species of bacteria and 1 fungus and is
available as a public database. The dataset was
selected using only 11 species of Lactobacillus; hence,
the dataset contained 250 images. In Poland, Jagiel-
lonian University collected all the images to obtain
DIBaS data using an Olympus CX31 upright biolog-
ical microscope equipped with an SC30 camera
(Olympus Corporation, Japan). A typical example of
Lactobacillus species is presented in Fig. 2.

Table 1. Number of parameters for each architecture.

Deep Learning Architecture Parameter

MNASNet1_0 3,116,403
RegNetx002 2,684,792
Xception 22,855,952
InceptionV3 27,161,264
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The data augmentation (250 data) is carried out
before being used in the model creation process. The
strategy aimed at increasing the amount of data,
where an original image can produce an extra 35. This

study used a simulation of various zoom levels for the
bacteria obtained by cutting multiple regions of
different sizes from the original image [15]. Each
original image produces 5 cuts and is zoomed into

Fig. 1. Research stages.
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seven sizes from 100 to 700. Data augmentation has
7290 images, as can be seen in Algorithm 1. All pro-
posed architectures are designed to process inputs of
224 � 224 pixels; hence, after data augmentation, we
resized every sample to the input size using Lanczos
interpolation. The number of samples for each species
and a visualization of the augmentation process are
available in Fig. 3 and Table 2, respectively. The data
augmentation method is based on the approach of
García et al. [15], who demonstrated that this
augmentation technique could improve accuracy by
up to 2 % with fewer epochs than data that was not
augmented. Additionally, data augmentation can
avoid fitting issues, ensuring that the model general-
izes better to unseen data.
The 7290 images were grouped into 70 % train,

15 % validation, and 15 % test data by maintaining
the same class balance in the division. Additionally,
the division produced training and test data for 5544
and 1188 images, respectively. The distribution of
data splitting for each species is presented in Table 2.
Train and validation data were utilized to train four
deep learning architectures to result in models.
Meanwhile, the test data were used to evaluate the
model performance.

2.2. Deep learning models

2.2.1. MNASNet
MNASNet uses depthwise separable convolutions

to balance performance and efficiency [32]. The

architecture adopts 2 convolution layers for each
block. First, a depthwise convolution layer with 3 � 3
or 5 � 5 kernels is responsible for extracting spatial
features. Second, a pointwise convolution layer with
a 1 � 1 kernel combines information from previously
extracted features. The architecture implements the
channel expansion-contraction transformation
across the network. The transformation includes
dynamically changing the number of channels to
optimize computational efficiency and network rep-
resentation capabilities. In addition, the process is
carried out to minimize the computational load on
specific layers. MNASNet also uses harmonious
bottleneck layers to reduce the computing load [36],
as presented in Fig. 4.

The layer focuses on spatial and channel trans-
formations, resulting in a slimmer feature map size.
By introducing the layer, MNASNet balances model

Fig. 2. Samples of Lactobacillus species, a) L. casei, b) L. crispatus, c) L. delbrueckii, d) L. gasseri, e) L. jehnsenii, f) L. johnsonii, g) L. paracasei, h) L.
plantarum, i) L. reuteri, j) L. rhamnosus, and k) L. salivarius.

Algorithm 1: Data augmentation process.
An augmented version of the DIBaS dataset.

Species in DIBaS
| Sample in Species 
| | Shape in [100,200,300,400,500,600,700] do
| | | L=Obtain 5 crops of Sample with size Shape;

| | | resize all images in L to 224x224 px;

| |

| | add all images in L to augmented folder;

| | resize Sample to 224x224px;

| | add Sample to augmented folder;

|
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accuracy and computational efficiency. Meanwhile,
the harmonious bottleneck layer has spatial and
channel dimension expansions and contractions
[37]. The method forms an improved convolutional
layers efficient model accuracy. The comparison of
depthwise separable convolution blocks and
harmonious bottleneck layers is shown in Equations
(1) and (2). The spatial size of the input and output
feature map, channel, and kernel size is H� W , C1/
C2, and K � K [32]. Meanwhile, B is the block's
computational cost between the contraction and
spatial expansion operations. The total cost of
depthwise separable convolution is:

ðH�W�C1�K�KÞ þ ðH�W�C1�C2Þ ð1Þ
The total cost of the harmonious bottleneck layer

is:

B
s2

�
H
s
� W

s
�C1þH�W�C2

�
�K2

�
ð2Þ

2.2.2. RegNet
RegNet is a neural network design paradigm uti-

lized to simplify the training of deeper networks by
adopting a regularization method [33]. The method
aims to design neural networks with a regulariza-
tion-focused method to tackle the training of deeper
models more efficiently. In addition, RegNet is used
as the basis of design, allowing better learning of
deep representations through shortcut connections.
The method focuses on channel expansion-
contraction transformation to simplify network
design. RegNet includes adaptively changing the
number of channels to increase efficiency and
reduce complexity. The architecture has 3 main
parts: stem, body, and head. Stem is responsible for
preprocessing with strides 2 and 32 and a 3 � 3
convolution kernel. The body performs feature
extraction, and each stage operates at a decreasing
resolution. Meanwhile, the head contains an
average pooling and a fully connecting layer.
The modules in RegNet have linear residual

connections except the first and last. The residual
connections help in more profound network
training. Moreover, RegNet concentrates on
designing individual network instances and devises
a design space for parameterizing a population. This
allows for regularization in the overall network
design [38]. RegNet also introduces harmonious
bottleneck layers to reduce the computational load.

Fig. 3. L. reuteri augmentation process a) original, b) Crops 700 � 700, c) Crops 600 � 600, d) Crops 500 � 500, e) Crops 400 � 400, f) Crops
300 � 300, g) Crops 200 � 200, h) Crops 100 � 100.

Table 2. The amount of species data and the allocation of train, vali-
dation, and test data.

No Species of
Lactobacillus

Train set Validation Test set Count

1 L. casei 504 111 105 720
2 L. crispatus 485 125 110 720
3 L. delbrueckii 500 104 116 720
4 L. gasseri 524 92 104 720
5 L. jehnsenii 491 107 122 720
6 L. johnsonii 497 132 91 720
7 L. paracasei 507 107 106 720
8 L. plantarum 533 94 93 720
9 L. reuteri 489 118 113 720
10 L. rhamnosus 512 111 97 720
11 L. salivarius 502 87 131 720

Total 5544 1188 1188 7920
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The layer focuses on spatial and channel trans-
formations to balance representational capabilities
and efficiency. The architecture is designed to
improve network training efficiency and provide
strong generalization capabilities across different
settings, as shown in Fig. 5.

2.2.3. Xception
Xception is a CNN architecture introduced by the

developer of Keras, François Chollet [34]. The ar-
chitecture takes an extreme method, focusing on
depthwise separable convolutions. This is achieved
based on the Inception architecture, with significant
improvements. Deep separation is a core principle
that includes depthwise and pointwise convolution,
where the channel information is separated and
combined. Xception uses 1 � 1 convolution on each
depthwise channel to ensure extreme separation.
The process enables better feature extraction at
different abstraction levels.

The architecture is divided into 3 flow structures,
namely, inbound, middle, and outbound. Each
structure contains 14 modules with 36 convolutional
layers. There are residual connections except the
first and last modules of the incoming and outgoing
flow. Xception architecture starts with an inbound
flow, which contains 4 modules, and each module
has 2 convolution layers. In the first module,
convolution is carried out using a size of 3 � 3 with
32 and 64 filters. In the other three modules, sepa-
rate convolutions are realized with a size of 3 � 3
using 128, 256, and 728 filters. The incoming flow
accepts inputs at 3 � 299 � 299 image and creates an
output with a 19 � 19 � 728 feature map [39].
A total of 3 convolution processes with 728 filters

in 3 � 3 are repeated 8 times in the middle flow,
creating a 19 � 19 � 728 map in the output. The
feature map, which is the middle output, is provided
as input to the exit flow with 2 modules. In the first
module, separate convolution is performed with 728

Fig. 4. MNASNet architecture.

Fig. 5. RegNet architecture.

588 D.A. Rusmawati et al. / Karbala International Journal of Modern Science 10 (2024) 582e595



and 1024 filters at a size of 3 � 3. Meanwhile, the last
module performs the process with 1536 and 2048
filters. The architecture ends with adding a fully
connected layer, as shown in Fig. 6.
As with ResNet, Xception uses linear residual con-

nections around splitting blocks. The process trains
deeper models and overcomes the risk of vanishing
gradients. The architecture is essentially a linear stack
of deeply separated convolutions for interpretation
and modification. Meanwhile, the feature extraction
module consists of some linear separation blocks to
make the model easy to understand.

2.2.4. Inception V3
InceptionV3 is a CNN architecture widely known

for image recognition and classification tasks [35].
The Google Research team developed the architec-
ture to overcome model complexity and improve
accuracy. In addition, a computationally efficient
architecture is designed with high representation
capabilities for understanding complex image fea-
tures. The method leverages a multi-path, where
varying filter sizes are used in a single layer to
extract spatial information at multiple scales.
The prominent architecture of InceptionV3 is built

using inception modules, which consist of several
convolution paths with different filter sizes. The
design helps in capturing features at various levels
of abstraction. Other models can be simplified by
reducing the channel dimensions using 1 � 1
convolution. However, the process reduces the
computational load and model parameters. Incep-
tionV3 also uses auxiliary classifiers to stabilize
training, prevent vanishing gradients, and produce
better convergence, as shown in Fig. 7.

2.3. Models evaluation

This research uses a confusion matrix to evaluate
classification models, namely accuracy, precision,

sensitivity, and F1 Score [40]. Additionally, classifi-
cation models can be evaluated through categorical
cross-entropy, and the equations used are shown in
Table 3.

3. Result and discussion

3.1. Training details for model selection

The training phase was applied using Python
3.10.12 with Pytorch 2.0.0 library. The code is written
and executed in a Kaggle Notebook environment
with graphic processing unit (GPU) accelerators
such as Nvidia P100 (https://www.kaggle.com/). The
computational setup consisted of the Windows 11
(64-bit) operating system, powered by a 12th-gen-
eration Intel i5 processor and supported by 16GB of
RAM.
In addition, different optimizers are explored

while keeping other factors uniform. The Adam al-
gorithm also achieves good results on training and
validation sets [43], with the learning rates used in
the adaptation and fine-tuning phases at 0.001 and
0.00001. Stable convergence of the training loss
function is also reported with a batch size 32.
Finally, the number of epochs is set to 20 and 100 in
the adaptation and fine-tuning phases, respectively.
A callback function is defined to monitor validation
accuracy and stop training when there is no
improvement for 5 and 10 consecutive epochs in the
adaptation and fine-tuning phase. Meanwhile,
training and validation at the fine-tuning stage show
good performance, including MNASNet, RegNet,
Xception, and InceptionV3 at an accuracy of 99.22 %,
99.07 %, 99.66 %, and 97.31 %, as well as a loss of
0.0208, 0.0278, 0.0133, and 0.1483, respectively
(Fig. 8). The first three models (MNASNet, RegNet,
and Xception) exhibited exceptionally high accu-
racy, exceeding 99 %, with no statistically significant
differences observed. It indicates that the models
are highly stable and effective during the training

Fig. 6. Xception architecture [41].
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and validation phases as strong candidates for
further evaluation in the testing phase. Since their
accuracies are not significantly different, the three
algorithms will be used in the testing phase to
assess generalization capabilities on previously un-
seen data. Although inceptionV3 also performs well,
its slightly lower accuracy than the other three

models renders it less prioritized for subsequent
testing.

3.2. Testing models

The three models with the lowest loss and highest
accuracy during the training and validation were

Fig. 7. Inception V3 architecture [42].
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tested. The evaluation used the confusion matrix
method: accuracy, precision, sensitivity, and F1
score, as visualized in Fig. 9, and the details are
shown in Table 4. Meanwhile, the data in the model
testing has yet to be included in the training and
validation mechanism.
Based on Table 4, MNASNet has the sensitivity,

highest precision, and F1 score. This is followed by
Xception on accuracy and sensitivity and RegNet on
precision and F1 score. The architecture also expe-
rienced a decrease in accuracy compared to the
model performance in the fine-tuning phase.
Meanwhile, Xception on validation data has a high
accuracy of 99.66 % compared to other models. The
testing phase, which used test data, experienced a
decrease of 0.67 %. The value differed from
MNASNet and Regnet at 0.07 % and 0.34 %,
respectively. MNASNet, with only 3.1 million pa-
rameters, performed better than Xception at 2.8
million. Similarly, RegNet had only 2.6 million pa-
rameters with better values in precision and F1-
score.
The three models did not experience overfitting or

underfitting. It can be evident from the evaluation of

precision and sensitivity, where performance re-
mains consistent without significant differences.
Based on the confusion matrix in Fig. 9, the models
generally performed well in classifying 11 Lactoba-
cillus species, although there were some significant
misclassifications. Further analysis of the MNASNet
model revealed that most of these errorsdincluding
two L. reuteri samples and one L. gasseri sample
misclassified as L. jehnsenii, one L. casei sample
misclassified as L. reuteri, three L. plantarum samples
misclassified as L. delbrueckii, and three L. rhamnosus
samples misclassified as L. crispatusdwere caused
by suboptimal image quality during testing. The
images were more focused on the background color
rather than the bacterial morphological features
themselves (Fig. 10). This issue primarily arises due
to data augmentation techniques with zooming up
to 100 � 100, which distorted the original bacterial
images. Therefore, critical features for classification
become less transparent and more complicated for
the model to interpret.

3.3. Discussion

*Special description of the title (dispensable).
The low sample size in the original dataset can

lead to fitting issues in specific architectures.
Research by García et al. [15] demonstrated exam-
ples of architectures that experienced underfitting
even when using transfer learning, such as Squee-
zeNet1_0 and SqueezeNet1_1. Other architectures,
like ShuffleNet_v2_x1_5 and ShuffleNet_v2_x2_0,
could not resolve the issue from the outset,
requiring further testing to determine whether
transfer learning could yield better results on the
original dataset. Based on this perspective, the main

Fig. 8. The validation results in the fine-tuning phase for models (MNASNet, RegNet, Xception, and InceptionV3). a) The graph presents the loss
value models. b) The graph presents the accuracy values models. As depicted, InceptionV3 exhibits the highest loss and the lowest accuracy value,
indicating a poorer fit to the data than the other models.

Table 3. The equation for evaluating four classification models.

Evaluation Equations

Accuracy ðTP þ TNÞ
ðTP þ FP þ FN þ TNÞ

Precision TP
ðTP þ FPÞ

Sensitivity TP
ðTP þ FNÞ

F1 Score 2� ðPrecision� SensitivityÞ
ðPrecisionþ SensitivityÞ

Categorical Cross� Entropy � Pn
i¼1yi $logðf ðXiÞÞ
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problem lies in the lack of training data, as evi-
denced by the significant gap between scores ob-
tained using the original data and those achieved
after data augmentation. Data augmentation has
also shown promising results, such as the study of
Khalifa et al. [20], who used several augmentation
techniques like zooming, Gaussian noise, and salt-
and-pepper noise. Consistent with these findings,
MNASNet demonstrated excellent performance
using the zooming augmentation technique. The
zooming augmentation produced smaller-sized

images that contribute to MNASNet's strong per-
formance, as it is designed to generate lightweight
and efficient models, which are crucial in micro-
image-based classification tasks [32]. Table 5 com-
pares the architectures with parameters less than 5
million. Moreover, MNASNet exhibits better
generalization capabilities, as the architecture
search process involves extensive exploration of
variations within the training data. In Lactobacillus
classification, where significant morphological vari-
ation between species may occur, MNASNet main-
tains high performance by capturing essential
features in images that other architectures might
overlook. Based on Fig. 8 and Table 4, MNASNet's
accuracy decline of 0.07 % compared to RegNet's
0.34 % and Xception's 0.67 % is attributed to
MNASNet's flexible architecture design, which al-
lows it to adapt to changes in data distribution and
the addition of new data.

Fig. 9. Testing models confusion matrix, a) MNASNet, b) RegNet, and c) Xception.

Table 4. Accuracy, precision, sensitivity, and f1 score of the three
models.

Models Accuracy Precision Sensitivity F1 Score

MNASNet 99.15 % 99.09 % 99.14 % 99.11 %
RegNet 98.73 % 98.73 % 98.77 % 98.75 %
Xception 98.99 % 98.71 % 98.78 % 98.74 %
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As shown in Fig. 11, the average execution time
per epoch for the MNASNet model indicates a sig-
nificant training speed, with an average execution
time of 19.59 s per epoch. The speed surpasses other
models, such as Xception and InceptionV3, which
require average times of 96.61 s and 55.95 s per
epoch.
The higher average per-epoch speed of MNASNet

is primarily due to its lighter architectural design,
which allows for faster backpropagation and opti-
mization processes without compromising accuracy.
It is crucial in practical applications, especially when
working with large datasets or adopting fine-tuning
approaches requiring multiple iterations.

Although MNASNet achieves faster average per-
epoch speeds, this advantage comes with additional
costs during the architecture search phase, which
may require more time and resources. Once the
optimal architecture is found, the high average per-
epoch speed makes the model more effective for
deployment in various use cases. These findings
confirm that MNASNet offers significant advan-
tages in terms of training efficiency and, therefore, is
more suitable for applications that require fast
training cycles and optimal resource utilization.

4. Conclusions

Lactobacillus, a beneficial bacterium, plays a sig-
nificant role in the health and food industries,
particularly in fermentation products like yogurt and
kefir. This study reveals the potential of deep
learning architectures in classifying Lactobacillus
species from microscopic images, achieving accu-
racies above 95 %. Among the tested architectures,
MNASNet stands out with its optimal balance of
performance and computational efficiency, achieving
an accuracy of 99.15 % with only 3.1 million param-
eters. Moreover, MNASNet demonstrated a high
computational efficiency, with an average computa-
tion time of 19.59 s per epoch. It makes MNASNet
more efficient than other models, which typically
have over 20 million parameters and require longer
computation times. Therefore, MNASNet is highly
suitable for implementation on mobile and
embedded devices with limited resources.
The implications of this research extend beyond

mere classification accuracy. The ability to deploy
such an efficient model in resource-constrained
environments opens new avenues for real-time
monitoring and quality control in the food industry.
Additionally, as the number of known Lactobacillus
species has expanded from 11 to over 200, the
scalability and adaptability of this approach have
become crucial. It suggests that further develop-
ment could extend the model to accommodate a
broader range of species, enhancing its utility in
both industrial and research settings.

Fig. 10. Illustrates examples of misclassifications made by the MNASNet model in identifying Lactobacillus species. a) L. casei, b) L. gaseri, c) L.
reuteri, d) L. plantarum., and e) L. rhamnosus.

Table 5. Compares the results of architectures with parameters less than
5000 M.

Method Description Parameters Accuracy

Khalifa et al. [20] Custom CNN 0.541 M 98.22 %
Rujichan et al. [22] MobileNet v2 3.904 M 95.09 %
García et al. [15] MobileNet v3 4.243 M 97.38 %

Shufflenet_v2 1.286 M 96.35 %
Squeezenet1 0.738 M 91.36 %
Efficient net-b0 4.048 M 97.20 %

Proposed method MNASNet 3.116 M 99.15 %

Fig. 11. The line plot illustrates the detection time (in seconds) of four
different models: MNASNet, RegNet, Xception, and InceptionV3.
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Future work could explore further integrating
additional data sources or refining model architec-
tures to enhance classification accuracy and effi-
ciency. The promising results underscore the
potential of deep learning in microbiology, paving
the way for developing more sophisticated and
accessible tools for bacterial identification.
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